Bacterial adhesion onto nanofiltration and reverse osmosis membranes: effect of permeate flux

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.watres.2014.06.031

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Water Research

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Bacterial adhesion onto nanofiltration and reverse osmosis membranes: effect of permeate flux

Andrea J.C. Semião¹, Olivier Habimana², Eoin Casey²*

¹School of Engineering, University of Edinburgh, UK EH9 3JL
²School of Chemical and Bioprocess Engineering, University College Dublin (UCD), IRELAND
*Corresponding author. Mailing address: University College Dublin, School of Chemical and Bioprocess Engineering, Belfield, Dublin 4, IRELAND. Phone: +353 1 716 1877, Email: eoin.casey@ucd.ie

KEYWORDS: bacterial adhesion, permeate flux, nanofiltration, reverse osmosis, biofouling
Abstract

The influence of permeate flux on bacterial adhesion to NF and RO membranes was examined using two model *Pseudomonas* species, namely *Pseudomonas fluorescens* and *Pseudomonas putida*. To better understand the initial biofouling profile during NF/RO processes, deposition experiments were conducted in cross flow under permeate flux varying from 0.5 up to 120 L/(h.m²), using six NF and RO membranes each having different surface properties. All experiments were performed at a Reynolds number of 579. Complementary adhesion experiments were performed using *Pseudomonas* cells grown to early-, mid- and late-exponential growth phases to evaluate the effect of bacterial cell surface properties during cell adhesion under permeate flux conditions. Results from this study show that initial bacterial adhesion is strongly dependent on the permeate flux conditions, where increased adhesion was obtained with increased permeate flux, until a maximum of 40% coverage was reached. Membrane surface properties or bacterial growth stages was further found to have little impact on bacterial adhesion to NF and RO membrane surfaces under the conditions tested. These results emphasise the importance of conducting adhesion and biofouling experiments under realistic permeate flux conditions, and raises questions about the efficacy of the methods for the evaluation of antifouling membranes in which bacterial adhesion is commonly assessed under zero-flux or low flux conditions, unrepresentative of full-scale NF/RO processes.
1. Introduction

Nanofiltration (NF) and Reverse Osmosis (RO) are well-established processes for the production of high quality water. NF is principally used for the removal of hardness, trace contaminants, such as pesticides and organic matter (Cyna et al. 2002), while RO is used for desalination (Greenlee et al. 2009). NF and RO performance are however adversely affected by biofilm formation resulting in permeate flux and quality decline (Flemming 1997, Ivnitsky et al. 2007, Houari et al. 2009, Vrouwenvelder et al. 1998, Vrouwenvelder et al. 2008, Khan et al. 2013), generally caused by the initial adhesion and subsequent colonization of bacterial cells on the surface of the membrane, amalgamating in a biomass consisting of, and not limited to, polysaccharides, proteins, and extracellular DNA (Pamp et al. 2007).

The first stage of biofilm formation is initiated by the adhesion of bacteria to the membrane surface, a precursor of biofilm formation (Costerton et al. 1995). Previous studies have shown that NF and RO membrane properties (Lee et al. 2010, Myint et al. 2010, Bernstein et al. 2011), bacterial properties (Bayoudh et al. 2006, Bakker et al. 2004, Mukherjee et al. 2012) and environmental conditions affect bacterial adhesion (Sadr Ghayeni et al. 1998). However, most of these studies were conducted without permeate flux, which is an inherent part of NF and RO processes. The hydrodynamic and concentration polarisation effects associated with flux may alter the micro-environmental conditions at the interface thereby playing an important role in the characteristics and rate of bacterial adhesion. A recent study showed that under the same flux conditions, the biofilm formed on the surface of three different RO membranes had similar characteristics and affected the membrane performance to the same extent (Baek et al. 2011): the percentage flux decline was identical for all the membranes studied. In a previous study (Suwarno et al. 2012) it was shown that higher permeate flux resulted in increased biovolume on the membrane surface. Although previous studies suggest biofilm formation is independent of membrane surface properties
but dependent on pressure, no systematic studies to date have attempted to investigate the
relationship between initial adhesion and membrane properties at different flux conditions.

