Nitrogen cycling on the Namibian shelf and slope over the last two climatic cycles

Citation for published version:

Digital Object Identifier (DOI):
10.1029/2004PA001001

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Paleoceanography

Publisher Rights Statement:
Copyright 2005 by the American Geophysical Union

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Nitrogen cycling on the Namibian shelf and slope over the last two climatic cycles: Local and global forcings

Laetitia Pichevin, Philippe Martinez, Philippe Bertrand, Ralph Schneider, and Jacques Giraudreau
Département de Géologie et Océanographie, Université Bordeaux I, Université Mixte de Recherche-Centre National de la Recherche Scientifique, Talence, Cédex, France

Kay Emeis
Institute of Biogeochemistry and Marine Chemistry, University of Hamburg, Hamburg, Germany

Received 16 December 2003; revised 12 January 2005; accepted 17 February 2005; published 4 May 2005.

[1] In the light of new surface sediment δ¹⁵N data collected over the Namibian shelf and slope, we examined glacial-interglacial variations of N inventory in the area of Lüderitz (25°/C176°S) by deciphering δ¹⁵N signals of three cores distributed from the upper to the lower continental slope. The lower slope cores display low δ¹⁵N during cold periods and high δ¹⁵N during climatic optima, akin to many other records from the world ocean, whereas the upper slope core displays a high-frequency low-amplitude δ¹⁵N signal without obvious glacial-interglacial variability. This dissimilarity results from the segregation of the upwelling structure in two cells, decoupling nutrient dynamics of the shelf from those beyond the shelf-edge. The δ¹⁵N signal of the coastal cell is relatively constant irrespective of wind strength variations and shows that nitrate was never depleted in the surface water. For the deeper cores, comparisons between N isotopic signals and indicators of paleoproductivity (total organic carbon) and upwelling intensity (sea surface temperature and dust grain size) reveal that, over Milankovitch cycles, nitrate delivery to the photic zone was driven by the nutrient richness of the South Atlantic Central Water (depending, in turn, on Aghulas water inflow and denitrification at a global scale) rather than by atmospheric forcing. We propose that the δ¹⁵N signals of the deeper cores do not only mirror changes in relative nitrate utilization, as it seems the case over annual timescales, but are arguably influenced by global ocean changes in middepth nitrate δ¹⁵N.

Citation: Pichevin, L., P. Martinez, P. Bertrand, R. Schneider, J. Giraudreau, and K. Emeis (2005), Nitrogen cycling on the Namibian shelf and slope over the last two climatic cycles: Local and global forcings, Paleoceanography, 20, PA2006, doi:10.1029/2004PA001001.

1. Introduction

[2] The Benguela upwelling system (BUS) is considered to have played a significant role as a carbon sink, especially since the closing of the Central American Isthmus, about 3 Myr ago [Hay and Brock, 1992]. The BUS is today the world’s most productive eastern boundary current [Carr, 2002]. Whether local productivity in the past was mainly new production or related to processes of nutrient recycling is a tricky issue. Solving this question is, however, an essential prerequisite for estimates of the net CO₂ pumping attributable to this upwelling through the past and, ultimately, for forecasts of the future climate changes. In this regard, the mechanisms that control the local nutrient budget (nutrient loss, supply, utilization and recycling) and their variations with climate changes must be addressed. To date, only a few studies deal with cross-shore distribution of nutrients in the surface water of the modern BUS [Dittmar and Birkicht, 2001; Tyrell and Lucas, 2002; Holmes et al., 2002]. Fewer still are those which attempt to reconstruct past variations of the surface nutrient inventory [Holmes et al., 1999] from nearshore to offshore locations [Lavik, 2001].

[3] In this study, we intend to untangle the δ¹⁵N signals of three sediment cores distributed from the upper to the lower continental slope off Namibia in order to assess changes in marine nitrogen inventory during the last 240 kyr. In the ensuing discussion, we use lithogenic grain size distribution and sea surface temperatures (SSTs) records as additional proxies for wind strength and upwelling intensity, respectively, and total organic carbon (TOC) and organic carbon accumulation rates (MARCorg) values as paleoproductivity indicators. Sediment core records are interpreted in the light of new δ¹⁵N measurements from surface sediments which give insights into processes governing N cycling in the modern BUS.

