Quantitative vs. Qualitative Methodologies to Investigate Environmental Control in the Workplace: Neutral Thermal Sensation and Thermal Environmental Intention.

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
PLEA2013 - 29th Conference, Sustainable Architecture for a Renewable Future, Munich, Germany 10-12 September 2013

Publisher Rights Statement:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Quantitative vs. Qualitative Methodologies to Investigate Environmental Control at Workplaces
Neutral Thermal Sensation and Thermal Environmental Intention

ABSTRACT: This study compares the application of qualitative and quantitative methods to investigate user comfort and environmental control in the workplace. This is examined by environmental measurement and user satisfaction at two workplaces with respectively low and high levels of individual environmental control. An open plan office in Scotland is selected with automatic displacement ventilation, where users have access to limited windows. In contrast, a cellular plan office in Norway is chosen that provides every user with control over a window, in addition the ability to adjust heating and cooling. Complimentary quantitative and qualitative methodologies are applied with particular emphasis on Grounded Theory methods. Questionnaire, environmental measurements and semi-structured interviews are used. A new visual recording method is applied to analyse the subject at its context qualitatively. Information regarding all users and their environment is applied as colour codes to floor plate layouts. The results are compared with the quantitative analysis. The study examines the significance of applying a qualitative method to question the ‘Neutral Thermal Sensation’ and expand on the importance of the ‘Thermal Environmental Intention’. Through this a balanced appraisal can be made of comfort between the two benchmarked buildings.
Keywords: methodologies, analysis, thermal comfort, individual control, workplaces

INTRODUCTION
This paper investigates the application of the neutral thermal sensation as the basis of thermal comfort studies and standards by comparing quantitative and qualitative methods of analysis. The qualitative analysis of the collected information at the two buildings suggests that ‘Environmental Thermal Intention’, which is the user’s intention to change and apply control over the temperature and ventilation have a significant influence on user’s satisfaction.

NEUTRAL THERMAL SENSATION
ASHRAE presents the seven point scale on thermal sensation surveys as hot, warm, slightly warm, neutral, slightly cool, cool and cold [1]. The ASHRAE standard and defining the comfort zone is based on the neutral thermal sensation [2]. For instance, the ASHRAE handbook explains that ‘acceptability is determined by the percentage of occupants who have responded neutral or satisfied with their thermal environment’ [2]. Other studies of thermal comfort including the experimental chambers and adaptive comfort are based on the neutral thermal sensation as well. For example, Fanger’s experiments to find the optimum temperature are on this basis. Bluysse explains that Fanger ‘strongly believes that comfort can be reached when the heat balance of the human body is neutral’ [3]. He discovered that ‘for practical purposes the neutral temperature is invariant [4].

Based on a study in 2007, Humphreys found that many people were comfortable when they did not feel neutral regarding the surrounding thermal conditions. In the UK, where the temperature is generally cold people were comfortable when experiencing sensations such as neutral, slightly warm, warm and occasionally hot [5]. Although this was recognised in 2007, the adaptive comfort studies are still based on the neutral thermal sensation [6]. For example, Nicol’s ‘scatter of neutral temperature’, which is presented in figure 1, shows how neutral temperature changes according to outdoor temperatures in free running buildings [6].

Figure 1: Neutral temperature and the prevailing mean outdoor temperatures in free-running buildings [6]

Hitchings explains that ‘instead of talking about what temperatures feel neutral in particular places when we have already accepted this to be dynamic, the ambition may now be to reveal which techniques people are willing to employ to get through particular periods more sustainably’ [7].
ENVIRONMENTAL CONTROL
Different studies explain the impact of environmental control on user comfort [8, 9, 10 and 11]. Nevertheless, the prevalence of deep open plan layouts and the speculative nature of workplace development prevent user’s direct influence on the indoor thermal environment and replace it with centralised facilities management [12]. In addition, there is a strong preference for centralised automatic systems to eliminate users’ influence on the system to streamline the facilities management [13]. Different studies have been conducted regarding the pattern of use of environmental controls, such as windows [5, 14]. This paper compares environments with high and low levels of individual control over the thermal environment. It compares cellular and open plan offices with respective high and low levels of environmental control.

Anglo-Saxon Open Plan vs. Scandinavian Cellular Plan Offices. The working culture, legislation and building traditions of Anglo-Saxon and Scandinavian countries are very different. This is followed by a difference in the design of workplaces as well as individual environmental control [15]. In Scandinavia, every worker has the right to access natural light and ventilation [15]. In order to maximise these two aspects, offices are located around the perimeter of the floor plates, in the form of traditional personal offices. In this case, every individual is provided with a high level of environmental control. In contrast, the open plan layout has been common in Anglo-Saxon countries. The high level of communication and very efficient use of space are the benefits of an open plan office [16, 17]. In the deep open plan offices, many occupants are allocated far from windows and openings, and they are provided with very limited environmental control.

