Aging-sensitive networks within the human structural connectome are implicated in late-life cognitive declines.

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.biopsych.2020.06.010

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Biological Psychiatry
Aging-Sensitive Networks Within the Human Structural Connectome Are Implicated in Late-Life Cognitive Declines

James W. Madole, Stuart J. Ritchie, Simon R. Cox, Colin R. Buchanan, Maria Valdés Hernández, Susana Muñoz Maniega, Joanna M. Wardlaw, Mathew A. Harris, Mark E. Bastin, Ian J. Deary, and Elliot M. Tucker-Drob

ABSTRACT

BACKGROUND: Aging-related cognitive decline is a primary risk factor for Alzheimer’s disease and related dementias. More precise identification of the neurobiological bases of cognitive decline in aging populations may provide critical insights into the precursors of late-life dementias.

METHODS: Using structural and diffusion brain magnetic resonance imaging data from the UK Biobank (n = 8185; age range, 45–78 years), we examined aging of regional gray matter volumes (nodes) and white matter structural connectivity (edges) within 9 well-characterized networks of interest in the human brain connectome. In the independent Lothian Birth Cohort 1936 (n = 534; all 73 years of age), we tested whether aging-sensitive connectome elements are enriched for key domains of cognitive function before and after controlling for early-life cognitive ability.

RESULTS: In the UK Biobank, age differences in individual connectome elements corresponded closely with principal component loadings reflecting connectome-wide integrity (|r|nodes = .420; |r|edges = .583), suggesting that connectome aging occurs on broad dimensions of variation in brain architecture. In the Lothian Birth Cohort 1936, composite indices of node integrity were predictive of all domains of cognitive function, whereas composite indices of edge integrity were associated specifically with processing speed. Elements within the central executive network were disproportionately predictive of late-life cognitive function relative to the network’s small size. Associations with processing speed and visuospatial ability remained after controlling for childhood cognitive ability.

CONCLUSIONS: These results implicate global dimensions of variation in the human structural connectome in aging-related cognitive decline. The central executive network may demarcate a constellation of elements that are centrally important to age-related cognitive impairments.

Keywords: Brain age, Brain networks, Cognitive decline, Connectomics, Diffusion MRI, Structural MRI

https://doi.org/10.1016/j.biopsych.2020.06.010
networks previously implicated in general cognitive function [e.g., Parieto-Frontal Integration Theory (P-FIT) (26,27)] would show more pronounced associations with cognitive aging than networks supporting more basic functions [e.g., sensorimotor (22,23)]. These subnetworks are distributed throughout the brain and partially overlap, allowing us to examine whether age- or cognitive-relevant information is more tightly concentrated within certain heterogeneous subcomponent constellations.

Previous studies implicating the human structural connectome in age-related cognitive decline have largely documented age trends in summary indices of connectome topology (e.g., strength, global efficiency) (28,29) or have used large-scale, exploratory methods to examine how a range of morphometric and diffusion tensor measures relate to age and sociodemographic variables (30,31). In more than 8000 individuals from UK Biobank (UKB), we examined age trends for individual elements within the whole-brain connectome and its NOIs before exploring how these age trends relate to general dimensions of neurostructural integrity. We used regression weights discovered in UKB to construct summary indices of volumetric structure and white matter connectivity at age 73 years in the independent Lothian Birth Cohort 1936 (LBC1936), which we used to predict concurrent measures of processing speed, visuospatial ability, and memory. We examined the robustness of these associations relative to total brain volume (TBV) and cognitive ability measured at 11 years of age.

METHODS AND MATERIALS

Participants

UK Biobank. We analyzed MRI data from 8185 participants (4315 female) from UKB, a large-scale population epidemiology study of individuals across Great Britain (Supplement 1) (32). Participants ranged in age from 44.64 to 78.17 years (mean [SD] age = 61.9 [7.45] years). Less than 2% of the sample (n = 157 participants) met criteria for potentially confounding dementias and neurological syndromes (e.g., multiple sclerosis, stroke). Excluding these participants from the sample did not change primary outcome measures (r_{age correlations} > .999, mean absolute difference in r = .001 for both edges and nodes). Therefore, we retained the full sample for our analyses. Despite previous research demonstrating neuroanatomical sex differences (28,33), we found largely similar patterns of connectome aging across men and women (r_{edge-age correlations} = .892; r_{node-age correlations} = .974, ps < .0005). We therefore report results of analyses of data collapsed across both sexes. UKB received ethical approval from the Research Ethics Committee (reference 11/NW/0382). All participants provided informed consent to participate.

Lothian Birth Cohort 1936. We analyzed data from 534 participants (246 female) from the LBC1936 (34,35) study who had reliable brain MRI and cognitive data at the age 73 wave (mean [SD] age = 72.8 [0.70] years), the first wave of brain MRI data collection (Supplement 1). Participants in LBC1936 completed an intelligence test at approximately age 11 years as part of the Scottish Mental Survey 1947 (36). Participants were largely healthy: only 7 scored in the mild range of dementia on the Mini-Mental State Examination, zero self-reported symptoms of dementia, and 65 met criteria for neuroradiologically identified stroke (37).

