Semistructured Data

Citation for published version:

Digital Object Identifier (DOI):
10.1145/263661.263675

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
PODS '97 Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Semistructured Data *
Peter Buneman
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104-6389
peter@cis.upenn.edu

Abstract
In semistructured data, the information that is normally associated with a schema is contained within the data, which is sometimes called "self-describing". In some forms of semistructured data there is no separate schema, in others it exists but only places loose constraints on the data. Semistructured data has recently emerged as an important topic of study for a variety of reasons. First, there are data sources such as the Web, which we would like to treat as databases but which cannot be constrained by a schema. Second, it may be desirable to have an extremely flexible format for data exchange between disparate databases. Third, even when dealing with structured data, it may be helpful to view it as semistructured for the purposes of browsing. This tutorial will cover a number of issues surrounding such data: finding a concise formulation, building a sufficiently expressive language for querying and transformation, and optimization problems.

1 The motivation

The topic of semistructured data (also called unstructured data) is relatively recent, and a tutorial on the topic may well be premature. It represents, if anything, the convergence of a number of lines of thinking about new ways to represent and query data that do not completely fit with conventional data models. The purpose of this tutorial is to describe this motivation and to suggest areas in which further research may be fruitful. For a similar exposition, the reader is referred to Serge Abiteboul's recent survey paper [1].

The slides for this tutorial will be made available from a section of the Penn database home page http://www.cis.upenn.edu/~db.

Some data really is unstructured

The most obvious motivation comes from the need to bring new forms of data into the ambit of conventional database technology. Some of these, such as documents with structured text [3, 2] and data formats [9, 17], while they may call for increasingly expressive query languages and new optimization techniques, only require mild extensions to the existing notion of data models such as ODMG [13]. However, these extensions still require the prior imposition of structure on the data, and there are some forms of data for which this is genuinely difficult.

The most immediate example of data that cannot be constrained by a schema is the World-Wide-Web. As database researchers we would like to think of this as a database, but to what extent are database tools available for querying or maintaining the web? Most web queries exploit information retrieval techniques to retrieve individual pages from their contents, but there is little available that allows us to use the structure of the web in formulating queries, and since the web does not obviously conform to any standard data model, we need a method of describing its structure.

Another example, little known to the database community but responsible for piquing the author's interest in this topic, is the database management system ACeDB, which is popular with biologists [36]. Superficially it looks like an object-oriented database system, for it has a schema language that resembles that of an object-oriented DBMS; but this schema imposes only loose constraints on the data. Moreover the relationship between data and schema is not easily described in object-oriented terms, and there are structures that are naturally expressed in ACeDB, such as trees of arbitrary depth, that cannot be queried using conventional techniques.

Data Integration

A second motivation is that of data exchange and transformation, which is the starting point for the Tsimmis project [33, 21] at Stanford. The rationale here is that none of the existing data models is all-embracing, so that it is difficult to build software that will easily convert between two disparate models. The Object Exchange Model (OEM) offers a highly flexible data structure that may be used to capture most kinds of data and provides a substrate in which almost any other data structure may be represented. In effect, OEM is an internal data structure for exchange of data between DBMSs, but having such a structure invites the idea of querying data in OEM format directly.
1.3 Browsing

A final motivation is that of browsing. Generally speaking, a user cannot write a database query without knowledge of the schema. However, schemas may have opaque terminology and the rationale for the design is often difficult to understand. It may help in understanding the schema to be able to query data without full knowledge of the schema. For example the queries,

- Where in the database is the string "Casablanca" to be found?
- Are there integers in the database greater than 2^{16}?
- What objects in the database have an attribute name that starts with "act"?

Such questions cannot be answered in any generic fashion by standard relational or object-oriented query languages. While languages have been proposed that allow schema and data to be queried simultaneously [24] in the context of relational and object-oriented database systems, these languages do not have the flexibility to express complex constraints on paths, and it is not clear how their implementation will work on the structures described below.