Surprisingly, few studies have focused on bacterial deposition under permeate flux
conditions (Kang et al. 2006, Kang et al. 2004, Subramani and Hoek 2008, Subramani et al. 2009,
Eshed et al. 2008). These studies focussed on developing an understanding of the fundamental
mechanisms of bacterial attachment under permeate flux conditions, often combined with the DLVO
theory (Derjaguin-Landau-Verwey-Overbeek theory), which describes the interactions between a
bacterial cell and the membrane surface taking into account Lifshitz–van der Waals (LW) and
electrostatic double layer (EL) interactions combined with interfacial hydrodynamic forces of cross-
flow lift (CL), permeation drag (PD), and gravity (G). The XDLVO theory (Extended Derjaguin-Landau-
Verwey-Overbeek theory) also takes into account Lewis acid–base (AB) interactions between the
bacterial cell and the membrane surface. Cross-flow lift (CL), permeation drag (PD), and gravity (G)
forces dominate bacterial movement. If the drag due to the permeating liquid is strong enough to
counteract the lifting force associated with cross-flow, the bacteria will be drawn towards the
membrane surface where it will be subjected to short range forces such as Lifshitz-van der Waal’s,
electrostatic double layer (EL) and Lewis acid-base interactions (AB).

The only studies where bacterial deposition specifically to NF and RO membranes under
permeate flux conditions were reported, are those from Subramani et al. (Subramani and Hoek
2008, Subramani et al. 2009) where it was found that bacterial adhesion was influenced by
membrane properties. However, these studies were conducted at comparatively low fluxes, of less
than 20 L/(h.m²) (equivalent to 2.5 bar). In full-scale NF and RO processes for water, seawater and
brackish water, treatment fluxes can reach up to 70 L/(h.m²) (Cyna et al. 2002, Greenlee et al. 2009,
Houari et al. 2009, Ventresque et al. 2000). One of the conclusions of the previous study (Subramani
and Hoek 2008) was that adhesion increases with permeate flux and according to the XDLVO theory,
permeation drag overwhelms interfacial forces at fluxes greater than 20 L/(h.m²) for Reynolds
numbers Re<200. Furthermore, the study also concluded that the higher the Reynolds number, the lower the level of concentration polarisation will be encountered for NF and RO membranes, translating into increased electrostatic double layer repulsion between the negatively charged bacteria and the negatively charged membrane, hence reducing adhesion rates. A high cross-flow velocity is also expected to decrease adhesion due to enhanced cross-flow lift. In fact Wang et al. (Wang et al. 2005) showed that increasing cross-flow velocity after adhesion experiments could cause adhered bacteria to detach: this was particularly effective for adhesion permeate fluxes below a “critical flux” whereby DLVO repulsion was in excess of permeation drag and bacteria adhered reversibly.

A higher Reynolds number combined with a higher permeate flux have therefore opposing effects, and it is unclear how adhesion would be influenced by permeate fluxes and Reynolds numbers used in full scale NF and RO applications. To our knowledge, there are no reports in the literature concerning bacterial adhesion at fluxes greater than 20 L/(h.m²) for NF/RO membranes or at Reynolds numbers representative of spiral wound elements in full-scale plants where values range between 150 and 2000 (Schock and Miquel 1987).

For the broader range of membrane processes, conflicting results can be found in the literature. One study showed adhesion rates onto MF membranes subjected to permeate fluxes ~70 L/(h.m²) to be considerably different between membranes with different surface properties (Kang et al. 2006). In contrast, another study (Subramani and Hoek 2008) observed a decrease in the differences of adhesion rates as one increased the permeate flux through several NF and RO membranes from no permeate flux up to ~20 L/(h.m²). A clear gap in the knowledge of bacterial adhesion to NF and RO membranes was therefore identified, where the mechanisms of adhesion under common cross-flow and pressure filtration conditions for different commercially available NF and RO membranes needed to be clarified.
This paper therefore investigates the initial adhesion of two bacterial strains, *Pseudomonas fluorescens* and *Pseudomonas putida*, to 6 different NF and RO membranes under industrially relevant permeate flux conditions, as well as the adhesion of *P. fluorescens* at different growth stages. *Pseudomonas*, including *Pseudomonas fluorescens* and *putida* are commonly found in NF and RO biofilms during water treatment (Ivnitsky et al. 2007, Sadr Ghayeni et al. 1998, Baker and Dudley 1998).

2. Materials and Methods

2.1 Model Bacteria Strains and Media

The selected model bacterial strains for this study were fluorescent mCherry-expressing *Pseudomonas fluorescens* PCL1701 (Lagendijk et al. 2010) and *Pseudomonas putida* PCL1480 (Lagendijk et al. 2010). *Pseudomonas* strains were stored at -80°C in King B broth (King et al. 1954) supplemented with 20% glycerol. Cultures of both *Pseudomonas fluorescens* and *Pseudomonas putida* were obtained by inoculating 100 mL King B broth supplemented with gentamicin at a final concentration of 10 µg.mL⁻¹ using respective single colonies previously grown on King B agar (Sigma Aldrich, Ireland) at 28°C. Subsequently, cultures were incubated at 28°C with shaking at 75 rpm and left to grow to early exponential, mid exponential or late exponential growth stages, corresponding to Optical Densities (OD₆₀₀) of 0.2, 0.6 and 1.0, respectively, for the study of the impact of bacteria growth stage on adhesion to NF and RO membranes. The experiments for the study of the impact of flux on the adhesion of bacteria *P. fluorescens* and *P. putida* to different NF and RO membranes were performed using cells in their late exponential growth stage (OD₆₀₀=1.0).