METHODOLOGIES
Traditionally in thermal comfort studies, quantitative methodologies have been used, however the application of the qualitative methods has been recently encouraged [7]. In this study, a combination of quantitative and qualitative methods is employed with a particular emphasis on the qualitative part, which is the Grounded Theory. The latter is a cycle process of designing, collecting and analysing the information to develop hypotheses into a theory [18]. Different pilot studies are experienced to formulate a research plan to be employed at the site. Measurements of the thermal environment and questionnaires are used simultaneously at every workstation as the traditional techniques. The questionnaire is based on the ASHRAE seven point scale. In addition, semi-structured interviews are applied as a qualitative tool to investigate environmental control and comfort in depth. The quality of the thermal environment at every workstation is compared to the commonly used worldwide standard, ASHRAE Standard 55-2010, by using the second version of the ASHRAE Thermal Comfort Tool.

CASE STUDY BUILDINGS
This research includes two good practice examples of workplaces with low and high levels of individual environmental control. An open plan office with centrally controlled displacement ventilation in Aberdeen, Scotland, is researched with low levels of individual environmental control. In contrast, an air conditioned cellular plan office in Oslo, Norway, is investigated with high levels of individual environmental control. In the open plan office, only people seated around the perimeter of the building have access to limited openable windows and blinds to control their thermal environment. The majority of the people are allocated to workstations at the centre of the open plan with no means of control. However, in the cellular plan office every individual has access to an openable window, internal and external blinds and a control device to adjust the temperature, see figure 2. In the open plan practice 81 votes and in the cellular plan office 97 votes are considered in this study. Approximately equal numbers of men and women with variety of ages have participated in the research.

![Figure 2: Comparing the environmental control between (a) open plan and (b) cellular plan offices](image)

BUILDING PERFORMANCE
Energy Consumption. The energy use of the two buildings is compared with the CIBSE TM 22 energy benchmark [19]. As shown in figure 3 the cellular plan office has a much higher energy use, 552.80 KWh/m², compared to the open plan office, 159.39 KWh/m².

![Figure 3: Comparing the energy use of the two buildings against the CIBSE energy benchmark](image)

CO2 Level. As shown in figure 4a, the cellular plan office has slightly lower CO₂ levels, but both of the buildings are within the acceptable range.
Environmental Control. The availability of control systems over temperature, ventilation and light for the occupants of the two buildings is compared in figure 4b. 77% of the participants in the open plan have no access to any means of environmental control as they sit in the middle of the open plan, in contrast 91% of the participants in the cellular plan practice have full personal control over a window, door, corridor blind, internal and external blinds, as well as a control device to adjust cooling and heating.

Predicting Thermal Comfort. The thermal environments of the two buildings during the period of a day are compared with the ASHRAE Standard 55-2010 comfort zone, both adaptive and PMV models, see figures 5a and 5b. The basis of both models is the ‘Neutral Thermal Sensation’. The adaptive model predicts that 94% of the people in the open plan layout and 100% in the cellular plan office are thermally comfortable. The PMV model predicts that 48% of the people in the cellular plan workplace have a neutral thermal sensation, while only 9% of the people in the open plan workplace have the same neutral feeling.

QUANTITATIVE VS. QUALITATIVE ANALYSIS
Although steady state and adaptive comfort theories oppose each other, both of them use quantitative methods and analysis. The former takes place in experimental chambers with a few controlled variables, while the latter is measured at the real life context of workplaces [20].

Quantitative Analysis. In the open plan office, 40% of the participants reported to have a neutral thermal sensation, 49% reported to have no desire for a change in temperature, 40% reported to be satisfied, and 64% reported to be thermally comfortable, see figure 6. The number of the people who reported neutral, no change and satisfied is very similar. In addition, the level of comfort reported by participants in the open plan office is much higher than the PMV prediction, while much lower than the adaptive model. Furthermore, the number of people who reported a neutral thermal sensation is much lower than the adaptive model and much higher than the PMV model. In the cellular plan office, 46% of the occupants reported to have a neutral thermal sensation, 46% reported to have no desire for a change in temperature, 71% reported satisfied, and 81% reported to feel thermally comfortable, see figure 6. The number of the people who reported neutral and no change is very close. The level of comfort reported by participants in the cellular plan workplace is much higher than the PMV prediction, while lower than the adaptive model. In addition, the neutral sensation reported in the cellular office is much lower than the adaptive prediction, but very close to the PMV model. Except the latter, the actual survey results are significantly different from either adaptive or PMV predictions in both buildings.