Brain Image Acquisition and Processing

Magnetic Resonance Imaging. MRI data for UKB participants were collected on the same MAGNETOM Skyra 3T MRI scanner (Siemens Healthineers AG, Erlangen, Germany) [see Miller et al. (38) and Alfaro-Almagro et al. (39) for full details]. MRI data for LBC1936 participants were collected on the same GE Signa Horizon HDxt 1.5T clinical scanner (General Electric, Milwaukee, WI) [see Wardlaw et al. (37) for full details]. Further details regarding the acquisition and processing of MRI data are provided in Supplement 1.

Tractography. Probabilistic tractography pipelines were largely identical across UKB and LBC1936. Details about diffusion tensor MRI acquisition and processing for both samples are provided in Supplement 1.

Connectome Construction. Treatment of the structural brain data for both samples was based on an automated connectivity mapping pipeline (40,41), wherein T1-weighted volumes are decomposed into 85 distinct cortical and subcortical regions (nodes) based on the Desikan-Killiany atlas (42). Mean fractional anisotropy was averaged along the length of all streamlines identified between each pair of nodes (edges; k = 3570 possible edges). Fractional anisotropy is a diffusion tensor MRI–derived measure of white matter organization that describes the directional coherence of water molecule diffusion. Three edges were estimated as zero across all participants (i.e., probabilistic tractography found no route between the nodes involved). Whole-brain structural connectomes, composed of the 85 gray matter nodes and the 3567 nonzero edges, were created for each participant in UKB and LBC1936. Analyses were run using unthresholded matrices, which were determined to be largely similar to consistency-based thresholded matrices (Supplement 1 text and Figure S1 in Supplement 1) (43).

Networks of Interest. Masks were created to partition whole-brain connectomes into 9 prespecified NOIs (Figure 1; Table 1; Tables S1 and S2 in Supplement 1). Several NOIs were composed of partially overlapping edges and nodes, collectively referred to here as elements (Table S3 in Supplement 1). Where applicable, details for how overlapping elements were handled are provided in Results.

Cognitive Testing in LBC1936

We analyzed data from tests of processing speed, visuospatial ability, and memory, which we have characterized within this cohort in previous research (53). Visuospatial ability was measured using tests of matrix reasoning (54), block design (54), and spatial span (forward and backward) (55). Processing speed was measured using the digit symbol substitution (54), symbol search (54), 4-choice reaction time (56), and inspection time (57). Memory was measured using the digit span backward (54), logical memory (55), and verbal paired associates (55). All cognitive domains were modeled as latent variables.
Connectome Aging

Fit indices, factor model parameter estimates, and descriptive statistics for the cognitive tests are reported in Table S4 in Supplement 1.

RESULTS

Connectome Aging

Cross-sectional age trends in each connectome element were estimated in the UKB sample. Density distributions of the element-wise age associations for the whole-brain connectome and each NOI are presented in Figure 2A. The majority of elements showed small to modest negative associations with age (edges: 2375/3570 [66.5%] < 0, mean \(r = -.037 \), range = \(-.437 \) to \(.268 \); nodes: 81/85 [95.3%] < 0, mean \(r = -.160 \), range = \(-.322 \) to \(.087 \)). Nodes from the P-FIT network displayed a bimodal distribution of age associations, potentially indicating multiple aging-related processes within this network (Hartigans’ dip test \(D = 0.088, p < .001 \) (Table S5 in Supplement 1). This multimodality may be driven by network-specific divisions: elements from the central executive network displayed the steepest age-related gradients (mean \(r_{\text{age-edge}} = -.163 \); mean \(r_{\text{age-node}} = -.211 \)) (Table S6 in Supplement 1), suggesting that it demarcates a particularly age-sensitive constellation of elements within the larger P-FIT network. Only the salience network contained a majority of edges with positive age associations (36/45 [80%] \(r_s > 0 \)). In contrast, all 10 of its nodes displayed negative age associations.

General Dimensions of Connectome Integrity. The widespread age-related decrements across NOIs suggest that individual elements may represent broader dimensions of interindividual variation in global connectome integrity. We examined this possibility by residualizing edges and nodes for age and subjecting their respective correlation matrices to principal component (PC) analysis (Supplement 1 text, Figures S2 and S3 in Supplement 1, and Tables S7 and S8 in Supplement 1). The first PC accounted for 11.0% and 36.9% of variation in edges and nodes, respectively. The second PC accounted for less than one fifth the variance accounted for by the first corresponding eigenvalue (Figure S4 in Supplement 1). Whole-brain loadings were overwhelmingly positive (edges: 98.4% of loadings > 0; nodes: 100% of loadings > 0) (Figure 2B). Elements within the central
Connectome Aging

Table 1. Properties of Each Brain NOI With a Canonical Reference Describing the Network’s Makeup, Previous Associations, and Elements