2.2 Microbial Adhesion to Solvents
Microbial adhesion to solvents (MATS) (BellonFontaine et al. 1996) was used as a method to determine the hydrophobic and Lewis acid–base surface properties of *P. fluorescens* cells at different growth stages. This method is based on the comparison between microbial cell surface affinity to a monopolar solvent and an apolar solvent, which both exhibit similar Lifshitz-van der Waals surface tension components. Hexadecane (nonpolar solvent), chloroform (an electron acceptor solvent), decane (nonpolar solvent) and ethyl acetate (an electron donor solvent) were used of the highest purity grade (Sigma-Aldrich, USA). Experimentally, overnight bacterial cultures grown at different stages (early, mid and late exponential phase) were washed twice in sterile 0.1 M NaCl solution as described in section 2.3, and re-suspended to a final OD$_{400}$ of 0.8. Individual bacterial suspensions (2.4 ml) were vortexed for 60 seconds with 0.4 ml of their respective MATS solvent. The mixture was allowed to stand for 15 min to ensure complete separation of phases. One mL from the aqueous phase was then removed using glass Pasteur pipettes and the final OD$_{400}$ was measured. The percentage of cells residing in the solvent was calculated by the following equation:

$$\text{%Adherence} = \left(\frac{\text{OD}_i - \text{OD}_f}{\text{OD}_i}\right) \times 100$$

where (OD$_i$) is the initial optical density of the bacterial suspension before mixing with the solvent, and (OD$_f$) the final absorbance after mixing and phase separation. Each measurement was performed in triplicate.

2.3 Cell preparation for adhesion assay

To evaluate bacterial adhesion under different flux conditions, cell concentration for each growth stage (i.e. early exponential, mid exponential or late exponential growth stages) was standardized by diluting the growth cultures to a final OD$_{600}$ of 0.2 in 200 mL 0.1 M NaCl (Sigma-Aldrich, Ireland). This ensured a standardized starting feed cell concentration before every adhesion assay, in which
controlled experiments with different parameters (i.e. permeate flux and growth stage) could be compared and studied. For cells grown to early exponential phase two 100 mL cultures were prepared.

Cells were then harvested by centrifugation at 5000 rpm for 10 min using a Sorval RC5C Plus centrifuge (Unitech, Ireland) and a FiberliteTM f10-6x500y fixed angle rotor (Thermo Fisher Scientific Inc., Dublin, Ireland). The supernatant was carefully discarded and the pellet re-suspended in 200 mL 0.1 M NaCl solution, resulting in an inoculum consisting of approximately 10^8 cells/mL. This process was performed twice. A solution of 0.1 M NaCl was used as a model solution to mimic brackish water characteristics (Greenlee et al. 2009).

2.4 Membranes and Cross-flow Test Unit

Six NF and RO membranes were used: NF90, NF270, BW30 and BW30 FR (Dow Filmtec Corp, USA) and ESNA1-LF and ESNA1-LF2 from Hydranautics (Nitto Denko Corp, USA). BW30 FR stands for Fouling Resistant membrane. The membrane properties are presented in Table 1.

<table>
<thead>
<tr>
<th>Membrane Type</th>
<th>Permeability((\text{L/(h.m}^2\cdot\text{bar)}))^a)</th>
<th>NaCl Retention(^b) (%)</th>
<th>Contact Angle(^c) (°)</th>
<th>Roughness (R_{\text{MS}}^d) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF90</td>
<td>6.8±0.5</td>
<td>87.8±4.0</td>
<td>58.4±0.6</td>
<td>484.0 ± 207.1</td>
</tr>
<tr>
<td>NF270</td>
<td>12.6±1.2</td>
<td>16.0±0.3</td>
<td>8.4±0.5</td>
<td>372.9 ± 246.4</td>
</tr>
<tr>
<td>BW30</td>
<td>2.6±0.3</td>
<td>93.5±2.1</td>
<td>25.6±0.8</td>
<td>209.0 ± 41.9</td>
</tr>
<tr>
<td>BW30 FR</td>
<td>2.8±0.5</td>
<td>92.9±1.3</td>
<td>62.2±0.6</td>
<td>665.7 ± 156.9</td>
</tr>
<tr>
<td>ESNA1-LF</td>
<td>3.5±0.4</td>
<td>88.8±1.5</td>
<td>68.8±0.6</td>
<td>214.5 ± 23.4</td>
</tr>
<tr>
<td>ESNA1-LF2</td>
<td>6.8±0.8</td>
<td>75.2±0.2</td>
<td>62.4±0.7</td>
<td>661.3 ± 97.7</td>
</tr>
</tbody>
</table>