Qualitative Analysis. Although the architecture of a building directly influences the indoor thermal environment, architects have passed the responsibility to provide thermal comfort to engineers [6]. The results of thermal comfort studies, such as Fanger’s heat balance equation, although very useful they are often expressed in a language that may not be convenient for architects.
Visual Analysis Tool. Visual tools are commonly used in the field of architecture to apply information on plans and sections. They add a different value and perspective by putting together different information regarding a specific aspect in a visual way. In this paper, a visual recording technique shown in figure 9 has been used, in which the information has been expressed by applying different colours to the floor plates. Figure 7 shows an individual workstation’s analysis, which is a top view of a seated person. The colours inside the rectangles show the PMV and adaptive predictions based on ASHRAE’s tool and environmental measurements. The colours inside the curved lines, which is the person’s body, are in regard to the person’s reported survey at the time of the measurements at the particular workstation. The green colour shows an acceptable situation, while blue, red, and orange are respectively cold, warm, and an unacceptable situation.

Neutral Thermal Sensation. The qualitative analysis shows that 48% of the participants in the cellular plan office and 46% in the open plan layout prefer to have other thermal sensations than neutral. Many people want no change in the temperature when they feel slightly warmer or cooler, in addition many people prefer a change in the temperature when they have a neutral thermal sensation, see figure 8. Occasionally people may have an extreme temperature desire, such as a slightly cooler intention when they already feel cool.

Environmental Thermal Sensation and Satisfaction. Quantitative analysis shows the overall satisfaction level in both buildings to be lower than their thermal comfort level, see figure 6. Qualitative analysis shows that in the cellular plan office 100% of the people who reported satisfied, are also comfortable, while only 62% of the people who reported to be comfortable are also satisfied. In the open plan office, 86% of the people who reported satisfied are also comfortable, while only 35% of the people who reported to be comfortable are also satisfied. This suggests that satisfaction is more of a delicate matter compared to comfort and that user satisfaction has a strong relationship with their thermal comfort in the sense that satisfied people are more likely to be thermally comfortable.

Neutral Thermal Sensation and Comfort. Qualitative analysis shows that 50% of the people in the cellular plan office and 53% of the participants in the open plan office are comfortable when they do not have a neutral thermal sensation. In addition, interview results confirm that majority of participants desired temperatures other than neutral for working. 40% of the participants preferred to work feeling slightly cool and occasionally cool, in order to feel fresh and not sleepy. 30% of the participants desired slightly warm and occasionally warm working conditions since they were not physically active at work. Only 30% of the participants preferred to work feeling neutral.

In addition, 96% of the people with a ‘No Change’ thermal environmental intention reported satisfied. The satisfaction of the people in the cellular plan office with an easy access to a window are more related to their desire to change the temperature, while people’s satisfaction in the open plan layout with no access to any window or environmental control is more related to their ventilation desire, including the air movement and air quality. Conclusively, the qualitative analysis suggests a significant influence of overall thermal environmental intention on user satisfaction.
Figure 9 (a): Sample of the qualitative analysis of the cellular plan office

Figure 9 (b): Sample of the qualitative analysis of the open plan office
CONCLUSION
The qualitative analysis of the collected information reveals connections between the data regarding a particular person that change the meanings and influence the findings of the research. The qualitative analysis in this paper suggests that the ‘Neutral Thermal Sensation’ does not guarantee thermal comfort as it appears in the quantitative analysis of the same data as well as is presumed in the previous studies of thermal comfort. It confirms Humphreys’ findings regarding the ‘Neutral Thermal Sensation’ that many people prefer thermal sensations other than neutral to feel comfortable [5]. In addition, qualitative analysis suggests that satisfaction is significantly influenced by the environmental thermal intention such as temperature and ventilation. People who are satisfied have limited intention to change the temperature, ventilation rate or air quality. Finally, occupants of the cellular plan office with a high level of individual environmental control report much higher levels of thermal comfort and satisfaction compared to occupants of the open plan workplace with limited access to environmental control, such as the openable windows.

Field studies of thermal comfort have been criticised for the complexities of the context and variety of variables influencing the comfort conditions [3]. In addition, Nicol et al. discuss that the findings of a field study may not be applicable to other buildings since the context changes, thus generalising the findings of a field study is difficult [6]. In addition, due to the constraints on time and resources in a PhD research as well as collecting the data in a qualitative way, such as interviews, the sample size is fairly small. Therefore, generalising the results and achievements is not easy. However, Nicol et al. explain that the way forward is through more research in a variety of contexts to gain a better understanding of this complicated field to both clarify and generalise the findings [6].

ACKNOWLEDGEMENTS
The authors would like to acknowledge Brian Stewart, Donald Canavan, Ingeborg Hovik, Knut Inge Fostervold, Hendricus De Jonge, Steve Keil, Claire Lessells, Farah and Daryoush Shahzad as well as the management and occupants of the two buildings.

REFERENCES