2. Fate of Marine Nitrogen and the δ¹⁵N Signal

[4] The δ¹⁵N of the global nitrate pool averages 5% [Sigman et al., 1997]. This value represents the balance
between inputs and sinks of marine nitrogen at a global scale, namely river supply, N2 fixation, burial (following biological utilization) and denitrification [Brandes and Devol, 2002]. Fixation of atmospheric nitrogen by diazotrophic primary producers does not involve observable fractionation and $\delta^{15}N$ of the fixed nitrogen is close to 0% [Brandes et al., 1998]. Meanwhile, in the near absence of oxygen, water column denitrification transforms available nitrogen species to gaseous products, strongly discriminating against ^{15}N. As a result, in areas adjoining oxygen minimum zones (OMZs) in the equatorial and eastern tropical North Pacific (ETNP) and equatorial and eastern tropical South Pacific (ETSP) and the Indian Ocean, very high $\delta^{15}N_{NO3}$ values are measured [Brandes et al., 1998, Ganeshram et al., 2000].

[5] Although N fixation can support productivity in some areas, new production is mainly sustained by advection or upwelling of new nitrate to the photic zone. During phytoplankton blooms, nitrate uptake is accomplished by fractionation that leads to an enrichment of the organic product in ^{15}N. The phytoplankton biomass is thus depleted in ^{15}N by a factor of ε (fractionation factor) relative to the remaining nitrate pool which is symmetrically enriched in $^{15}N_{NO3}$ approximated by first-order Rayleigh fractionation kinetics.

[6] As the nutrient-rich water is advected offshore, the available nitrate pool becomes progressively consumed by producers and its isotopic composition shows increasing $\delta^{15}N$ values. As a result, producers growing on the residual pool will incorporate a greater proportion of ^{15}N than producers directly growing in the upwelled source waters. Thus, for a given starting pool of nitrate, a larger degree of relative nutrient utilization will produce an enrichment of sedimentary $\delta^{15}N$ [Wada, 1980; Mariotti et al., 1982; Altabet and François, 1994; Martinez et al., 2000]. Nevertheless, many other biochemical mechanisms can affect the $\delta^{15}N$ signal, i.e., nitrogen transfer through trophic levels [Minagawa and Wada, 1984; Montoya and McCarthy, 1995], relative abundance of terrestrial and marine organic matter (OM) [Sweeney and Kaplan, 1980], OM decay in the water column and during early diagenesis [e.g., Altabet, 1991; François et al., 1993; Freudenthal et al., 2001; Lehmann et al., 2003].

3. Methods

3.1. Samples and Stratigraphy

[7] The transect studied was recovered in 1996 on the R/V Marion Dufresne during the NAUSICAA cruise. The core MD962086 (25.81°S, 12.13°E) is located at 3606 m water depth and MD962098 (25.59°S, 12.63°E) at 2909 m water depth, both on the lower slope. MD962087 (25.6°S, 13.38°E) lies under 1029 m water depth, on the upper slope. [8] The stratigraphies for MD962086 and 98 are based on oxygen isotope analyses of the benthic foraminifera Cibicidoides wuellerstorfi [Bertrand et al., 2000]. These records were correlated with the normalized SPECMAP standard record [Imbrie et al., 1984]. MD962087 stratigraphy for the last 40 kyr was given by seven AMS 14C dates (Table 1) determined on mixed planktic foraminifers [Pichevin et al., 2004]. A 400-year reservoir correction was applied and dates were converted into calendar ages by using the Calib 4.3 program [Stuiver et al., 1998]. As previously described in the work of Pichevin et al. [2004], the age model for the oldest part of the core results from the correlation between TOC and CaCO3 records of MD962087 and those of MD962098, MD962086 and between SSTs of MD962087 and GEOB 1712-4 (off Walvis Bay, 998 m water depth) published in the work of Kirst et al. [1999]. Surface sediments were collected in spring 2004 with the R/V Alexander von Humbold (K. Emeis, unpublished data, 2004).

3.2. Experiment

[9] The nitrogen content and isotopic composition of MD962098 and 87 was analyzed on bulk sediment samples with a Micromass mass spectrometer at the DGO (University of Bordeaux). For MD962086, N isotopes were measured at the University of British Columbia (by Tom Pedersen) with a Finnigan delta plus mass spectrometer and some samples were also analyzed in Bordeaux to ensure comparability, which was found to be within ±0.2%. The $\delta^{15}N$ and TOC measurements were performed at average sampling intervals of 1 kyr. Apparent relative nitrate utilization was estimated for the deep cores assuming first-order fractionation kinetics, and by deriving the equation of Altabet and François [1994]:

$$\delta^{15}NO_3(\text{f}) = \delta^{15}NO_3(\text{f-1}) - \varepsilon \times \ln(f)$$

$$\delta^{15}NSed(f) = \delta^{15}NO_3(\text{f}) - \varepsilon,$$

where F is the fraction of unutilized, remaining nitrate, $\delta^{15}NO_3(\text{f-1})$ is the isotopic value of initial nitrate (5, 5%), $\delta^{15}NO_3(\text{f})$ is the isotopic value of remaining nitrate and $\delta^{15}NSed(f)$ is the isotopic value of sedimentary N (instantaneous product). We chose a fractionation coefficient of 5%, based on recent observations [Holmes et al., 1998].