<table>
<thead>
<tr>
<th>Network</th>
<th>Nodes</th>
<th>Edges</th>
<th>Hypothesis</th>
<th>Select Regions</th>
<th>Implicated in</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Networks (Global)</td>
<td>85</td>
<td>3570</td>
<td>+</td>
<td>DLPFC, inferior and superior parietal lobule, ACC, specific regions within temporal and occipital lobes</td>
<td>General intelligence</td>
</tr>
<tr>
<td>P-FIT (26,27)</td>
<td>36</td>
<td>630</td>
<td>+</td>
<td>Right DLPFC, posterior parietal cortex</td>
<td>Activation associated with selecting, switching, and attending to salient events</td>
</tr>
<tr>
<td>Central Executive (44–46)</td>
<td>8</td>
<td>28</td>
<td>+</td>
<td>Middle frontal, inferior parietal, pre-SMA, ACC, rostral prefrontal, insula/frontal operculum</td>
<td>General purpose activation in cognitively demanding tasks, suggesting a role in cognitive flexibility, executive control, and abstract problem solving</td>
</tr>
<tr>
<td>Multiple Demand (47,48)</td>
<td>12</td>
<td>66</td>
<td>+</td>
<td>Dorsal ACC, superior frontal cortex, anterior frontal cortex, insula, thalamus</td>
<td>Stable set control, maintenance of task-relevant sustained attention</td>
</tr>
<tr>
<td>Cingulo-opercular (46)</td>
<td>10</td>
<td>45</td>
<td>+</td>
<td>Ventromedial frontal cortex, medial temporal cortex, posterior cingulate cortex, angular gyrus, cingulum bundle</td>
<td>Extensive deactivation in functional MRI during cognitively demanding tasks</td>
</tr>
<tr>
<td>Default Mode (20,49)</td>
<td>16</td>
<td>120</td>
<td>–</td>
<td>Insula, ACC, amygdala, substantia nigra/VTA, thalamus</td>
<td>Orientation of attention to the most homeostatically relevant events from moment to moment</td>
</tr>
<tr>
<td>Hippocampal-diencephalic (50,51)</td>
<td>12</td>
<td>66</td>
<td>+</td>
<td>Ventromedial frontal cortex, medial temporal cortex, posterior cingulate cortex, angular gyrus, cingulum bundle</td>
<td>Memory and spatial orientation</td>
</tr>
<tr>
<td>Salience (24,25,45)</td>
<td>10</td>
<td>45</td>
<td>–</td>
<td>Precentral, postcentral, pre- and post-SMA, caudal cingulate, caudal middle frontal gyrus, thalamus, putamen</td>
<td>Initiation and control of movements</td>
</tr>
<tr>
<td>Sensorimotor (22,23)</td>
<td>12</td>
<td>66</td>
<td>–</td>
<td>Anterior temporal cortex, amygdala, orbitofrontal cortex, ACC, parts of cingulum bundle</td>
<td>Visceral emotion and sensation</td>
</tr>
<tr>
<td>Temporo-amygdala-orbital (20,21)</td>
<td>32</td>
<td>496</td>
<td>–</td>
<td>Anterior temporal cortex, amygdala, orbitofrontal cortex, ACC, parts of cingulum bundle</td>
<td>Visceral emotion and sensation</td>
</tr>
</tbody>
</table>

For each network, the number of edges is $N(N-1)/2$ the number of nodes. + refers to subnetwork for which we hypothesized a positive association between subnetwork integrity and cognitive function. – refers to a negative control network, i.e., a network for which we do not hypothesize a positive association between subnetwork integrity and cognitive function. See Figure 1 for illustration of network properties. See Table S2 in Supplement 1 for comparison with other widely used brain subnetworks (52).

Table S5 in Supplement 1. This again suggests that this small subset of the P-FIT network may disproportionately index overall brain integrity.

Connectome Aging Occurs Along General Dimensions of Edge and Node Integrity. We tested the extent to which aging-related differences in individual connectome elements occurred along the general dimensions of edge and node integrity identified above. In UKB, we estimated the correlation between each element’s loading on the first PC (both whole-brain and network-specific) and each element’s association with age separately for edges and nodes. Residualizing connectome elements for age before conducting PC analyses ensured that the tested association between age sensitivity and PC loadings was not an artifact of similar age trends driving element covariation (58,59). Figure 3 displays the whole-brain association between PC loadings and age correlations for edges (left panel) and nodes (right panel). Both edges and nodes that had stronger loadings evinced steeper age gradients ($r_{edges} = -.583; r_{nodes} = -.420$): the more indicative an element was of global variation in brain connectivity or brain volume, the stronger its negative association with age. Similar patterns were obtained when analyses were conducted separately for each individual NOI (Supplement 1 text and Figures S5 and S6 in Supplement 1).

We tested whether the observed associations between PC loadings and age correlations were explained by the topological centrality (i.e., strength) of elements within the whole-brain connectome, a potential indication of metabolic cost that could confer susceptibility to degeneration with age (Supplement 1) (60). We found that topological centrality was strongly correlated with PC loadings ($r_{edges} = .655; r_{nodes} = .583$; both $p < .0005$) (Figure S7 in Supplement 1), but only modestly associated with age correlations ($r_{edges} = -.202, p < .0005; r_{nodes} = -.211, p = .053$) (Figure S8 in Supplement 1). Similarly, network membership (i.e., the number of NOIs that an element belongs to) was weakly, if at all, related to the age
Connectome Aging

Figure 2. (A) Density distributions of association of each element with age, categorized by prespecified network of interest. All networks of interest are subsets of the whole-brain (global) network, such that comparison with the red distribution at the top of both panels is not a comparison of independent elements, but rather a comparison of a subset to a whole. (B) Density distributions of loadings on the first principal component (PC) of the whole-brain connectome, categorized by prespecified network of interest. PC analyses were conducted separately for each network of interest. P-FIT, Parieto-Frontal Integration Theory.

