Measuring diversity: the importance of species similarity

Citation for published version:
Leinster, T & Cobbold, CA 2012, 'Measuring diversity: the importance of species similarity' Ecology, vol 93, no. 3, pp. 477-489. DOI: http://dx.doi.org/10.1890/10-2402.1

Digital Object Identifier (DOI):
http://dx.doi.org/10.1890/10-2402.1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Final published version

Published In:
Ecology

Publisher Rights Statement:
Copyright by the Ecological Society of America, Vol. 93, No. 3, 03.2012, p. 477-489

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Measuring diversity: the importance of species similarity

TOM LEINSTER1,2,3 AND CHRISTINA A. COBBOLD1,2

1School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ United Kingdom
2Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ United Kingdom

Abstract. Realistic measures of biodiversity should reflect not only the relative abundances of species, but also the differences between them. We present a natural family of diversity measures taking both factors into account. This is not just another addition to the already long list of diversity indices. Instead, a single formula subsumes many of the most popular indices, including Shannon’s, Simpson’s, species richness, and Rao’s quadratic entropy. These popular indices can then be used and understood in a unified way, and the relationships between them are made plain. The new measures are, moreover, effective numbers, so that percentage changes and ratio comparisons of diversity value are meaningful.

We advocate the use of diversity profiles, which provide a faithful graphical representation of the shape of a community; they show how the perceived diversity changes as the emphasis shifts from rare to common species. Communities can usefully be compared by comparing their diversity profiles. We show by example that this is a far more subtle method than any relying on a single statistic.

Some ecologists view diversity indices with suspicion, questioning whether they are biologically meaningful. By dropping the naive assumption that distinct species have nothing in common, working with effective numbers, and using diversity profiles, we arrive at a system of diversity measurement that should lay much of this suspicion to rest.

Key words: biodiversity; diversity; diversity profile; effective number; entropy; microbial diversity; model; quadratic entropy; species similarity.

INTRODUCTION

“A mathematical approach does not oblige a biologist to be modest about his ability to make biological distinctions,” wrote Hurlbert in 1971 (page 584). Yet modesty seems to prevail when it comes to measuring diversity: all the most commonly-used indices are based on a crude model in which distinct species are assumed to have nothing in common, contrary to what every biologist knows. Nonspecialists are amazed to learn that a community of six dramatically different species is said to be no more diverse than a community of six species of barnacle. There is a mismatch between the general understanding of biodiversity as the variety of life, and the diversity indices used by biologists every day.

With the preservation of biodiversity a pressing global concern, this mismatch matters. “Diversity” is one of those words that is used freely in both scientific and nonscientific contexts, often with different meanings (Adams et al. 1997). Politicians may understand diversity to mean one thing; the scientists advising them may use it to mean another. Misguided policies may be the result. The Organization for Economic Co-operation and Development’s guide to biodiversity for policymakers states that “associated with the idea of diversity is the concept of distance, i.e., some measure of the dissimilarity of the resources in question” (OECD 2002:25). But the conventional measures of diversity ignore this aspect altogether.

This unhappy situation may result from a lack of good diversity measures that reflect the varying dissimilarities between species, or a lack of understanding of how to use them. Let us call such measures similarity-sensitive. The best-known similarity-sensitive diversity measure is the quadratic entropy of Rao (1982a, b). This is receiving increasing attention, but is still a minor player. Perhaps theoretical ecologists have been hesitant to introduce new diversity indices when the profusion of similarity-insensitive indices is already perceived to form...
Table 1. How some familiar diversity indices can be derived from our diversities qD^q.

<table>
<thead>
<tr>
<th>Diversity measure</th>
<th>Sensitive to rare species</th>
<th>Insensitive to rare species</th>
</tr>
</thead>
<tbody>
<tr>
<td>qD^q</td>
<td>$q = 0$</td>
<td>$q = 1$</td>
</tr>
<tr>
<td>Naive diversity $qD = qD^1$ (Hill numbers)</td>
<td>compare Faith</td>
<td>$\frac{1}{1 - \text{Rao}}$</td>
</tr>
<tr>
<td>Entropy qH^q (Ricotta-Szeidl)</td>
<td>species richness</td>
<td>exp(Shannon)</td>
</tr>
<tr>
<td>Naive entropy $qH = qH^1$ (Patil-Taillie-Tsallis)</td>
<td>species richness minus 1</td>
<td>Shannon entropy</td>
</tr>
</tbody>
</table>

† This quantity is undefined.