\(^a\) Permeability measured with MilliQ water at 21°C

\(^b\) 0.1 M NaCl at 15 bar, 21°C and Re=579
Mean contact angle of a total of 20 deionized water droplets on two independent membrane samples using a goniometer (OCA 20 from Dataphysics Instruments)

45 µm × 59 µm of area measured using a Wyko NT1100 optical profilometer operating in vertical scanning interferometry (VSI) mode

As can be seen from Table 1 membrane surface properties varied substantially, with contact angles, membrane surface roughness, and salt retention parameters ranging from 8.5° to 68.8°, 214.5 up to 665.7 nm and 16.0 to 93.5%, respectively. These results clearly show the variability in surface hydrophobicity as well as topographic profile of the selected membranes.

The cross-flow test unit used was a modified version of the unit found in a previous study (Semião et al. 2013) and the schematic and operational details can be found in the Supporting Information SI.

Three Membrane Fouling Simulator (MFS) devices of internal channel dimensions of 0.8 mm in height, 40 mm width and 255 mm length were used in parallel. No feed spacers were used in this study.

2.5 Cleaning Protocol

The protocol used to clean the cross-flow system consisted of two antibacterial treatments involving 30 min recirculation steps of 70% Industrial Methylated Spirit (IMS, Lennox, Dublin, Ireland), followed by 0.1 M NaOH. The system was rinsed in between treatments with 18.2 mΩ.cm⁻¹ grade 1 pure water (Elgastat B124, Veolia, Ireland). Since pure water is ineffective in completely removing NaOH, an added step of recirculating pure water with a pH adjusted to 7 using 5 M HCl and a buffer solution of 10 mM NaHCO₃ was adopted. The pH of the recirculating solution was systematically checked to ensure there was no vestige of NaOH in the system. The system was then thoroughly rinsed with pure water. No adhesion of fluorescent cells on a membrane compacted for 18 hours with pure water occurred, showing the efficiency of the washing method.
2.6 Adhesion Protocol

Three different membranes were cut, thoroughly rinsed with pure water and left soaking overnight in the fridge at 4°C. The membranes were then inserted in the cross-flow system and compacted for a minimum of 18 hours at 21°C with pure water. The membrane pure water flux was measured at 15 bar and at the pressure subsequently used during the adhesion experiment. The cross-flow system was operated in total recirculation mode (i.e. recirculation of the retentate and permeate), ensuring the feed concentration and volume during the experimental runs were constant.

A 4 L volume of 0.1 M NaCl solution was then inserted in each feed tank (tank 1 and tank 2) and recirculated in the system to remove any air bubbles. Then feed tank 2 was blocked with the ball valve system and only feed tank 1 was used. Prior to inserting the bacterial cells in feed tank 1, the cross-flow system was left to equilibrate at a constant selected pressure and cross-flow of 0.66 L.min⁻¹ (Re=579 or cross flow velocity of 0.35 m.s⁻¹) for 15 minutes with the 0.1 M NaCl solution in tank 1. Selected experimental conditions consisted of monitoring bacterial adhesion at pressures ranging from 3.1 to 15.5 bar, with corresponding membrane fluxes ranging up to 70 L/(h.m²) at a constant temperature of 21°C. This range of fluxes was chosen to ensure coverage of the range used in typical full-scale applications of NF and RO processes (Cyna et al. 2002, Greenlee et al. 2009, Houari et al. 2009, Ventresque et al. 2000). In the specific case of the NF 270 membrane this range was extended to 120 L/(h.m²) purely for scientific reasons, for example in the case where novel membranes can operate at higher fluxes than the ones commonly applied in today’s water treatment plants. A bacterial inoculum containing approximately 10⁸ cells/mL was then added to feed tank 1 and recirculated in the system for 30 minutes at the constant filtration conditions of pressure and cross-flow as the ones used during equilibration. Permeate flux, feed and permeate
conductivity were measured for each membrane cell before (i.e. during equilibration with 0.1 M NaCl) and after bacterial inoculation (i.e. during bacterial adhesion). After 30 minutes of adhesion, feed tank 2 outlet with 0.1 M NaCl solution was opened and feed tank 1 outlet was closed in order to rinse any non-adhered bacterial cells from the system under the filtration conditions used prior to ex-situ analysis of the bacterial adhesion. Every experiment was repeated at least twice. The effect of rinsing and the effect of opening the MFS for ex-situ analysis of bacterial surface coverage was investigated by comparison with a control study performed with an MFS fitted with a sapphire glass window for in-situ measurements. The results of these control studies are described in the Supplemental Information (S2).

