Statistical analysis plan for the 'Efficacy of Nitric Oxide in Stroke' (ENOS) trial

Citation for published version:

Digital Object Identifier (DOI):
10.1111/ijs.12235

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
International Journal of Stroke

Publisher Rights Statement:

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
High blood pressure is present in 70% or more of patients with acute ischemic stroke and intracerebral hemorrhage (ICH) (1). Affected patients have a worse outcome, whether judged as early recurrence, death within a few weeks, or combined death and dependency after several months (1–4). Lowering BP might therefore reduce these events and improve functional outcome.

Intravenous sodium nitroprusside reduced BP without altering CBF and exhibited antiplatelet effects (thereby precluding its use in ICH) (9). Four pilot trials of transdermal glyceryl trinitrate (GTN) found that it lowered BP by approximately 8%; did not alter platelet function (and so could be given in ICH); did not alter middle cerebral artery blood flow velocity or regional CBF; improved aortic vascular compliance; and could be given to patients with dysphagia (10–13). No safety concerns were present in these studies, and in one small trial, ultra-acute treatment with GTN was associated with an improved functional outcome (13,14).

On the basis of these preclinical and clinical data showing feasibility, tolerability and apparent safety of GTN, and the potential for efficacy, the large ‘Efficacy of Nitric Oxide in Stroke’ (ENOS) trial was started and is ongoing. ENOS is assessing, in a partial, factorial, prospective, randomized, single-blind, blinded-outcome design, whether to lower BP with GTN (vs. no GTN) and whether to continue (vs. stop) pretstroke antihypertensive therapy. The trial commenced in 2001, and protocols for the main trial and an outline on the management of neuroimaging were published in 2006 and 2007, respectively (15,16). Several nontreatment-related and blinded analyses of the ENOS database have been published since the start of the trial (17–22). The independent Data Monitoring Committee have assessed the trial every six-months and on each occasion recommended that the trial should continue.

Prior to presentation of the primary analyses in 2014, two further publications are planned, the statistical analysis plan (SAP) and a detailed listing of baseline characteristics. The accompanying Supporting Information Appendix S1 details the SAP and is presented prior to locking of the trial database (expected in late February) so that analyses are not data driven or selectively reported (23). Unusually, this SAP includes not just information on the two primary publications (GTN vs. no GTN, and continue vs. stop pretstroke antihypertensive medication) but also provides detailed information on the intended baseline characteristics publication and the first set of secondary publications. The SAP also informs much of the content of the final trial report.
to be submitted to the Medical Research Council/Efficacy and Mechanism Evaluation Programme (EME); the final report will be submitted in the third quarter of 2014 for publication in the EME Journal, part of the National Institute for Health research collection of peer-reviewed open access journals.

Importantly, the ENOS Trial Steering Committee have changed the original plan for the analysis of the primary outcome, as reported in the protocol (published in IJS) (15), from using an unadjusted binary ‘cut’ of the modified Rankin Scale (mRS (24), unadjusted comparison of mRS ≥2 between the treatment groups) to an adjusted ordinal analysis utilizing all seven levels of the mRS with adjustment for minimization variables. The change meant that the sample size could be reduced from 5000 patients to a minimum of 3500 patients assuming power of 90% and significance of 5%. The decision to change from dichotomous to polytomous analysis was not based on any interim analysis of the ENOS dataset; rather, it reflects the recognition that ordinal analyses are more efficient statistically (i.e. they provide improved statistical power for a given sample size) (25,26) as also shown for head injury trials (27). (The importance of this change is highlighted by recent trials that were technically neutral on their primary outcome when using a binary analysis but positive when analyzed secondarily using an ordinal analysis. (6,28)) Similarly, adjusted analyses provide additional statistical power (29), are important if minimization is used during the process of randomization (30), and help address any minor imbalances present at baseline because of chance. As a result, these statistical approaches are likely to be more sensitive to any treatment effect and, as such, are recommended by the European Stroke Organization (31). The collection of all baseline data needed for covariate adjustment of the primary outcome should mean there is no need for imputation for missing data.

In the future, data from ENOS will be integrated into individual patient data meta-analyses of NO donors, and BP lowering, for acute stroke (the latter through the ‘Blood pressure in Acute Stroke Collaboration’), and made available to participating countries and the ‘Virtual International Stroke Trials Archive’ (32).

Ultimately, a subset of the data will be made available over the web, as with the International Stroke Trial (33). Similarly, anonymized baseline and on-treatment neuroimaging data will be published (16).

References

Supporting information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Appendix S1. Statistical Analysis Plan (ENOS).