Draft Genome Sequence of *Trueperella pyogenes*, Isolated from the Infected Uterus of a Postpartum Cow with Metritis

Robert J. Goldstone, a Matt Amos, b Richard Talbot, c Hans-Joachim Schuberth, d Olivier Sandra, e,f I. Martin Sheldon, b
David G. E. Smith a,h

Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, United Kingdom; Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom; Immunology Unit, University of Veterinary Medicine, Hannover, Germany; INRA, UMR198 Biologie du Développement et Reproduction, Jouy-en-Josas, France; ENVA,Maisons-Alfort, France; Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, United Kingdom

*Trueperella pyogenes* is a common commensal bacterium and an opportunistic pathogen associated with chronic purulent disease, particularly in ruminants. We report here the genome sequence of a *T. pyogenes* isolate from a severe case of bovine metritis. This is the first full record of a *T. pyogenes* genome.

Recently, the genus *Trueperella* was proposed to encompass 5 species previously classified as belonging to *Aranobacterium* (1). Among these reclassified species is *T. pyogenes*, previously known as *Aranobacterium pyogenes*, *Actinomyces pyogenes*, and *Corynebacterium pyogenes*. *T. pyogenes* has been long recognized as a mucosal membrane resident in many animal species and as an opportunistic pathogen (2). *T. pyogenes* is particularly associated with supplicative infections, such as mastitis, septic arthritis, liver abscessation, pneumonia, endometritis, and metritis. *T. pyogenes* is recognized as a key etiological agent in bovine endometritis and abscessation, pneumonia, endometritis, and metritis.

This is the first reported genome sequence for *T. pyogenes*.

Received 24 February 2014 Accepted 11 April 2014 Published 24 April 2014


Copyright © 2014 Goldstone et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license. Address correspondence to David G. E. Smith, David.G.Smith@glasgow.ac.uk.
REFERENCES