2.7 Adhesion quantification

Membrane Fouling Simulator (MFS) cells were separated from the system at the end of adhesion experiments, and carefully opened whilst submerged in 0.1 M NaCl solution. The fouled membranes were removed, 3 pieces cut from different locations of the membrane and each sample was placed at the bottom of small petri dishes submerged with 0.1 M NaCl solution. The submerged fouled membranes were then observed under an epi-fluorescence microscope (Olympus BX51) using a 10X objective. Fluorescent mCherry-tagged Pseudomonas cells were observed using a 550 nm filter cube. Ten micrographs were obtained at random points from each membrane sample. Cell surface coverage (%) was then determined for each membrane using ImageJ® software, a Java-based image processing program (http://rsbweb.nih.gov/ij/). The emission intensity of the mCherry tagged Pseudomonas cells was found to be perfectly distinguishable from the autofluorescent background of the tested membranes. In some instances, the mCherry to background fluorescence signal was further improved by controlling the level of excitation light through samples using fluorescence excitation balancers, attached in parallel to the light path, and by adjusting the field iris diaphragm (Supporting information: S4). Acquired images were subsequently grayscaled and thresholded.
Bacterial deposition on membranes was then estimated as the percentage of solid surface covered by bacteria, based on the number of black and white pixels of thresholded images.

3. Results and Discussion

3.1 Effect of flux on *Pseudomonas fluorescens* adhesion

The effect of permeate flux on the initial adhesion of *P. fluorescens* for different NF and RO membranes is presented in Figure 1. The surface coverage of all 6 membranes was found to increase from 1.6±0.2% for a permeate flux of 0.5±0.1 L/(h.m²) (0.14 µm.s⁻¹) for the BW30 FR up to 39.4±3.3% for a permeate flux of 35.47±0.01 L/(h.m²) (9.9 µm.s⁻¹) for the ESNA 1-LF2. The range of permeate fluxes was extended for the particular case of the NF270 membrane, as stated in the Materials and Methods section. It was found that an increase of the permeate flux from 35.47 L/(h.m²) to 116 L/(h.m²) did not significantly increase the surface coverage which was constant at around 40%.

Similarly, a previous study involving yeast on microfiltration membranes also correlated increased cell deposition with increased permeate flux (Kang et al. 2004). Nonetheless, this present study shows that bacterial adhesion reached a maximum surface coverage of around 40% for permeate fluxes higher than 36 L/(h.m²) as shown for membranes NF270 and ESNA1-LF2. Ridgway et al. (Ridgway et al. 1984) also observed a similar plateau of adhered bacteria to a RO membrane. The authors hypothesized the adhesion plateau effect to be the direct result of a limiting number of adhesion sites available, independent of the increased bacterial concentration during the course of the fouling experiment. More recent studies, however, have demonstrated a blocking effect caused by the presence of previously adhered particles, colloids or bacterial cells (Sjollema and Busscher 1990, Ko and Elimelech 2000, Busscher and van der Mei 2006, Kerchove and Elimelech 2008): particles or bacteria already adhered on the membrane surface can hinder bacterial adhesion on the membrane surface in nearby areas causing adhesion to eventually reach a maximum.
Differences between a “nearly linear” adhesion (Kang et al. 2004) with increased permeate flux and an adhesion that reaches a plateau, as observed in this study, could also be explained by the differences in cell feed concentration. As shown in an earlier study (Kang et al. 2004), differences in cell feed concentration led to significant differences in the amount of bacteria adhered when subjected to identical filtration conditions; the degree of membrane fouling on a membrane will be directly proportional to the bacterial concentration used, where the lower the bacterial concentration, the lower the number of adhered bacterial cells.