[10] N isotopic signals of surface sediments were measured in the Institute of Biogeochemistry and Marine Chemistry, University of Hamburg (K. Emeis, unpublished data, 2004). [11] TOC (wt%) was measured by elemental analyses (LECO). The mass accumulation rate of organic carbon (MARCorg) was calculated as following:

$$\text{MARCorg (g cm}^{-2} \text{ kyr}^{-1}) = \text{TOC(wt%)} \times \text{SR (cm kyr}^{-1}) \times \text{DBD (g cm}^{-3})/100,$$

where SR is the sedimentation rate calculated between two identified isotopic events or radio carbon dates and DBD is the dry bulk density based on the MST signals measured on board the Marion Dufresne.

[12] The SSTs estimates are based on alkenone measurements. Long-chain unsaturated ketones were extracted and analyzed by gas chromatography (J. Villanueva, unpublished data, 1999) following the methodology described in the work of Villanueva and Grimalt [1997]. The U37 values...
4. Today’s Water Mass and Nutrient Dynamics

4.1. Setting

Today’s Water Mass and Nutrient Dynamics resolution of 1 to 10 kyr depending on the core and the of Prahl et al. [1988]. SSTs were estimated with a resolution of 1 to 10 kyr depending on the core and the time slice.

[13] Grain size analyses were performed on the lithogenic fraction of MD962087. Sampling interval is 700 years on average. In order to isolate the terrigenous inorganic material, carbonates, OM and biosilica were successively removed by using HCl (at 20°C), H2O2 (30% at 50°C during 3 to 4 days) and NaOH (30% at 80°C for 6–8 hours). Microscopic observations of smear slides showed that the biogenic constituents were properly removed by the chemical treatment. The grain size distribution of the remainder was measured with a Laser Malvern Mastersizer [Pichevin et al., 2005].

4.2. Relative Nitrate Utilization in the Modern BUS

[Nitrate concentration in emerging waters off Lüderitz is often greater than 30 μM [Tyrrell and Lucas, 2002; Dittmar and Birkicht, 2001; Conkright et al., 1998]. As the water is advected offshore, NO3− fuels primary production and is intensively consumed. Yet, nitrate concentration in near surface ocean may remain >5 μM well after the shelf break [Conkright et al., 1998]. Holmes et al. [2003] found nitrogen isotope ratios ranging from 5 to 12% in the surface sediments off Namibia. Sedimentary δ15N variations are negatively correlated with near surface nitrate concentrations measured by Conkright et al. [1998]: nearshore locations usually show low sedimentary δ15N corresponding to high [NO3−] in the surface waters. Sedimentary nitrogen isotope signal increases with the distance to the coast as [NO3−] diminishes, suggesting that relative nitrate utilization controls δ15N on the Namibian slope [Holmes et al., 2003]. In addition, seasonal variations of upwelling-driven SST has proved to be faithfully followed by changes in the δ15N of sinking particles collected at 599 m water depth off Walvis Bay (22°S) [Holmes et al., 1998, 2002, 2003]. When SSTs are low (November–December), primary production increases (as seen by high fluxes) due to enhanced nutrient supply to the surface, and the δ15N signal is minimum and close to that of newly upwelled nitrate (5‰) [Holmes et al., 1998, 2003].

[16] Our data supports the aforementioned results and interpretations concerning the Namibian slope. The distribution of surface sediment δ15N (mapped on Figure 2) was extrapolated from more than fifty measurements scattered on the Namibian shelf and slope. For comparison, we estimated relative nitrate utilization in the surface waters using the Levitus 1994 database (http://ingrid.ldeo.columbia.edu/) and by subtracting annually averaged surface [NO3−] from 200 m water depth [NO3−]. The result is shown on Figure 2. Disregarding the inner shelf, where precise [NO3−] values do not exist, spatial distributions of both sedimentary δ15N and calculated relative nitrate utilization agree well. Surface nitrate utilization and sedimentary δ15N increase in tandem when surface [NO3] decreases with the distance to the coastal upwelling cells which draw new nitrate from below. Nitrate utilization values (f) and corresponding δ15N ratios follow reasonably well the equation (2) derived from of Altabet and Francois [1994] and adapted for the Benguela region (r² = 0.69). This tends to show that N isotope ratio witnesses relative nitrate utilization in the modern BUS. Additionally, the presence of a poleward under-current bringing nitrate-rich water from the Angola region explains increasing [NO3−] values toward the north.
at 200 m water depth (not shown) and low sedimentary
δ^{15}N values north of Lüderitz (Figure 2a).