We present a new family of similarity-sensitive diversity measures, and show how to use them. This family includes (either directly or upon applying a simple transformation) Rao’s quadratic entropy, species richness, Shannon entropy, the Gini-Simpson index, the Berger-Parker index, the Hill numbers, the Patil-Taillie-Tsallis entropies, and the entropies of Ricotta and Szeidl (2006) (of which we give a new interpretation). We can also extract the indices of Hurlbert (1971) and Smith and Grassle (1977), and there are close connections with the phylogenetic indices of Faith (1992), Allen et al. (2009) and Chao et al. (2010). Once these many indices are all seen in the same context (Table 1), the relationships between them are clarified.

Our diversity measures take two inputs:

1) Relative abundance data. We assume the members of the community to be divided into species; the relative abundance data describe the proportions in which they are present. The word “species” can stand for any unit thought to be biologically meaningful.

2) Similarity data: for each pair of species, a number specifying how similar they are. Again, “similar” can be used in any biologically meaningful way: a genetic notion of similarity will lead to a measure of genetic diversity, a functional notion of similarity will lead to a measure of functional diversity, and so on. The traditional, naive model, in which commonalities between species are ignored, implicitly takes all similarities between distinct species to be zero. This leads to a naive measure of diversity.

The user also chooses a parameter q between 0 and ∞, indicating how much significance is attached to species abundance. For example, at one extreme ($q = 0$), species richness attaches as much significance to rare species as common ones. At the other ($q = \infty$), the index of Berger and Parker (1970) depends only on the most abundant species; rare species are ignored altogether.

Given the abundance and similarity data, and a choice of parameter q, our formula produces a number: the *diversity of order q* of the community. It is an effective number. This means that the diversity of order q of a community of S totally dissimilar species in equal proportions is simply S. Thus, if a community is assigned a diversity of 18.2, that means that it is slightly more diverse than a community of 18 totally dissimilar equally abundant species. There are “effectively” 18.2 species. Effective numbers “enable us to speak naturally” (Hill 1973:431).

Jost (2006, 2007, 2009) has argued eloquently for the primacy of effective numbers. Among the many diversity indices, those that are effective numbers play a special role and deserve a special name. Jost calls them “true diversities”; we call our measures simply “diversities.” Any diversity index can be converted into an effective number by a few simple steps of algebra (Jost 2006). Adopting this as a common standard clears up much confusion.

Similarity-sensitive measures that are effective numbers have a crucial advantage over earlier similarity-sensitive indices such as Rao’s (1982a, b) and Ricotta and Szeidl’s (2006). Chao et al. (2010) defined an important family of effective number similarity-sensitive measures, tailored specifically to phylogenetic diversity. As shown in the Appendix, they are closely related to our measures.

Given relative abundance and similarity data, one should calculate the diversity of order q for every q, and plot it against q. This graph is the community’s *diversity profile*. Meaningful ecological information can be read off at a glance. We illustrate this with examples, arguing that the diversity profile of a community can be regarded as its fingerprint.

Microbial ecologists have long recognized the need for similarity or distance measures in the quantification of diversity (Mills and Wassel 1980), because of the complexities of microbial taxonomy. We show how to apply our measures to communities of microbes.
Taking species similarity into account gives a more accurate reflection of reality. It also sheds light on the hidden assumptions inherent in the naive model. Our more subtle approach is adaptable to the needs of the user, in that it allows for measurement of different types of diversity: genetic, morphological, functional, and so on. A plethora of diversity indices, both sensitive and insensitive to species similarity, is replaced by a single formula. Thus, our approach is not only more realistic and versatile; it also simplifies.