Figure 3. Scatterplots of correlation of each connectome element with age against its loading on a single principal component (PC) [based on an age-partialled correlation matrix (Figure S2 in Supplement 1)]. Analyses were conducted separately for edges (left panel) and nodes (right panel). Each point represents a single element of the connectome (3567 nonzero edges; 85 nodes). Points are categorized by the network of interest to which the element belongs. Elements belonging to multiple networks of interest are plotted once for each group membership and jittered for the sake of visual interpretation. Reported correlations and displayed regression lines reflect analyses including each element only once. P-FIT, Parieto-Frontal Integration Theory.
General Dimensions of Connectome Integrity Are Associated With Late-Life Cognitive Function. That connectome aging occurs along general dimensions of variation in edge and node integrity suggests that these dimensions...
may be particularly relevant for cognitive decline. To test this hypothesis, we created linear composite indices of connectome elements in LBC1936 (Figure S2D in Supplement 1), weighted by either UKB-estimated PC loadings or age correlations, to test associations with latent processing speed, visuospatial ability, and memory factors. As would be expected from the sizable associations between age correlations and PC loadings, age-weighted and PC-weighted composites created for the whole brain were highly correlated ($r_{edge-based\ composites} = -0.97$; $r_{node-based\ composites} = -0.998$) and exhibited nearly identical patterns of associations with cognitive outcomes. This indicates that brain age and overall integrity are virtually indistinguishable.

Edge-Based Composites. Composite indices of connectome-wide edge integrity were significantly associated with processing speed ($r_{age-weighted} = -0.193$; 95% confidence interval $[CI] = [-0.285, -0.101]$; $r_{PC-weighted} = 0.177$; 95% CI = [.084, .269]), but not with visuospatial ability ($r_{age-weighted} = -0.089$; 95% CI = [-.186, .008]; $r_{PC-weighted} = 0.064$; 95% CI = [-.033, .162]) or memory ($r_{age-weighted} = -0.083$; 95% CI = [-.186, .020]; $r_{PC-weighted} = 0.055$; 95% CI = [-.047, .157]). For both age weights and PC weights, a 1000-fold permutation test (Supplement 1 text, Figure S10 in Supplement 1, and Table S9 in Supplement 1) indicated that observed node-based composite indices were not substantially more predictive of any domain than the permuted data (empirical $p > .09$). This is consistent with the high intercorrelations among the nodes and the observation that the distributions of associations for nearly all permuted node runs were very narrow, indicating that nodes may be largely exchangeable with respect to information relevant to cognitive ability.

NOI-based composite indices varied in their magnitudes of prediction, with prediction of visuospatial ability generally exceeding that of processing speed or memory (processing speed: $r_{age-weighted\ adjusted\ range} = -.288$ to -.128; $r_{PC-weighted\ adjusted\ range} = .120$ to .282; visuospatial ability: $r_{age-weighted\ adjusted\ range} = -.377$ to -.277; $r_{PC-weighted\ adjusted\ range} = .292$ to .373; memory: $r_{age-weighted\ adjusted\ range} = -.151$ to -.065; $r_{PC-weighted\ adjusted\ range} = .048$ to .147) (bottom left panel of Figure 4; bottom left panel of Figure S11 in Supplement 1). After adjusting for the number of elements, nodes in the central executive network displayed the largest associations with all domains of cognitive function (processing speed: $r_{age-weighted\ adjusted\ range} = -.026$; 95% CI = [-.038, -.015]; $r_{PC-weighted\ adjusted\ range} = .026$; 95% CI = [.014, .037]; visuospatial ability: $r_{age-weighted\ adjusted\ range} = -.044$; 95% CI = [-.055, -.033]; $r_{PC-weighted\ adjusted\ range} = .044$; 95% CI = [.033, .055]; memory: $r_{age-weighted\ adjusted\ range} = -.013$; 95% CI = [.025, -.0003]; $r_{PC-weighted\ adjusted\ range} = .013$; 95% CI = [.000, .025]) (bottom right panel of Figure 4; bottom right panel of Figure S11 in Supplement 1).

General Dimensions of Edge and Node Integrity Are Incrementally Predictive of Late-Life Cognitive Function

Total Brain Volume. We fitted multiple regression models in LBC1936 to test whether the associations between general dimensions of connectome integrity and cognitive function were unique of TBV, which is perhaps the most robust and well-validated structural MRI predictor of cognitive function (10,14). Results are presented as models 1 and 4 in each panel of Table 2. TBV displayed strong associations with node-based composite scores ($r_{age-weighted\ range} = -.869$; $r_{PC-weighted\ range} = .877$; $p < .0005$), but weak associations with edge-based composites ($r_{age-weighted\ range} = -.0004$; $r_{PC-weighted\ range} = .014$; $p > .750$). TBV was significantly associated with both processing speed ($\beta = .165, p = .001$) and visuospatial ability ($\beta = .333, p < .0005$), but not with memory ($\beta = .012, p = .815$). Edge- and node-based composites of connectome integrity predicted processing speed incremental of TBV (edges: $\beta_{age-weighted\ range} = -.194$; $\beta_{PC-weighted\ range} = .176$; nodes: $\beta_{age-weighted\ range} = -0.408$; $\beta_{PC-weighted\ range} = .382$; $p < .0005$). Node-based composites of connectome integrity predicted visuospatial ability ($\beta_{age-weighted\ range} = -.401$; $\beta_{PC-weighted\ range} = .399$; $p < .0005$) and memory ($\beta_{age-weighted\ range} = -0.446$; $\beta_{PC-weighted\ range} = .442$; $p < .0005$) incremental of TBV.