[17] On the shelf, areas of very high sedimentary δ^{15}N
(>9–10%) are observed, especially where intense upwell-
ing develop, between Walvis Bay and the Orange River
mouth (Figure 2). Two explanations are suggested and
discussed later on: (1) the advection of a coastal current
carrying heavy nitrate from southern or northern locations
or (2) the occurrence of water column denitrification over
the shelf.

4.3. Denitrification on the Namibian Shelf?

[18] Water masses filling the southeastern Atlantic basin
are shown in Figure 3. The high oxygen saturation of these
water masses allows the whole water column to be well
ventilated, and theoretically precludes the formation of an
oxygen minimum zone (OMZ) in the region. However,
rapid fluxes of OM, comparable to those supplying the
Namibian slope and shelf, can lead to high oxidant demand,
hence, to the establishment of hypoxic to sulfidic conditions
in the sediment [Morse and Emeis, 1992; Schulz et al.,
1994; Picchevin et al., 2004] and, arguably, in the overlying
waters. In addition, oxygen depleted waters (<1 mL L$^{-1}$)
are sporadically found at around 300–400 m water depth
off Walvis Bay and Lüderitz shelf breaks [Chapman and
Shannon, 1987; Lass et al., 2000; Mohrolz et al., 2001].
Formation of these oxygen deficient waters has been partly
ascribed to local productivity, driving oxygen consumption,
but also to southward intrusion of a poleward undercurrent
emanating from the Angola gyre (Figure 3) [Lass et al.,
2000; Mohrolz et al., 2001]. Because the circulation loop of
surface and central currents is almost closed in the Angola
dome, waters have a long residence time and are depleted in
oxygen below the thermocline. This poleward undercurrent
has been observed as far as 22°S and 27°S [Gordon et al.,
1995]. During intrusions of the poleward undercurrent, the
BUS waters may sporadically behave as an OMZ, without
reaching the critical concentration of 2 μM O$_2$L$^{-1}$ required
to start denitrification. However, blooms and subsequent
respiration of the abundant settling OM may yield to water
oxygen exhaustion and cause water column denitrification.

Indeed, Dittmar and Birkicht [2001] and Tyrrell and
Lucas [2002] reported nitrogen deficits (based on compar-
isons of nitrate and phosphate data, N:P-Redfield ratio) in
the waters surrounding the Namibian shelf. They both
attributed these losses to sedimentary and water column
denitrification. Sedimentary denitrification implies no iso-
tope effect [Brandes and Devol, 1997; Sigman et al., 2001,
2003]. The influence of a shallow current transporting
heavy nitrates along the coast from Angola or southern
Namibia is unlikely considering the patchy distribution
pattern of high δ^{15}N (Figure 2), and has never been reported.
Thus even sporadic events of water column denitrification
over the inner shelf are assumed to be responsible for the
enrichment in 15N in the inner shelf sediments.

4.4. Two-Celled Structure of the Upwellings

[20] When upwelling develops over a broad shelf, its
structure is often divided in two cells, nearshore and beyond
the shelf break [Smith, 1995]. A two-celled circulation

![Figure 2. (a) Surface sediment δ^{15}N (%) compared with (b) surface NO$_3$ isoconcentrations (µm L$^{-1}$, black lines) and estimates of relative nitrate utilization (%) calculated after Levitus database (http://ingrid.ldeo.columbia.edu/). Gray dashed line indicates the shelf break.](image-url)
model was proposed for the BUS by Hart and Currie [1960] and henceforth adopted by numerous authors [Bang, 1971; Shannon, 1985; Barange and Pillar, 1992; Giraudeau and Bailey, 1995; Summerhayes et al., 1995]. Maximum wind stress takes place 250 km offshore Namibia. This distance coincides roughly with the location of the shelf break. At the shelf edge, Ekman pumping of subsurface waters results from the conjunction of these topographical and atmospheric specificities. Barange and Pillar [1992] emphasized that the existence of these two cells is determined by the strength of the driving winds. In periods of high wind speed, the offshore cell is active and filaments of highly productive waters extend far from the coast. We propose that cross shore partitioning of the Namibian upwelling in two cells decouples nutrient dynamics over the plateau and beyond the shelf break. In accordance with water circulation models for two-celled upwellings [Giraudeau et al., 2000; Mollenhauer et al., 2002], we consider that heavy nitrates produced over the shelf by water column denitrification are re-utilized within the nearshore cell, then incorporated into planktonic biomass, but are scarcely advected beyond the shelf edge. Nitrate that upwells through the offshore cell stem mostly from subsurface waters surrounding the shelf break (Figure 4) and their isotopic signal is not influenced by processes occurring over the shelf.

