Domiciliary thrombolysis by general practitioners

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
BMJ

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Domiciliary thrombolytic treatment by general practitioners

EDITOR—I am sympathetic to P L Harris’s objective of trying to reduce mortality from ruptured abdominal aortic aneurysms. I have recently screened 678 (97·6%) of the 695 patients aged 60-79 in our practice for aneurysms. Twenty six were found to have an aneurysm (range 3-0-8 3 cm external sagittal diameter), and 13 were referred for a surgical opinion. The screening programme has exposed some of the dilemmas in current management of aneurysms.

Patients deserve to know of important risks associated with repair of an aneurysm. Harris’s study suggests that in the best centres elective repair carries an “operative risk of under 5%” which cannot be generally assumed, and published mortality statistics may not reflect the risk for an average patient. Harris’s screening with elective repair of an aneurysm has not been widely published, but in series of mixed elective and emergency repairs it has been considerable.1 Without reference statistics on mortality and morbidity the balance of whether to operate for a particular size of aneurysm and risk to the patient becomes uncomfortably difficult. For individual patients local results will be most pertinent unless distant referral is contentious.

Harris rightly directs attention to aneurysms of 4-0-5 0 cm, for which management is contentious; most aneurysms detected by screening fall into this category. Surgery has been advocated for aneurysms of 5 cm or more, but such an aggressive policy is not supported by recent prospective “and retrospective” studies of the natural course of aneurysm. Rarely, small aneurysms will rupture fatally, but I believe that relatives find unlikely mortality easier to bear than tragedy after well intentioned surgery. A more conservative approach to surgery tips the risk-benefit balance towards benefit, and Scott et al’s study exemplifies how such a policy has worked successfully.

With regard to the psychological consequences of detecting aneurysms by screening, will patients with small aneurysms be able to maintain a fair perspective of a low risk of rupture or will their predominant perception be of a time bomb waiting to explode within? The predilection of those with large aneurysms who are considered to be unfit for surgery is particularly unfortunate. The anxiety an aneurysm can generate should not be underestimated or disregarded.

If a low risk of mortality is associated with elective surgery, a conservative approach to intervention, and adequate counselling of patients can be combined then I believe that a local screening policy for aneurysms could make good ethical and economical sense. That such criteria apply nationally is doubtful, and currently I do not favour a national screening programme.

Lastly, β blockade has shown promise in the management of growth of aneurysms. This is common, whether physiological β1 adrenergic antagonism can retard their expansion or reduce the rate of rupture is of great importance. An extension of the Medical Research Council’s small aneurysm study to address this issue would be expedient.

The Surgery, Lindford, Hampshire GU5 0QJ

Domiciliary thrombolysis by general practitioners

EDITOR—I am surprised that in the Grampian region early anistreplase trial no patients were diagnosed as having unstable angina, which is the most common differential diagnosis and the most difficult to make in the early stages of a myocardial infarction.2 It is likely that the patients in the diagnostic groups “possible myocardial infarction” and “ischaemic heart disease” in fact had unstable angina. If only definite and probable myocardial infarctions are counted the diagnostic accuracy of the general practitioners was 57% (and of the hospital doctors 66%). This may also account for the lower mortality and fewer Q wave infarctions in the domiciliary group.

As there is no evidence that thrombolytic treatment is of benefit in unstable angina, it is possible that nearly half the patients in the study received thrombolytic treatment inappropriately and were needlessly exposed to the risks of haemorrhage. Colleagues and I found similar figures in a study in Somerset, where there were also no patients with accurately diagnosed myocardial infarction on clinical grounds (without electrocardiography in most cases) in 45% of cases (S Rule et al, unpublished work). Again this was largely because many patients with unstable angina were thought to be in the early stages of myocardial infarction.

Diagnosing myocardial infarction at the onset can be difficult, but at a minimum a good history should be obtained, and an electrocardiogram properly interpreted. In the Grampian study the general practitioner was required to record an electrocardiogram but not to interpret it, which seems pointless. It is the electrocardiogram, however, that causes problems for many general practitioners as individually they will see few cases of myocardial infarction each year. The higher diagnostic accuracy in hospital may relate to this.

John E Sanderson
Taunton and Somerset Hospital, Taunton
Somerset TA1 5DA


1 Harris PL. Reducing the mortality from abdominal aortic aneurysms: need for a national screening programme. BMJ 1992;305:697-8. (9 September.)

2 Harris PL. Reducing the mortality from abdominal aortic aneurysms: need for a national screening programme. BMJ 1992;305:697-8. (9 September.)


On site medical services at major incidents

EDITOR,—Matthew W Cooke* and D G Nancekie-vil emphasise the need for better organisation and training for hospital staff in providing on site medical services when a major incident occurs. A hospital coping with a deluge of casualties from a major incident might be overstretched in providing one or more appropriate teams as well as a medical officer sufficient to be the medical incident officer (the Department of Health has abandoned the term site medical officer). Cooke highlights the paucity of training in this role. Wide ranging discussions have taken place in London with representatives of the London accident and emergency consultants’ group, the London Ambulance Service, the British Association for Immediate Care, and health emergency planning officers from each Thames regional health authority with the aim of creating a cadre of 40-50 trained and accredited medical incident officers. This scheme relieves the main receiving hospital of the onerous duty of providing all the resources required at the site. The scheme has been approved by all participants, but, in view of its variation from guidance from the Department of Health, individual units will retain the option of making their own arrangements.

Two established training courses for doctors are available nationally. A one day course is run by the British Association for Immediate Care each year in Cambridge, and a three day course on the medical management of major incidents is run jointly by the Royal Postgraduate Medical School and the British Association for Immediate Care at Hammersmith Hospital. This course is multidisciplinary and combines lectures, seminars, and practical training for NHS staff called on to work with prehospital incident officers or with mobile medical and nursing teams. In the two years that the course has been run, 102 people have been trained. The participants undertake an assessment at the end of the course, a major function of which is to allow the course organisers to assess the effectiveness of the training offered in key principles.

Though advanced trauma life support courses offer excellent training in clinical aspects, specific training is required for all prehospital care, including elements of safety and working with the emergency services.

ROBERT A COCKS
Royal Postgraduate Medical School, Hammersmith Hospital, London W12 0HS

1 Cooke MW. Arrangements for on scene medical care at major incidents. BMJ 1992;305:748. (26 September.)
2 Cooke MW, Ong E, Bell S. On scene medical care at major incidents. BMJ 1992;305:726-7. (26 September.)

EDITORS.—We agree with D G Nancekievill that both medical incident officers and site medical teams for major incidents need to be trained and to be familiar with the procedures of the other emergency services. We disagree, however, that this is a problem. The British Association for Immediate Care has been training doctors in this work for many years.

The association produced its first guide to managing major incidents in 1985, and the skills of doctors trained by the association were recognised in the report on the railway accident at Clapham. The association’s interservice and disaster liaison committee has been working with the ambulance, police, and fire services and the armed forces, coastguard, mountain rescue services, and, latterly, the Home Office adviser on civil emergencies on all aspects of managing major incidents.

The association offers guidelines on the medical aspects of managing major incidents.