2 The Model

The unifying idea in semi-structured data is the representation of data as some kind of graph-like or tree-like structure. Although we shall allow cycles in the data, we shall generally refer to these graphs as trees. The example in figure 1 is taken from [10] in which the data model is formalized as an edge labeled graph. The structure is taken (with some inaccuracies) from a well-known web database [23] that provides a good example of semistructured data. There are several things to note about it. If one confines ones attention to the parts of the database below &Rogie& and &Title& then the data appears fairly regular except that there are two ways of representing a cast. That is, the data does not quite fit with some relational or object-oriented presentation. Edges are labeled both with data, of types such as int and string and possibly other base or external abstract types (video, audio etc.). Edges are also with names such as &Rogie& and &Title& that would normally be used for attribute or class names. We shall refer to such labels as symbols. Internally they are represented as strings. Note that arrays may be represented by labeling internal edges with integers. We can formulate the type of this kind of labeled tree as:

\[
\text{type label} = \text{int} \mid \text{string} \mid \ldots \mid \text{symbol}
\]

\[
\text{type tree} = \text{set}((\text{label} \times \text{tree})
\]

The first line describes a tagged union or variant, the second says that a tree is a set of label/tree pairs. The edges out of nodes in our trees are assumed to be unordered.

There are a number of variations on this basic model, and it is worth briefly reviewing them. In [5] leaf nodes are labeled with data, internal nodes are not labeled with meaningful data, and edges are labeled only with symbols

\[
\text{type base} = \text{int} \mid \text{string} \mid \ldots \mid \text{symbol}
\]

\[
\text{type tree} = \text{base} \mid \text{set}((\text{symbol} \times \text{tree})
\]

The differences between the two models are minor and give rise to minor differences in the query language. It is easy to define mappings in both directions. Another possibility is to allow labels on internal nodes, for example:

\[
\text{type base} = \text{int} \mid \text{string} \mid \ldots \mid \text{symbol}
\]

\[
\text{type tree} = \text{label} \times \text{set}\text{label} \times \text{tree}
\]

The problem with using this representation directly is that it makes the operation of taking the union of two trees difficult to define. However, by introducing extra edges, this representation can be converted into one of the edge-labeled representations above.

A final and more complex issue is that of object identity, by which we mean node labels - or possibly edge labels - that, apart from an equality test, are not observable in the query language. In OEM, object identities are used as node labels and place-holders to define trees. While object-identities provide an efficient way to define and test equality...
within a database, they pose problems when comparing data across databases. See [10, 25, 32] discussions and related work.

It is straightforward to encode relational and object-oriented databases in this model, although in the latter case one must take care to deal with the issue of object-identity. However, the coding is not unique, and the examples in [10] and [5] show some differences in how tuples of sets are treated.

The term “self-describing” is often used to describe unstructured data. In each of the models we have described, the data is a tagged union type, and one can imagine a program whose behavior is dynamically determined by “switching” on the type. For example, a program’s behavior may be altered by whether it finds an integer or string as a label, and one would expect any language for dealing with semistructured data to incorporate predicates that describe the type of an edge or node. The situation is similar to that in programming languages. Lisp and many interpreted and scripting languages are dynamically typed. Predicates are available to determine (at run time) type of a value or class of an object. Languages in the Algol tradition (Pascal, C, ML, Modula) are statically typed. Predicates are not needed to determine the type of a value because it is known from the source code of the program and hence to the programmer. There is a good analogy between dynamic type systems and semistructured data on one hand, and static type systems and databases with schemas on the other.

3 Query Languages

There appear to be two general approaches to devising query languages for semistructured data. First, take SQL (or perhaps OQL[14, 13]) as a starting point and add enough “features” to perform a useful class of queries. The second approach is to start from a language based on some formal notion of computation on semistructured data then to massage that language into acceptable syntax. It is remarkable that the two approaches appear to end up with very similar languages.

Let us start with the first approach to see what kinds of queries are useful. The following SQL-like syntax suggests itself:

```
select Entry.Movie.Title
from DB
where Entry.Movie.Director ...
```

However the syntax does not make clear how much of the two paths Entry.Movie.Title and Entry.Movie.Director are to be taken as the same. The solution is to introduce variables to indicate how paths or edges are to be tied together. These variables can then be used in other expressions to form new structures. Label variables, tree variables and possibly path variables are needed to express a reasonable set of queries.

The next problem is that one wants to specify paths of arbitrary length to find, for example, all the strings in the database. This requires us to be able to express arbitrary paths in our syntax. Even this is not enough. Consider the problem of finding whether "Allen" acted in "Casablanca".

One might try this by searching for paths from a Movie edge down to an "Allen" edge, but one would not want this path to contain another Movie edge. These problems indicate that one would like to have something like regular expressions to constrain paths.

The "select" fragment of UnQL[10] and the Lorel query language [5] solve these problems with very similar syntactic forms. Lorel, which is a component of the Lore project [27] requires a rich set of overloadings for its operators for dealing with comparisons of objects with values and of values with sets. These are avoided in UnQL by not having object identity and exploiting a simple form of pattern matching. Other languages that use a SQL-like syntax include a predecessor to Lorel [31], and WebSQL [29, 7] which contains a number of constructs specific to web queries. A language for web site management is proposed in [18].