Element Type. We fitted multiple regression models to test whether the associations between edge- and node-based indices of connectome integrity and cognitive function were distinct from one another. Results are presented as models 2 and 5 in each panel of Table 2. All associations that were present in the univariate context were preserved. For
Table 2. Associations Between Weighted Connectome (Edge and Node) Composites, Total Brain Volume, and Age 11 IQ

<table>
<thead>
<tr>
<th>Composite</th>
<th>Model</th>
<th>Predictor 1</th>
<th>Predictor 2</th>
<th>b_1 (p Value)</th>
<th>b_2 (p Value)</th>
<th>R^2</th>
<th>Multiple R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing Speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age-Based</td>
<td>1a</td>
<td>–</td>
<td>TBV</td>
<td>–</td>
<td>.154 (.001)</td>
<td>.827</td>
<td>.185</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>Edges</td>
<td>TBV</td>
<td>–.194 (<.0005)</td>
<td>.165 (<.0005)</td>
<td>.065</td>
<td>.255</td>
</tr>
<tr>
<td></td>
<td>1c</td>
<td>Nodes</td>
<td>TBV</td>
<td>–.408 (<.0005)</td>
<td>–.188 (0.49)</td>
<td>.069</td>
<td>.263</td>
</tr>
<tr>
<td></td>
<td>2a</td>
<td>Edges only</td>
<td>–</td>
<td>–.193 (<.0005)</td>
<td>–</td>
<td>.037</td>
<td>.193</td>
</tr>
<tr>
<td></td>
<td>2b</td>
<td>–</td>
<td>Nodes only</td>
<td>–</td>
<td>–.245 (<.0005)</td>
<td>.060</td>
<td>.245</td>
</tr>
<tr>
<td></td>
<td>2c</td>
<td>Edges</td>
<td>Nodes</td>
<td>–.167 (<.0005)</td>
<td>–.226 (<.0005)</td>
<td>.088</td>
<td>.297</td>
</tr>
<tr>
<td></td>
<td>3a</td>
<td>–</td>
<td>Age 11 IQ</td>
<td>–</td>
<td>.511 (<.0005)</td>
<td>.261</td>
<td>.511</td>
</tr>
<tr>
<td></td>
<td>3b</td>
<td>Edges</td>
<td>Age 11 IQ</td>
<td>–.149 (.001)</td>
<td>.498 (<.0005)</td>
<td>.282</td>
<td>.531</td>
</tr>
<tr>
<td></td>
<td>3c</td>
<td>Nodes</td>
<td>Age 11 IQ</td>
<td>–.162 (<.0005)</td>
<td>.484 (<.0005)</td>
<td>.285</td>
<td>.535</td>
</tr>
<tr>
<td>PC-Based</td>
<td>4a</td>
<td>–</td>
<td>TBV</td>
<td>–</td>
<td>.154 (.001)</td>
<td>.827</td>
<td>.185</td>
</tr>
<tr>
<td></td>
<td>4b</td>
<td>Edges</td>
<td>TBV</td>
<td>.176 (<.0005)</td>
<td>.163 (.001)</td>
<td>.058</td>
<td>.241</td>
</tr>
<tr>
<td></td>
<td>4c</td>
<td>Nodes</td>
<td>TBV</td>
<td>.384 (<.0005)</td>
<td>–.168 (0.889)</td>
<td>.062</td>
<td>.249</td>
</tr>
<tr>
<td></td>
<td>5a</td>
<td>Edges only</td>
<td>–</td>
<td>–.177 (<.0005)</td>
<td>–</td>
<td>.031</td>
<td>.177</td>
</tr>
<tr>
<td></td>
<td>5b</td>
<td>–</td>
<td>Nodes only</td>
<td>–</td>
<td>–.233 (<.0005)</td>
<td>.099</td>
<td>.235</td>
</tr>
<tr>
<td></td>
<td>5c</td>
<td>Edges</td>
<td>Nodes</td>
<td>.154 (.001)</td>
<td>.214 (<.0005)</td>
<td>.079</td>
<td>.281</td>
</tr>
<tr>
<td></td>
<td>6a</td>
<td>–</td>
<td>Age 11 IQ</td>
<td>–</td>
<td>.511 (<.0005)</td>
<td>.261</td>
<td>.511</td>
</tr>
<tr>
<td></td>
<td>6b</td>
<td>Edges</td>
<td>Age 11 IQ</td>
<td>.133 (.002)</td>
<td>.500 (<.0005)</td>
<td>.277</td>
<td>.526</td>
</tr>
<tr>
<td></td>
<td>6c</td>
<td>Nodes</td>
<td>Age 11 IQ</td>
<td>.154 (<.0005)</td>
<td>.486 (<.0005)</td>
<td>.283</td>
<td>.532</td>
</tr>
<tr>
<td>Visuospatial Ability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age-Based</td>
<td>1a</td>
<td>–</td>
<td>TBV</td>
<td>–</td>
<td>.333 (<.0005)</td>
<td>.111</td>
<td>.333</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>Edges</td>
<td>TBV</td>
<td>–.087 (.068)</td>
<td>.331 (<.0005)</td>
<td>.117</td>
<td>.342</td>
</tr>
<tr>
<td></td>
<td>1c</td>
<td>Nodes</td>
<td>TBV</td>
<td>–.401 (<.0005)</td>
<td>–.011 (.860)</td>
<td>.149</td>
<td>.386</td>
</tr>
<tr>
<td></td>
<td>2a</td>
<td>Edges only</td>
<td>–</td>
<td>–.089 (.072)</td>