NF and RO membranes have been shown to vary substantially in their surface properties. For example, surface contact angle have been previously reported to range between 38.6º and 73.2º, the root mean square (RMS) roughness to range between 5.9 and 130 nm and the zeta potential measurement to range between -4.0 and -19.7 mV for several commercial NF and RO membranes (Norberg et al. 2007). Moreover, previous studies investigating bacterial adhesion onto NF and RO membranes clearly demonstrate the role of membrane surface properties on bacterial adhesion, in which attributes such as membrane hydrophobicity, surface charge and roughness have shown to significantly influence bacterial adhesion (Lee et al. 2010, Myint et al. 2010, Bernstein et al. 2011, Kang et al. 2006, Subramani and Hoek 2008). The quantitative differences in adhesion between the studied membranes were large, with bacteria adhering to some membranes up to 21 times more than others. However, as previously mentioned, these studies were carried out under the absence of or under very low pressure conditions (<2.5 bar), and/or at very low Reynolds numbers (Re<80). One of the objectives of this study was to investigate bacterial adhesion using realistic hydrodynamic conditions in order to mimic NF and RO spiral-wound modules. It was observed that NF and RO membrane surface properties had a small effect on bacterial adhesion under the wide range of permeate flux conditions tested. The highest significant differences were obtained in the region of permeate fluxes of 20 L/(h.m²), where surface coverage varied from 17.1±2.8% for the NF270 with a flux of 19.0±1.3 L/(h.m²) up to 32.5±0.7% for the ESNA1-LF with a flux of 18.8±0.1 L/(h.m²). This translates to the ESNA1-LF adhering only 1.8 times more than the NF270, which comparatively to the
previous mentioned studies (Lee et al. 2010, Suwarno et al. 2012, Kang et al. 2004) is a small difference. The small differences obtained in surface coverage for these two membranes is probably due to the fact that the NF270 membrane is more hydrophilic with a contact angle of 8.4° compared to the ESNA1-LF which has a more hydrophobic nature, with a contact angle of 68.8°, as can be seen in Table 1. Hence the more hydrophobic membrane ESNA1-LF shows greater adhesion compared to the more hydrophilic membrane NF270.

When comparing the other membranes for a permeate flux in the region of 20 L/(h.m²), it can be seen from Figure 1 that surface coverage does not vary substantially: BW30 FR with a flux of 21.2±5.3 L/(h.m²) has a surface coverage of 27.6±5.9%, the BW30 with a flux of 21.3±0.3 L/(h.m²) has a surface coverage of 28.5±1.3% and the ESNA1-LF2 with a flux of 18.1±3.5 L/(h.m²) has a surface coverage of 29.6±0.2%. The properties of the membranes tested are however very different, as can be seen in Table 1: the contact angle measurements varied from 25.6° for the BW30 to 62.4° for the ESNA1-LF2 and the roughness varied from 209 nm for the BW30 to 665.7 nm for the BW30-FR. Despite the significant differences of the membrane surface properties surface coverage did not vary substantially for the same permeate flux conditions, showing that under pressure membrane surface properties have a small effect on P. fluorescens adhesion (Figure S3.1 in the Supporting Information). This suggests that membranes with anti-bacterial or anti-biofouling properties should be tested under representative pressures in order to fully assess their true performance. In contrast, adhesion rates onto microfiltration membranes subjected to a permeate flux similar to the ones tested in the present paper (20 µm.s⁻¹) were considerably different depending on the membrane surface properties (Kang et al. 2006). These differences might be due to the tested species characteristics, to different filtration conditions, different membrane surface properties such as the presence of pores or to solution characteristics.

It was further noticed that the 30 min adhesion of bacterial cells to the membrane surface did not cause a decrease in the measured permeate flux as this did not vary by more than 3% compared to
the flux measured before the introduction of bacterial cells into the system (i.e. during equilibration with 0.1 M NaCl). Despite the adhesion of bacterial cells to the membrane surface covering up to 40% of the surface, this did not cause enhanced concentration polarisation that has been identified in previous studies in the case of cake and biofilm formation (Herzberg and Elimelech 2007, Hoek and Elimelech 2003).

Two main conclusions can be drawn from this study at the experimental conditions studied: (1) *P. fluorescens* adhesion is dependent on the permeate flux and does not substantially vary for different membrane properties; (2) *P. fluorescens* adhesion reached a maximum of surface coverage of 40% for permeate flux higher than 35.5 L/(m².h).

3.2 Effect of flux on *Pseudomonas putida* adhesion

P. putida was employed as an alternative species in a similar series of experiments to those conducted with *P. fluorescens*. The results shown in Figure 2 can be seen to follow the same trend as observed with *P. fluorescens* with surface coverage increasing with permeate flux. It is clear that the membrane surface properties do not have a substantial impact on the rate of bacterial adhesion for the conditions tested. For a flux of 13.8±0.9 L/(h.m²) NF90 has a surface coverage of 15.5±0.9%, the BW30 FR with a flux of 19.6±1.7 L/(h.m²) has a surface coverage of 16.9±3.0% and the NF270 with a flux of 19.0±0.3 L/(h.m²) has a surface coverage of 15.0 ±1.2%. The properties of the surfaces of the membranes tested are however very different with respect to contact angle and roughness, as can be seen in Table 1, showing that as for *P. fluorescens*, membrane surface properties have an insubstantial effect on *P. putida* adhesion under permeate flux conditions (Figure S3.2 in the Supporting Information).