5. Upwelling Dynamics and Nitrate Cycling in the Past

5.1. Wind Strength and SST Reconstructions

[21] Validation of the grain size variations as a wind strength proxy is given elsewhere [Pichevin et al., 2005]. The wind strength reconstruction is in good agreement with previous studies located on Walvis Bay [Little et al., 1997; Shi et al., 2001; Jahn et al., 2003]. Dust grain size is well correlated with SST variations of the upper slope core (Figure 5). We found a correlation coefficient of 0.61 between both records using Analyseries software [Paillard et al., 1996]. Maximum upwelling intensity occurs during glacial periods and especially isotopic stages 3 and 4. Mismatches between past SSTs and the dust grain size are observed during early isotopic stage 6 and, according to Schneider et al. [1995], were ascribed to enhanced wind zonality which caused offshore displacement of the Benguela Current and, in turn, southward intrusion of warm Angola water in the Namibian upwelling area. This resulted in the decoupling of the

Figure 3. Nitrate and oxygen concentrations of the water masses (WOCE data, A13 profile). ABF, Angola Benguela Front; SACW, South Atlantic Central Water; ESACW, Eastern South Atlantic Central Water; AAIW, Antarctic Intermediate Water; NADW, North Atlantic Deep Water.
coastal SSTs and upwelling intensity/productivity (Figure 4) during this period.

5.2. Organic Carbon Content and Accumulation Rate

[22] For hemipelagic deep-sea sediments, the organic carbon contents of the Lüderitz cores are surprisingly high (Figure 6) [Bertrand et al., 2003]. TOC concentrations are typically higher during glacial periods, although this tendency is less obvious in the shallow cores. During marine isotopic stage (MIS) 6.6, organic carbon contents reach maximum values of 7.5, 12 and 17.5 wt.% at 3606, 2909 and 1028 m water depth, respectively. At all water depths, the lowest TOC contents occur during the full interglacial MIS 5.5., 1 and 7. Between 70 and 45 kyr BP, the upper slope core displays outstandingly high TOC values compared to the deep cores. The peak at 45 kyr seems partly correlated with the particularly low SST and intense wind strength prevailing during this interval.

[23] The calculated MARCorg show consistently strong similarities with the organic carbon contents. However, the peaks at 180 and 45 kyr appear significantly attenuated when expressed as accumulation rate rather than fraction of the bulk sediment. Thus the average MARCorg on the lower slope are equivalently high during the last two glacial periods and low during the interglacial periods. MIS 7 show extremely low MARCorg on both the upper and the lower slope. Organic carbon accumulation remains higher during MIS 6 compared to MIS 2, 3 and 4, in the shallow core.

Figure 4. The two-cell structure of the upwelling. Encircled crosses are equatorward flows, encircled points are poleward flows. Sediments reaching the shallow core MD962087 mainly stem from the shelf. The accumulation rates are not shown for the Holocene because of sediment expansion at the top of the cores during retrieval which makes the values unrealistic.

Figure 5. Dust grain size variations compared to SSTs changes in core MD962087.
testifying for enhanced paleoproductivity over, and exported fluxes to, the upper slope during glacial MIS 6.

5.3. Nitrogen Isotope Signals

[24] The most striking feature displayed by the δ^{15}N data is the strong dissimilarity between upper and lower slope records (Figure 6). Albeit age models are based on few control points (20) and hence, are relatively imprecise for resolving suborbital variability, the δ^{15}N signals from the deep sites covary closely and demonstrate clear glacial-interglacial variations. Conversely, the upper slope δ^{15}N record shows comparatively high frequency, low amplitude variability without clear orbital cyclicity. Because of these differences, we discuss the deep and shallow sites separately.

5.3.1. Lower Slope

[25] The δ^{15}N signals vary between 4.7 and 8.2‰ in the deepest core and from 4.4 to 6.8‰ in the intermediate core. Broadly, sedimentary organic nitrogen is enriched in 15N during warm periods, especially full interglacials, and depleted in 15N during glacials. The nitrogen isotopic composition shows a weak negative correlation with the TOC records. By virtue of this inverse relationship, Bertrand et al. [2003] interpreted the δ^{15}N signal of

Figure 6. Organic carbon mass accumulation rates (MAPCorg), organic carbon contents (TOC), and nitrogen isotope signal (δ^{15}N) of MD962087, MD962098, and MD962086. The accumulation rates are not shown for the Holocene because sediment expansion at the top of the cores during retrieval makes the values unrealistic. Glacial periods are indicated by gray shaded areas.
OM is almost completely consumed in the sediment nitrogen isotopes fractionation, results in an isotope effect.