THE DIVERSITY MEASURES

We consider throughout a fully censused community of \(S \) species, with relative abundances denoted by \(p_1, \ldots, p_S \); thus

\[
p_i \geq 0 \quad \text{and} \quad \sum_{i=1}^{S} p_i = 1.
\]

We write \(\mathbf{p} = (p_1, \ldots, p_S) \). The similarities between species are encoded in an \(S \times S \) matrix \(\mathbf{Z} = (Z_{ij}) \), with \(Z_{ij} \) measuring the similarity between the \(i \)th and \(j \)th species. We assume that \(0 \leq Z_{ij} \leq 1 \), with 0 indicating total dissimilarity and 1 indicating identical species; hence we also assume that \(Z_{ii} = 1 \).

Genetic measures of similarity or homology are often expressed as percentages, directly providing similarity coefficients \(Z_{ij} \) on a scale of 0 to 1. Other measures of interspecies distance \(d_{ij} \) lie on a scale of 0 to \(\infty \), but can easily be transformed to lie on a scale of 0 to 1 by the formula \(Z_{ij} = \exp(-ud_{ij}) \) (Nei 1972) where \(u \) is a constant. Different transformations are possible, but this is probably the simplest. We return to this in the Discussion.

Although the most obvious examples of similarity matrices are symmetric (\(Z_{ij} = Z_{ji} \)), symmetry is not part of the definition of similarity matrix. Partly this is because none of our results require the assumption of symmetry. Partly it is because there are useful nonsymmetric similarity matrices; for example, such matrices enable us to connect our diversity measures to certain existing measures of phylogenetic diversity (Appendix: Proposition A7). If the prospect of a nonsymmetric similarity matrix seems counterintuitive, it may be useful to consider the related concept of distance. In a general scientific context, the most obvious measures of distance are, again, symmetric. But there are many physical situations in which nonsymmetric distances play an important role. For example, the work required to push a load up a slope is greater than that required to push it down again.

We now define our family of diversity measures. There is one measure for each value of the parameter \(q \) in the range \(0 \leq q \leq \infty \). This is called the sensitivity parameter, and controls the relative emphasis that the user wishes to place on common and rare species; it is explained in the section Diversity profiles.

For \(q \neq 1, \infty \), the diversity of order \(q \) of the community is

\[
qD^q(\mathbf{p}) = \left(\sum p_i (Z_{ij})^{q-1} \right)^{1/q}
\]

where

\[
(Z_{ij})_i = \sum_{j=1}^{S} Z_{ij} p_j.
\]

The sum in Eq. 1 is over all values of \(i = 1, \ldots, S \) such that \(p_i \neq 0 \). In other words, it is over all species that are actually present.

We justify our definition in three ways: by explaining the formula directly (this section), by exhibiting many well-known diversity measures as special cases (in the section Relationships between diversity indices), and by listing its many desirable properties (in the section Properties), chief among which is that \(qD^q(\mathbf{p}) \) is an effective number.

First we explain the significance of the quantity \((Z_{ij})_i \). It is the expected similarity between an individual of the \(i \)th species and an individual chosen at random. It therefore measures the ordinariness of the \(i \)th species within the community. We call \((Z_{ij})_i \) the relative abundance of species similar to the \(i \)th. We always have \((Z_{ij})_i \geq p_i \); the relative abundance of species similar to the \(i \)th is at least as great as the relative abundance of the \(i \)th species itself. (It follows that \(\Sigma(Z_{ij})_i \) usually exceeds 1.)

Because \((Z_{ij})_i \) measures the ordinariness of the \(i \)th species within the community, the average ordinariness of an individual from the community is

\[
\sum_{i=1}^{S} p_i (Z_{ij})_i.
\]

This quantity is large if most of the population is concentrated into a few very similar species. So, average ordinariness could be called concentration, and is inversely related to diversity. A measure of diversity is therefore provided by the reciprocal, \(1/\Sigma(Z_{ij})_i \). This is precisely \(1D^2(\mathbf{p}) \), the diversity of order 2.