The only difference noticed between the two bacterial species tested, *P. fluorescens* and *P. putida*, was in the surface coverage rate as a function of the permeate flux (Figure 2): *P. fluorescens* reaches a maximum coverage of about 40% at a permeate flux between 40 and 60 L/(h.m²) whilst *P. putida*
reaches a surface coverage of 40% for permeate fluxes higher than 100 L/(h.m²). These differences could be associated to small differences of bacteria size. The smaller bacteria *P. putida* suffers permeate drag to a lesser extent than *P. fluorescens* (Subramani and Hoek 2008) and therefore adheres less for similar permeate fluxes. However due to the previously described “blocking effect” mechanism, surface saturation is eventually reached by both strains at ~40% surface coverage. As *P. fluorescens* and *P. putida* do not substantially differ in cell size, the blocking effect caused by these two strains would be expected to be similar, and therefore the maximum surface coverage reached is also expected to be similar.

The study by Subramani and Hoek (Subramani and Hoek 2008) showed that during filtration at low pressures, the difference in adhesion rates between species studied was significant, but as the pressure increased, corresponding to fluxes up to 20 L/(h.m²), the difference in adhesion rates between species diminished resulting in similar adhesion rates at higher pressures/permeate fluxes regardless of species studied. Furthermore, the same study (Subramani and Hoek 2008) showed that the differences in adhesion rate of *Saccharomyces cerevisiae* on different tested membranes became smaller with increasing permeate flux conditions, hence showing an overwhelming effect of the convective flux compared to membrane surface properties. Although this present study differs from the previous studies by focusing primarily on “end-points” following 30 minutes adhesion, a common conclusion can be drawn in which higher permeate flux will lead to higher bacterial surface coverage but membrane and cell surface properties have very little impact on the surface coverage.

The design of this present study therefore allowed a comparison of multiple membranes at different flux conditions in regards to bacterial adhesion, which was especially necessary when evaluating the claimed anti-fouling properties of specialized commercial membranes.
3.3 Effect of bacterial growth stage deposition under flux conditions

During bacterial adhesion the outer cell membrane is usually the first point of contact when interacting with abiotic surfaces. The bacterial outer membrane functions as a permeability barrier regulating the passage of solutes between the cell and the surrounding environment, determining the physicochemical properties of the cell (Caroff and Karibian 2003, Makin and Beveridge 1996, Gargiulo et al. 2007). Surface macromolecules such as lipopolysacchides and surface proteins that constitute the outer membrane have been shown to significantly influence the physicochemical properties of bacterial cells (van Loosdrecht et al. 1987). Moreover, the composition of macromolecules on the outer membrane is known to be influenced by the bacterial growth phase (Hong and Brown 2006). In one recent study (Walker et al. 2005) it was shown that the adhesion profile of Escherichia coli was dependent on its growth phase, which was determined by the charge distribution resulting from electrostatic repulsion forces. Differences in biofouling of RO membranes have also been shown to depend on the growth stage of the bacterial species studied (Herzberg et al. 2009). Differences were caused by the bacterial cell properties such as zeta potential. It is however unclear how the growth stage impacts on the initial adhesion of bacteria onto NF and RO membranes at high flux conditions. Hence the initial biofouling onto different NF and RO membranes was investigated in the present study at a fixed but representative pressure (11.3 bar) using bacteria at different growth phases to determine whether the effect of cell surface physicochemistry was significant. The physicochemical surface properties of P. fluorescens cells grown at different exponential growth stages based on their affinities to different polar and apolar solvents were studied and are presented in Table 2. Considerable variations in the affinity of P. fluorescens cells to apolar solvents hexadecane and decane revealed changes in surface hydrophobicities as cells enter into different exponential growth stages. Affinity to hexadecane decreased from 67.2 % to 27.0%, as cells enter early exponential (OD$_{600}$=0.2) to late exponential (OD$_{600}$=1.0) growth stages. Likewise affinities to decane decreased from 47.6% to 28.9%.
A high affinity to chloroform (>94%) was observed for all tested *P. fluorescens* cells, irrespective of their growth stage. The high affinity to chloroform compared to affinities to hexadecane is an indication that the tested *P. fluorescens* cells possess a dominating electron donor character. Although lower, the affinities to ethyl acetate were on average ≈50%, irrespective of *P. fluorescens* growth state. When comparing affinities to decane and ethyl acetate, *P. fluorescens* cells grown to mid exponential (OD₆₀₀=0.6) and to late exponential phases (OD₆₀₀=1.0) possess a secondary electron acceptor character, based on their higher affinity to ethyl acetate than decane. This Lewis acid surface property is negligible for *P. fluorescens* cells entering early exponential growth stage (OD₆₀₀=0.2) as seen by their similar affinities to both decane and ethyl acetate. These results clearly indicate the subtle surface physicochemical differences between *P. fluorescens* grown at different exponential stages. Surface hydrophobicity has been shown to affect cell adhesion to surfaces (Bos et al. 1999, Habimana et al. 2007, Vanloosdrecht et al. 1987).