<td>.008</td>
<td>.089</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2b</td>
<td>–</td>
<td>Nodes only</td>
<td>–</td>
<td>–.386 (<.0005)</td>
<td>.144</td>
<td>.386</td>
</tr>
<tr>
<td></td>
<td>2c</td>
<td>Edges</td>
<td>Nodes</td>
<td>–.043 (.363)</td>
<td>–.380 (<.0005)</td>
<td>.150</td>
<td>.387</td>
</tr>
<tr>
<td></td>
<td>3a</td>
<td>–</td>
<td>Age 11 IQ</td>
<td>–</td>
<td>.553 (<.0005)</td>
<td>.306</td>
<td>.553</td>
</tr>
<tr>
<td></td>
<td>3b</td>
<td>Edges</td>
<td>Age 11 IQ</td>
<td>–.039 (.387)</td>
<td>.549 (<.0005)</td>
<td>.307</td>
<td>.554</td>
</tr>
<tr>
<td></td>
<td>3c</td>
<td>Nodes</td>
<td>Age 11 IQ</td>
<td>–.308 (<.0005)</td>
<td>.504 (<.0005)</td>
<td>.397</td>
<td>.630</td>
</tr>
<tr>
<td>PC-Based</td>
<td>4a</td>
<td>–</td>
<td>TBV</td>
<td>–</td>
<td>.333 (<.0005)</td>
<td>.111</td>
<td>.333</td>
</tr>
<tr>
<td></td>
<td>4b</td>
<td>Edges</td>
<td>TBV</td>
<td>.058 (.224)</td>
<td>.331 (<.0005)</td>
<td>.114</td>
<td>.338</td>
</tr>
<tr>
<td></td>
<td>4c</td>
<td>Nodes</td>
<td>TBV</td>
<td>.399 (<.0005)</td>
<td>–.019 (.848)</td>
<td>.147</td>
<td>.383</td>
</tr>
<tr>
<td></td>
<td>5a</td>
<td>Edges only</td>
<td>–</td>
<td>.064 (.197)</td>
<td>–</td>
<td>.004</td>
<td>.064</td>
</tr>
<tr>
<td></td>
<td>5b</td>
<td>–</td>
<td>Nodes only</td>
<td>–</td>
<td>–.383 (<.0005)</td>
<td>.147</td>
<td>.383</td>
</tr>
<tr>
<td></td>
<td>5c</td>
<td>Edges</td>
<td>Nodes</td>
<td>.023 (.633)</td>
<td>.380 (<.0005)</td>
<td>.147</td>
<td>.383</td>
</tr>
<tr>
<td></td>
<td>6a</td>
<td>–</td>
<td>Age 11 IQ</td>
<td>–</td>
<td>.553 (<.0005)</td>
<td>.306</td>
<td>.553</td>
</tr>
<tr>
<td></td>
<td>6b</td>
<td>Edges</td>
<td>Age 11 IQ</td>
<td>.017 (.702)</td>
<td>.552 (<.0005)</td>
<td>.306</td>
<td>.553</td>
</tr>
<tr>
<td></td>
<td>6c</td>
<td>Nodes</td>
<td>Age 11 IQ</td>
<td>.306 (<.0005)</td>
<td>.505 (<.0005)</td>
<td>.397</td>
<td>.630</td>
</tr>
<tr>
<td>Memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age-Based</td>
<td>1a</td>
<td>–</td>
<td>TBV</td>
<td>–</td>
<td>.012 (.815)</td>
<td>.001</td>
<td>.012</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>Edges</td>
<td>TBV</td>
<td>–.082 (.117)</td>
<td>.009 (.861)</td>
<td>.007</td>
<td>.084</td>
</tr>
<tr>
<td></td>
<td>1c</td>
<td>Nodes</td>
<td>TBV</td>
<td>–.446 (<.0005)</td>
<td>–.370 (<.0005)</td>
<td>.049</td>
<td>.221</td>
</tr>
<tr>
<td></td>
<td>2a</td>
<td>Edges only</td>
<td>–</td>
<td>–.083 (.116)</td>
<td>–</td>
<td>.007</td>
<td>.083</td>
</tr>
<tr>
<td></td>
<td>2b</td>
<td>–</td>
<td>Nodes only</td>
<td>–</td>
<td>–.124 (.014)</td>
<td>.015</td>
<td>.124</td>
</tr>
<tr>
<td></td>
<td>2c</td>
<td>Edges</td>
<td>Nodes</td>
<td>–.067 (.204)</td>
<td>–.166 (.023)</td>
<td>.020</td>
<td>.141</td>
</tr>
<tr>
<td></td>
<td>3a</td>
<td>–</td>
<td>Age 11 IQ</td>
<td>–</td>
<td>.613 (<.0005)</td>
<td>.376</td>
<td>.613</td>
</tr>
<tr>
<td></td>
<td>3b</td>
<td>Edges</td>
<td>Age 11 IQ</td>
<td>–.027 (.557)</td>
<td>.615 (<.0005)</td>
<td>.381</td>
<td>.617</td>
</tr>
<tr>
<td></td>
<td>3c</td>
<td>Nodes</td>
<td>Age 11 IQ</td>
<td>–.033 (.468)</td>
<td>.611 (<.0005)</td>
<td>.381</td>
<td>.617</td>
</tr>
</tbody>
</table>
processing speed, the multiple R^2 values from the models that included both edge- and node-based indices were more than 40% larger than the R^2 values from models including only node-based indices and more than 100% larger than the R^2 values from models including only edge-based indices. For visuospatial ability and memory, multiple R^2 values from the models that included both edge- and node-based indices were only marginally larger than the R^2 values from models including node-based indices alone.