6.1. Explaining the Upper Slope

6.3.2. Upper Slope

The 100-kyr climate cyclicity is not recorded in the $\delta^{15}N$ signal of the nearshore core. The $\delta^{15}N$ values range approximately between 4.5 and 6.5‰. This range is comparable with that of the intermediate core. Assuming Rayleigh fractionation kinetics, this would suggest that, on average, past nutrient utilization was similar in the surface waters overlying both locations despite MD962087 being much closer to the coast. Under a continuous upwelling cell, if the “utilization scenario” were applicable, the $\delta^{15}N$ values on the upper slope would be expected to covary with the lower slope records, over a consistently lower range of values. Instead, both the variations and the range of the $\delta^{15}N$ values recorded in MD962087 imply a decoupling in the nutrient dynamics between the lower and upper slope locations. Alternatively, the signal of MD962087 has been altered by other biochemical processes than those likely to have affected the deeper cores.

6. Implications

6.1. Explaining the Upper Slope $\delta^{15}N$ Signal

Differences between upper (1000 m) and lower (>2900 m water depth) slope $\delta^{15}N$ signals can hardly be due to biogeochemical reactions (such as OM degradation, dia genesis or denitrification) acting with variable intensity depending on the water depth:

1. More than 90% of settling OM is degraded between the surface and 1000 m water depth [Suess, 1980]. OM decay is thus negligible below this depth and can hardly involve any noticeable deviation of the $\delta^{15}N$ ratio between upper and lower cores.

2. Sedimentary denitrification, although implying nitrogen isotopes fractionation, results in an isotope effect close to zero because the nitrate used to remineralize the OM is almost completely consumed in the sediment [Brandes and Devol, 1997; Sigman et al., 2001, 2003].

3. Incubation experiments [Lehmann et al., 2003], sediment trap [Saino and Hattori, 1980; Altabet, 1991; Altabet et al., 1999a] and sediment core studies [Freudenthal et al., 2001], both in marine and lacustrine environments, give equivocal results concerning the isotope effect induced by the early diagenetic decay of OM. Sedimentary OM may undergo either enrichment or depletion in ^{15}N whether microbial activity develops under oxic or anoxic conditions [Lehmann et al., 2002]. On the Namibian slope, bottom waters are currently oxygenated and pore water oxygen is rapidly consumed in the first 15 mm below seafloor at any depth [Hensen et al., 2000]. Besides changes in bottom water oxygenation which determines the “sign” of the fractionation (i.e., ^{15}N enrichment and depletion), the amount of degradable OM that reaches the seafloor may influence the intensity of the $\delta^{15}N$ shift [Freudenthal et al., 2001]. TOC and MARCorg of the three cores covary roughly. This implies that OM fluxes (and the ensuing diagenesis) increase and decrease approximately in phase for the three sites [Pichevin et al., 2004].

4. Finally, terrigenous and inorganic nitrogen contents of the Lüderitz slope sediments are negligible, as the OM is mainly of marine origin [Pichevin et al., 2004], and the N contents converge toward 0 for 0% TOC (Figure 7).

The upper slope is supplied by organic particles originating from the overlying waters and, for a large part, from the outer shelf [Giraudeau et al., 2000]. When discussing today’s nitrate cycling in the BUS, we assumed that distinct $\delta^{15}N$ distribution pattern between slope and shelf surface sediments was likely due to the partitioning of the upwelling in two cells. We suggest that the decoupling of surface and subsurface water dynamics between nearshore and offshore upwelling cells largely contributes to the inconsistencies observed between the upper slope $\delta^{15}N$ record and the deeper ones. Upper slope $\delta^{15}N$ records is assumed to mostly reflect processes occurring in the nearshore cell whereas the lower slope records witness N cycling within the offshore cell.

Excluding isotopic substages 5.3, 5.5 and MIS 7, TOC contents and accumulation rates are consistently very high on the upper slope, indicating highly productive conditions. In order to sustain such high productivity, nutrient requirements of the phytoplankton have to be covered. This implies efficient nitrate supply to the photic zone. The narrow amplitude of the $\delta^{15}N$ variations recorded in the upper slope sediments likely results from the fact that, even in periods of relatively weak winds and relaxed upwelling dynamics, nitrate was never severely depleted over the shelf. Limited OM accumulation on the upper slope during the last interglacial, compared to MIS 2, has been attributed to reduced exportation in context of high sea level stand, rather than decreasing paleoproduction [Mollenhauer et al., 2002]. Thus TOC variations in MD962087 are more likely caused by shifts in sedimentation than by drastic changes in nitrate availability and attendant productivity. Perennially consistent nearshore upwelling enables marine nitrogen repletion of surface waters and may explain the low amplitude changes of the N isotopic ratio in MD962087 and its mean value close to 5.5‰.