Table 2: Mean affinities of *P. fluorescens* at different growth stages to solvents hexadecane, chloroform, decane, and ethyl acetate. Error represents standard deviation of three replicates.

<table>
<thead>
<tr>
<th>Growth stage OD<sub>600</sub></th>
<th>Hexadecane</th>
<th>Chloroform</th>
<th>Decane</th>
<th>Ethyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>67.2±0.6</td>
<td>96.0±0.2</td>
<td>47.6±0.5</td>
<td>44.6±5.0</td>
</tr>
<tr>
<td>0.6</td>
<td>41.4±7.4</td>
<td>94.4±0.9</td>
<td>24.1±2.3</td>
<td>53.7±3.3</td>
</tr>
<tr>
<td>1</td>
<td>27.0±1.1</td>
<td>94.4±1.2</td>
<td>28.9±0.8</td>
<td>52.8±1.1</td>
</tr>
</tbody>
</table>

In the particular case of *P. fluorescens*, there is no significant effect of the growth stage on the adhesion onto different NF and RO membranes, as shown in Figure 3 (and Figure S3.2 in the Supporting Information). It seems that the convective flux towards the membrane surface overcomes the effect of the membrane surface properties, as suggested in a previous study (Subramani and Hoek 2008).
4. CONCLUSION

This study offers an increased understanding of bacterial adhesion on NF/RO membranes under conditions typically found in full-scale processes. The work presented in this paper clearly shows that for representative Reynolds numbers and permeate fluxes, the membrane properties and bacterial growth phases do not substantially affect initial bacterial adhesion. This has very important implications, particularly for studies where anti-biofouling membranes are under evaluation: the true efficiency of these membranes can only be fully evaluated when tested under realistic permeate flux conditions. Future work will also need to examine biological factors involved during the early stage of membrane fouling such as EPS synthesis. An understanding of these factors would help better devise or select optimal processing strategies for controlling the level of fouling during NF/RO processes. Furthermore, membranes labelled as Fouling Resistant such as the BW30 FR have been shown to have the same initial bacterial adhesion outcome as the other membranes when subjected to typical flux conditions of NF and RO membranes: the surface modifications carried out on this membrane were not sufficient to avoid bacterial adhesion. This poses an important question: will an efficient anti-biofouling membrane ever be developed? Should future research focus on anti-adhesion surfaces or should it focus on more efficient cleaning strategies?

Acknowledgments

This research was supported by the European Research Council (ERC), project 278530, funded under the EU Framework Programme 7. The authors would like to thank Mr. Pat O’Halloran for his invaluable technical assistance, and Mr. Liam Morris for the construction of the MFS devices. The authors especially thank Dr. Ellen L. Lagendijk from the Institute of Biology Leiden, Netherlands for the gift of the Pseudomonas fluorescens WCS365, PCL1701 and Pseudomonas putida PCL 1445, PCL
1480 strains. The authors would like to thank Hydranautics for kindly providing samples of the ESNA1-LF and ESNA1-LF 2 membranes.
References

Figure 1: Effect of flux on *P. fluorescens* surface coverage of NF and RO membranes: columns represent surface coverage and black squares represent permeate flux (10^7 cells/mL, 0.1 M NaCl, 21°C, pH~7, 0.66 L.min⁻¹ or Re=579, each experiment repeated at least twice). Error bars show standard deviation of repeated experiments.
Figure 2: Effect of flux on *P. putida* surface coverage of NF and RO membranes: columns represent surface coverage and black squares represent permeate flux (10^7 cells/mL, 0.1 M NaCl, 21°C, pH~7, 0.66 L.min^-1 or Re=579, each experiment repeated at least twice). Error bars show standard deviation of repeated experiments. (Note: the permeate flux is apparently not seen as a linear relationship with pressure because the columns are not equally spaced in pressure. The linear correlation coefficient of permeate flux vs pressure is in fact r^2>0.995 for these experiments).
Figure 3: Effect of *P. fluorescens* growth stage on surface coverage of NF and RO membranes: columns represent surface coverage and black squares represent permeate flux (10^7 cells/mL, 0.1 M NaCl, 21°C, pH~7, 0.66 L.min$^{-1}$ or Re=579, 11.3 bar, each experiment repeated at least twice). Error bars show standard deviation of repeated experiments.