The diversities of other orders \(q \neq 2 \) arise from other notions of average. The mean of \(x_1, \ldots, x_S \) is \(\Sigma(1/S)x_i \). More generally, for any weights \(p_1, \ldots, p_S \) adding up to 1, the weighted mean is \(\Sigma p_i x_i \). But there is also, for each real number \(t \neq 0 \), another kind of average: first transform each \(x_i \) into \(x_i^t \); then take the weighted mean, then apply the inverse transformation. This is the generalized mean or power mean \((\Sigma p_i x_i^t)^{1/t} \) (Hardy et al. 1952). Taking \(t = q - 1 \) and \(x_i = (Z_{ij})_i \), gives

\[
\left(\sum p_i (Z_{ij})^{q-1} \right)^{1/(q-1)}
\]

as a measure of average ordinariness, or concentration, of the community. Its reciprocal, \(qD^q(\mathbf{p}) \), is therefore a measure of diversity. Varying the param-
eter q varies the influence on diversity of ordinary species (those i for which $(Zp)_i$ is large) relative to unusual species (those for which it is small).

The cases $q = 1$ and $q = \infty$ have been excluded because the formula (Eq. 1) for $^qD^2(p)$ does not make sense there. It does, however, converge to a limit as $q \to 1$ or $q \to \infty$. We define $^1D^2(p)$ and $^\infty D^2(p)$ as those limits, namely,

\[
^1D^2(p) = 1/(Zp)_1^2 (Zp)_2^2 \cdots (Zp)_S^2 \quad (\text{see Appendix: Proposition A2}),
\]

(\text{where any term 0a in the first formula is evaluated as 1, and the maximum in the second is over all $i = 1, \ldots, S$ such that $p_i \neq 0$}).

We have taken care to cover the eventuality that $p_i = 0$ for some values of i. This may occur if, for instance, one conducts an annual survey of a site using a checklist of species richness, the number used to measure the diversity of a community of species. It does, however, converge to a limit as $q \to 1$ or $q \to \infty$. We define $^1D^2(p)$ and $^\infty D^2(p)$ as those limits, namely,

\[
^1D^2(p) = 1/\max(Zp),
\]

$^\infty D^2(p) = 1/\max(Zp),
\]

(see Appendix: Proposition A2), where any term 0a in the first formula is evaluated as 1, and the maximum in the second is over all $i = 1, \ldots, S$ such that $p_i \neq 0$.

We have taken care to cover the eventuality that $p_i = 0$ for some values of i. This may occur if, for instance, one conducts an annual survey of a site using a checklist of species: some years, some species may be absent. Propositions A1 and A2 of the Appendix show why this eventuality must be handled in the way that it is.

RELATIONSHIPS BETWEEN DIVERSITY INDICES

Here we show that many familiar diversity indices arise from ours, or are closely related (Table 1). In some cases, the familiar index is equal to $^qD^2(p)$ for a particular value of q and/or Z. In others, it becomes equal upon applying a simple transformation.

We also explain some of the new measures arising from the general definition, and show how they can be used to measure the diversity of a community of microbes, a problem area for many diversity indices.

The oldest and most common measure of diversity is species richness, the number $s \leq S$ of values of i such that $p_i \neq 0$. This measure takes no notice of the varying similarities between species; it uses the naive model of a community, in which the similarity coefficient Z_{ij} is taken to be 0 (total dissimilarity) if $i \neq j$, and 1 (total similarity) if $i = j$. Hence Z is the identity matrix I, and $(Zp)_i = p_i$. Writing $^1D(p) = ^1D^1(p)$, we have $^1D(p)$ for species richness is the naive diversity of order 0.

In general, the naive diversity $^qD(p)$ is the Hill number of order q (Hill 1973). The naive diversity $^1D(p)$ of order 1 is the exponential of Shannon entropy, a form advocated by MacArthur (1965) and Whittaker (1972).