This situation is in clear contradiction with present, short term studies based on shallow trap sediments, which show that $\delta^{15}N$ and productivity are highly variable and seasonally driven by atmospheric and coastal water dynamics [Romero et al., 2002; Holmes et al., 2003, and references therein]. Hitherto, few data existed for the Namibian shelf and upper slope area. Further understanding of marine nitrogen cycling and hindcasting of paleoproducitivity variations in the nearshore cell require closer scrutiny.
utilization changes are assessed, NO3 supply can be inferred. Nevertheless, fluctuation of nutrient supply and productivity is chiefly driven by wind strength. This was determined whether or not past nitrate availability and utilization kinetics [36].

Variations of the unutilized fraction of nitrate (f) and TOC records from the deeper cores are compared with the wind strength signal (Figure 8). Broadly, TOC and F vary in tandem, which gives insights into NO3 availability changes. Nevertheless, fluctuation of nutrient supply and (un)utilization is largely independent of wind forcing over the last 200 kyr as demonstrated by very low correlation coefficient (constant <0.1, calculated using Analyses series [Paillard et al., 1996]) between the wind strength proxy and both the δ^{15}N and F from the deeper cores. Berger et al. [2002] stress the point that, in eastern boundary current regions, upwelling-induced productivity depends on the wind stress, but also on the nutrient content of thermocline waters. In order to explain the lack of correlation between upwelling intensity and the other parameters we adduce the possibility that thermocline water fertility has changed over glacial-interglacial timescales, decoupling atmospheric forcing from NO3 supply and productivity. TOC versus estimated relative nitrate utilization is plotted on Figure 9. Correlation between both parameters is weak, and values for full interglacial periods (namely the Holocene, Eemian and MIS 7.5) are invariably and clearly above the regression line: here, estimates of relative N utilization are greater than expected in case δ^{15}N faithfully represents relative nitrate utilization alone.

This evidence points to variations in the (1) nitrate content or (2) isotopic ratio of upwelled waters as well as (3) potential changes in thermocline water sources, as additional factors controlling N inventory and paleoproductivity in the BUS (see below).

6.3. Imprint of Global Ocean Changes in Middepth Nitrate δ^{15}N?

[39] According to Shannon [1985] waters that upwell on the Namibian shelf are Eastern South Atlantic Central Waters (ESACW, Figure 3) and stem from 50 to 300 m water depth, whereas the Antarctic Intermediate Water (AAIW) lies at 600 m water depth. The central water found in the tropical southeastern Atlantic is formed in large part by Indian Central Water brought into the Atlantic Ocean in the form of Agulhas rings and filaments [Sprintall and Tomczak, 1993]. This implies that South African upwelling cells are principally supplied in nitrate by waters coming from the southern South Atlantic and Indian Oceans. Agulhas waters partly originate from the Indian subtropical gyre (poor in nutrient) and to a lesser extent from the northern Indian Basin (Arabian Sea), both through the Mozambic Channel and with the poleward current, east of Madagascar [Donohue and Toole, 2003]. The northern sector of the Indian Ocean has long been recognized as one of the major denitrifying zones [Naqvi, 1987]. Episodes of enhanced N losses through denitrification in the Indian Basin occur during interglacial periods [Altabet et al., 1995, 1999b] (Figure 10). Nevertheless, N budget in the Arabian Sea seems to respond to precessional (monsoon) forcing and, although the δ^{15}N signal shows clear increases during the two last deglacial transgressions, denitrification was not at maximum around 240 kyr BP [Altabet et al., 1999b]. The Luderitz and Arabian Sea δ^{15}N variations are reasonably in phase but their respective amplitude differ depending on the periods. Pether [1994] showed that the rate of Indian Ocean advection in the South Atlantic Ocean also changed over glacial/interglacial timescales. Owing to Southern Ocean warming and decreasing austral summer insolation, Agulhas advection in the Benguela region was enhanced during the
Thus inflows of Indian water increased during transitions 1 and 2, arguably bringing an increased amount of nitrate depleted and/or 15N enriched waters in the Benguela region toward deglaciations.