Childhood Intelligence. LBC1936 has available a high-quality index of IQ at age 11 years, the Moray House Test No. 12. Age 11 IQ was associated with node-based indices of age 73 connectome integrity ($\beta_{\text{age-weighted}} = -.158$; $\beta_{\text{PC-weighted}} = .155$; $p < .0005$) but was not significantly associated with age 73 edge-based indices ($\beta_{\text{age-weighted}} = -.079$; $\beta_{\text{PC-weighted}} = .076$; $p > .076$). These results are consistent with previous findings in LBC1936 of comparable associations between age 11 IQ and other age 73 structural MRI indices (brain cortical thickness) (61), collectively suggesting that general dimensions of node integrity may at least partially reflect lifelong brain health.

To probe whether associations between age 73 connectome integrity and age 73 cognitive function were plausibly reflective of aging-specific processes, we examined whether the observed associations persisted after controlling for age 11 IQ. Results are presented as models 3 and 6 in each panel of Table 2. Age 73 connectome-integrity indices maintained their associations with age 73 processing speed and visuospatial ability even after controlling for age 11 IQ. The modest node-based associations with memory did not persist after controlling for age 11 IQ.

Regularized Least Absolute Shrinkage and Selection Operator Regression Models. We were interested in whether a least absolute shrinkage and selection operator approach for indexing connectome age could improve prediction of late-life cognitive function beyond the simple composite indices reported above (Supplement 1). Consistent with previous research that has found differential prediction of age based on brain tissue type (62), a least absolute shrinkage and selection operator model in UKB based on all edges predicted 54.6% of the variance in the age in the UKB holdout sample, whereas a model based on all nodes predicted only 35.8% of the variation in age (Supplement 1 text and Figures S12 and S13 in Supplement 1). Least absolute shrinkage and selection operator--based prediction of cognitive function in LBC1936 from UKB-trained connectome age did not appreciably improve effect sizes relative to estimates obtained using the simple composite indices reported earlier (Figures S14 and S15 in Supplement 1), suggesting that the sparsity introduced by complex algorithmic learning methods is not advantageous for predicting late-life cognitive abilities from connectome aging.

DISCUSSION

Examining variation in elements within the whole-brain structural connectome and several of its NOIs in relation to late-life chronological age and cognitive function may prove fundamental to detecting and mitigating age-related cognitive impairments. Using age-heterogeneous data from UKB, we found that connectome age occurs along the same dimensions of global brain health that underlie correlations among (age-partialled) connectome element integrities. We used indices of these general dimensions of element integrity in LBC1936 to obtain between-sample cross-validated predictions of aging-sensitive domains of cognitive function in older adulthood (2,63,64). Connectome-wide node integrity was related to all domains of cognitive function, whereas connectome-wide edge integrity was specifically related to processing speed. Associations with processing speed and visuospatial ability persisted after controlling for both TBV and age 11 IQ, suggesting that they capture aging-specific processes. Associations with memory did not survive after controlling for age 11 IQ, suggesting that they may be vestiges of early-life differences in cognitive function. NOI-specific analyses indicated a disproportionately large role of the central executive network in these patterns relative to its small size. Edges in the central executive network were particularly predictive of processing speed after adjustment, suggesting that the efficacy of water diffusion along white matter pathways between regions such as the dorsolateral prefrontal cortex and the posterior parietal cortex may constrain an individual’s ability to efficiently process and act on information.

That connectome elements with stronger loadings on their corresponding PCs had larger negative correlations with age reveals an important connection between individual differences in global neurostructural integrity and aging-related
neurodegeneration. This result parallels findings from cognitive aging research showing that tests with stronger loadings on a general factor of cognitive ability tend to be more closely correlated with age (65,66), suggesting a strong shared basis for cognitive aging across different abilities (67). The current results extend this phenomenon to the brain and highlight that research on individual differences in aging-related cognitive and neurostructural decline would benefit from focusing on broad mechanisms of aging, in addition to more granular processes. This finding also raises considerable interpretation challenges to work on apparent brain age (68,69), suggesting that brain age may index overall connectome health rather than an aging-specific process. Our findings demonstrate that late-life connectome health is partly accounted for by childhood differences in cognitive ability but that associations between age 73 connectome health and age 73 processing speed and visuospatial ability are also likely to be partly reflective of the aging process proper. Incorporating high-quality controls for prior intelligence or brain structure may facilitate interpreting associations between brain age and external outcomes (70).