Having asked what the surface syntax should look like, one wants to ask what the underlying computational strategy should be. Here there appear to be two principled strategies. The first is to model the graph as a relational database and then exploit a relational query language. In our labeled graph model this is remarkably simple. We can take the database as a large relation of type (node-id, label, node-id) and consider the expressive power of relational languages on this structure, but this apparently simple approach has a number of complications:

1. Our labels are drawn from a heterogeneous collection of types, so it may be appropriate to use more than one relation.
2. If information also is held at nodes, one needs additional relations to express this.
3. The node identifiers may only be used as temporary node labels, and one may want to limit the way they can appear in the output of the query. How they are used is related to the discussion of object identity.
4. We are concerned with what is accessible from a given “root” by forward traversal of the edges, and one may want to limit the languages appropriately.

Some forms of unbounded search will require recursive queries, i.e., a “graph datalog”, and such languages are proposed in [26, 16] for the web and for hypertext. Theoretical treatments of queries that deal with computation on graphs or on the web appear in [6, 30]. It should also be mentioned that this model of computation is used in [5, 13] as a starting point for optimization.

The second strategy is adopted in the basis for UnQL[11, 10]. Here the starting point is that of structural recursion, and is an extension of a principle put forward in [12] that there are natural forms of computation with the type. For semistructured data one starts with the natural form of recursion associated with the recursive datatype of labeled trees. However, some restrictions need to be placed for such recursive programs to be well-defined; we want them to be well-defined on graphs with cycles. These restrictions give rise to an algebra that can be viewed as having two components: a “horizontal” component that expresses computations across the edges of a given node (and from this, computations to a fixed depth from the root); and a “vertical” component that expresses computations that go to arbitrary depths in the graph. A property of this algebra is that, when restricted to input and output data that conform to a relational (nested relational) schema, it expresses exactly the relational (nested relational) algebra. Hence an SQL-like language is a natural fragment of UnQL.

The SQL or OQL like languages we have mentioned typically bring information to the surface, but they are not capable of performing complex or “deep” restructuring of
the data. Simple examples of such operations include deleting/collapsing edges with a certain property, relabeling edges, or performing local interchanges. Both “graph datalog” and UnQL are capable of various forms of restructuring. For example, in UnQL one can write a query that corrects the egregious error in the “Bacall” edge label. One can also perform a number of global restructuring functions such as deleting edges with certain properties or adding new edges to “short-circuit” various paths. The relationship between the restructuring possible in UnQL and what can be done in “graph datalog” is not understood. Some simple forms of restructuring are also present in a view definition language proposed in [4].

4 Implementation and Optimizations

This topic is very much in its infancy and again depends on the underlying representation of the data. Moreover the optimization problems differ depending on whether one is using a semistructured model as an interface to existing data or one is building a data structure to represent semistructured data directly [28]. In the former case the extensions of existing techniques for optimization of object-oriented or relational query languages mentioned above may be exploited together with the addition of path or text indices on labels and strings. In the second case, disk layout and clustering, together with appropriate indexing, is also important.

In [10] a large class of computations can be shown to be translatable into a basic graph transformation technique which, in turn, allows some simple optimizations. Also some of the basic optimizations of the relational algebra can be applied to the “vertical” computations. In [35] it is shown how an analysis of the query, combined with some segmentation of the graph into local “sites” can be used to decompose a query into independent, parallel sub-queries. In [5] and [15] extensions to optimization techniques for object-oriented query languages are exploited. In [19] a translation is specified for a fragment UnQL into an underlying relational structure.

5 Adding Structure

One of the main attractions of semistructured data is that it is unconstrained. Nevertheless, it may be appropriate to impose (or to discover) some form of structure in the data. In [8] a schema is defined as a graph whose edges are labeled with predicates and the property of simulation is used to describe the relationship between data and schema. In [31, 22] the schema is also an edge labeled graph and the stronger relationship of automata equivalence is used. In [20] schemas are used for further optimization.

Schemas are useful for browsing and for providing partial answers to queries. They will also be needed for the passage back from semistructured to structured data, for which a richer notion of schema is necessary. This is an area in which much further work is needed.

6 Acknowledgments

I would like to thank Susan Davidson and Dan Suciu for their collaboration and for stimulating my interest in this area. I am greatly indebted to Serge Abiteboul for most constructive discussions on a number of issues.

References