Moreover, lower slope δ^{15}N records resemble those from further regions: recent nitrogen isotope measurements from the North Atlantic [Martinez et al., 2000], South Atlantic [Holmes et al., 1996], north Indian [Altabet et al., 1999b], North Pacific [Kienast et al., 2002], and South Pacific oceans [Ganeshram et al., 1999], invariably show low δ^{15}N values during glacials and exceptionally high sedimentary δ^{15}N during transitions and the following climatic optima [Galbraith et al., 2004]. This common pattern, either concurrent or unrelated to local paleoproductivity changes, and observed in scattered sites from both OMZs and nondenitrifying zones, points to global changes in nitrate inventory between cold and warm stages. A growing body of evidence indicates that, over glacial-interglacial cycles, global ocean balance between N fixation and denitrification swung, probably impacting atmospheric CO$_2$ [Ganeshram et al., 1995, 2000; Altabet et al., 1999b] through alternatively reduced and invigorated biological pump. Increased water column denitrification in area adjoining OMZs was assumed to cause reductions in global ocean NO$_3$ inventory during interglacial periods [e.g., McElroy, 1983]. We propose that the lower slope records are also partly driven by global ocean changes in middepth nitrate concentration and/or δ^{15}N, which are in turn controlled by globally increased denitrification upon

Figure 8. Unutilized fraction of nitrate (f, %) based on calculation of relative nitrate utilization (assuming Raleigh fractionation kinetic) for MD962086 and MD962098 compared to TOC and wind strength variations.

Figure 9. TOC versus relative nitrate utilization (%). Full interglacial values do not follow the tendency.
deglaciations. Nevertheless, this scenario is in contradiction with the fact that the upper slope δ15N signal remains almost unchanged through time, but patterns of N cycling in the nearshore cell remains to be clarified.

[41] On the basis of the above inferences, we propose that impoverishment of the ESACW in nitrate toward deglaciations due to (1) enhanced denitrification in the world’s OMZs, and particularly in the Indian Ocean, combined with (2) massive Agulhas water inflow in the Benguela during Terminations, plausibly explain both the δ15N peaks and productivity minima recorded in the Namibian slope sediments around 10, 120 and 240 kyr BP, as well as the glacial-interglacial variability of the lower slope δ15N.

7. Conclusions
[42] In this work, we attempted to give a clear picture of present and past marine nitrogen budget in the Benguela upwelling system (BUS). First, major processes involved in nitrate cycling in the area today were examined on the basis of both previous studies and new, unpublished data of surface sediment δ15N. Glacial-interglacial variations of the upwelling activity, δ15N and paleoproductivity signals were then studied in three sediments cores distributed from the upper to the lower continental slope off Lüderitz (25°6’S).

[43] The lower slope cores display low δ15N during cold periods and high δ15N during climatic optima, akin to many other records from the world ocean, whereas the upper slope core displays a high-frequency, low-amplitude δ15N signal without obvious glacial-interglacial variability. This dissimilarity results from the segregation of the upwelling structure in two cells, decoupling nutrient dynamics of the shelf from those beyond the shelf edge.

[44] For the deep cores, comparisons between N isotopic signals and indicators of paleoproductivity (TOC) and upwelling intensity (SSTs and dust grain size) revealed that, over Milankovitch cycles, nitrate delivery to the photic zone and attendant productivity were controlled by the nutrient richness of the South Atlantic Central Water, (depending in turn on Agulhas water inflow and denitrification at a global scale), rather than by atmospheric forcing. In addition, we propose that the δ15N signals of the deep cores do not only mirror changes in relative nitrate utilization, as it seems the case over annual timescales, but are also driven by global ocean changes in middepth nitrate δ15N.

[45] Acknowledgments. Financial support was provided by the ECLIPSE (CNRS) and GDR “Marges” (TFE) programs. The cores were retrieved during NAUSICAA cruise (IMAGE II) with the R/V Marion Dufresne. In this regard, we are grateful to IPEV and Yvon Balut. We particularly acknowledge J. Villanueva for giving us the liberty of publishing the SSTs estimates. We thank T. Ivanochko and an anonymous reviewer for valuable and thoughtful comments.

References
Altabet, M. A., C. Pilskaln, R. Thunell, C. Pride, D. Sigman, F. Chavez, and R. Francois...

P. Bertrand, J. Giradeau, P. Martinez, and R. Schneider, Département de Géologie et océanographie, Université Bordeaux I, UMR-CNRS 5805, F-33405 Talence Cedex, France. K. Emeis, Institute of Biogeochemistry and Marine Chemistry, University of Hamburg, Bundesstrasse 53, Hamburg D-20146, Germany. L. Pichelin, CEREGE, Europole Méditerranéen de l’Arbois, UMR 6635, BP 80, F-13545 Aix en Provence Cedex 04, France. (pichevin@cerege.fr)