Not only was connectome age strongly related to connectome integrity, but age-weighted connectome composite scores were nearly entirely collinear with PC-weighted composites $r_{\text{edge-based composites}} = -0.892$; $r_{\text{node-based composites}} = -0.999$). Thus, any given association with apparent brain age might just as appropriately be conceptualized as an association with overall brain integrity.

Although this study examined a well-characterized set of high-quality structural brain networks in independent, large-scale samples, it nevertheless had some key limitations. First, though the samples were nonoverlapping, both were based in the United Kingdom, were self-selected, were of the same broad ethnic and cultural background, and were healthier, better-educated, and more cognitively able than average (34,35,71). To encourage investigations into the external validity of our findings, UKB-derived age and PC weights for connectome elements are available in Table S10 in Supplement 2. Second, the study focused on neurostructural prediction of cross-sectional differences in cognitive level. Future work might benefit from investigating whether these same predictors are relevant for late-life cognitive change. Research integrating longitudinal measurement of aging-related brain changes with previously identified determinants of cognitive decline (72), including medical comorbidities, lifestyle indicators, and genetic risk, may critically advance prediction of cognitive aging. Third, though we used unthresholded connectivity matrices, it is possible that edges that occur in few subjects and involve few streamlines contain greater measurement error (73,74).

Fourth, the LBC1936 and UKB MRI scanners differed in acquisition strength (1.5T and 3T, respectively). It is potentially nontrivial to compare brain indices across scanners of different magnetic strengths (75,76), and future research would benefit from assessing whether these differences bias cross-sample prediction. Fifth, we used multiple IQ-type tests to model latent variables of 3 core domains of cognitive function, but it remains unclear how results might generalize to other cognitive domains, such as nonverbal memory (77). Studies using different tests may find somewhat different patterns of relationships between specific brain networks and cognitive abilities. Sixth, previous studies have focused on connectivity between several of the networks studied here (78). By primarily investigating networks separately, we may have missed the potential role of between-network connections and cognitive aging. Finally, previous research has examined how aging-related disruption of functional connectivity within specific neural subnetworks relates to cognitive performance in older adults (79,80). Though we focus solely on structural connectivity, integrating the structural and functional perspectives is a critical future task for network-focused cognitive neuroscience.

This study represents a comprehensive investigation of aging within the human structural connectome in relation to late-life cognitive function. We found evidence that aging in the brain as a whole and within specific networks is related to broad dimensions of variation in neurostructural integrity and is substantially predictive of out-of-sample cognitive abilities. Given the wealth of publicly available neuroimaging data, the cross-cohort comparison approach will be fruitful in producing predictively valid estimates of neurostructural associations with cognitive abilities and thus of potential use in detecting and understanding differences in cognitive decline.

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the National Institutes of Health (Grant No. R01AG054628 [to EMT-D]). The Population Research Center at the University of Texas is supported by the National Institutes of Health (Grant No. P2CHD042849). The Lothian Birth Cohorts group is supported by Age UK (The Disconnected Mind grant), the Medical Research Council (Grant No. MR/R024665/1), and the University of Edinburgh School of Philosophy, Psychology and Language Sciences. This research was conducted using the UK Biobank Resource (Application No. 10279).

SJR, EMT-D, and JWM conceived of the study design. CRB and SRC processed the UK Biobank MRI data. SRC, MAH, and MVH processed the Lothian Birth Cohort 1936 MRI data. JWM and SJR conducted the analyses under supervision from EMT-D. JWM, SJR, and EMT-D wrote the manuscript. All authors contributed edits and feedback on the manuscript.

We thank the UK Biobank participants and UK Biobank team for their work in collecting, processing, and disseminating these data for analysis.

This article was published as a preprint on bioRxiv: https://doi.org/10.1101/2019.12.13.875559.

LJD is a participant in UK Biobank. All other authors report no biomedical financial interests or potential conflicts of interest.

ARTICLE INFORMATION

From the Department of Psychology (JWM, EMT-D) and Population Research Center (EMT-D), University of Texas at Austin, Austin, Texas; Social, Genetic and Developmental Psychiatry Centre (SJR), King’s College London, London; Lothian Birth Cohorts (SRC, CRB, MVH, SMM, JMW, MEB, LJD), University of Edinburgh; Department of Psychology (SRC, CRB, LJD) and Division of Psychiatry (MAH), University of Edinburgh; Centre for Clinical Brain Sciences (MVH, DMM, JMW, MEB), University of Edinburgh; and Scottish Imaging Network: A Platform for Scientific Excellence Collaboration (SRC, CRB, MVH, SMM, JMW, MEB), Edinburgh, United Kingdom.

JWM and SJR contributed equally to this work.

Address correspondence to James W. Madole, M.A., Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Street, Stop A8000, Austin, TX 78712; E-mail: jmadole@utexas.edu.

Received Jan 22, 2020; revised May 20, 2020; accepted Jun 6, 2020.

Supplementary material cited in this article is available online at https://doi.org/10.1016/j.biopsych.2020.06.010.
Connectome Aging

REFERENCES