Now take an arbitrary similarity matrix Z. The diversity of order 0 is a similarity-sensitive version of species richness, given by

\[
^0D^2(p) = \sum_{i, j \neq 0} \frac{p_i}{(Zp)_i}.
\]

The contribution $p_i/(Zp)_i$ made by the ith species is always between 0 and 1. It is close to 1 when there are few individuals of other similar species: a species makes the greatest contribution to diversity when it is unusual. Diversity of order 0 includes species richness (the case $Z = I$), as well as Faith’s phylogenetic diversity measure when the phylogenetic tree is ultrametric (Appendix: pages 4–7). Neither of these depends on p, except concerning whether each p_i is zero or not; but in general, diversity of order 0 does depend on p.

The diversity of order 2 is

\[
^2D^2(p) = \frac{1}{\mu_3} = \frac{1}{\sum_{i,j} p_i p_j} = \frac{1}{\mu_2}
\]

where μ_3 is the expected similarity between a randomly chosen pair of individuals. This is closely related to a common measure of genetic diversity, as we shall see. In the naive model, it is the inverse Simpson concentration $1/\mu_2$.

More generally, take any whole number $q \geq 2$. Given q individuals of respective species i_1, i_2, \ldots, i_q, the product

\[
Z_{i_1,i_2} Z_{i_1,i_3} \cdots Z_{i_1,i_q}
\]

is a measure of their similarity as a group. Call this their group similarity, and let μ_q be the expected similarity of a randomly chosen group of q individuals (sampled with replacement). Then,

\[
^qD^2(p) = \mu_q^{1/(1-q)}
\]

(4) (Appendix: Proposition A3). Thus, diversity increases as the mean group similarity decreases.

Eq. 4 can be applied in situations where many diversity indices are unusable. For example, we can use it to estimate the diversity of a community of microbes, where there are good notions of similarity but the question of what constitutes a species is highly problematic (Johnson 1973, Wawer and Gangal 1996).

To apply the formula for $^qD^2(p)$, we do not need to know what a species is; it is enough to have a measure of similarity between two isolates. An estimate for μ_q (hence $^qD^2(p)$) is given by repeatedly taking q isolates from the community, calculating the group similarity for each, and taking the mean.

The naive diversity $^qD(p)$ of order q is $1/\max p_i$, the reciprocal of the Berger-Parker index. This is a measure of dominance. The same can be said of $^qD^2(p)$ for general Z, but now dominance is measured not merely in terms of how abundant each species is; it also takes into account how abundant similar species are. The species i for which $(Zp)_i$ is greatest need not itself be very abundant, as long as there are highly abundant species similar to it. For morphological diversity (Pavoine et al. 2005), diversity of order ∞ will be highest when there are no clusters of populous species in any small region of morphometric space.

Much of the literature on diversity indices concerns “entropies” of various kinds. These are not effective numbers, so we do not advocate using them as primary measures. However, in order to demonstrate the simplifying power of our definition, we now show that
many such entropies are also just transformations of the diversities \(qD^Z(p) \).

The explanation is in terms of “surprise,” a concept from information theory. (We need to invoke information theory only to make connections with historically established indices; it is not needed in order to justify our diversities themselves.) This extends the narrative of Patil and Taillie (1982) and Ricotta and Szeidl (2006).

When sampling from the community, our surprise at finding an individual of the \(i \)th species decreases with its ordinarness, that is, with the abundance of organisms of the same or similar species. We are most surprised when we find a rare, distinctive species. Mathematically, we can quantify the surprise as \(\sigma_i((Zp)_i) \), where \(\sigma(x) \) is some decreasing function of \(x (0 \leq x \leq 1) \). For a randomly chosen individual, the expected surprise is \(\Sigma_i \sigma_i((Zp)_i) \). This is an index of the diversity of the whole community.

Patil and Taillie (1982) defined a surprise function \(\sigma_q \) for each \(q \geq 0 \):

\[
\sigma_q(x) = \begin{cases}
\frac{1}{q-1} (1 - x^{q-1}) & \text{if } q \neq 1 \\
-\ln(x) & \text{if } q = 1.
\end{cases}
\]

(The second expression is the limit of the first as \(q \to 1 \).) This gives, for each \(q \geq 0 \), a diversity index \(qH^Z_i \), the expected surprise according to \(\sigma_q \):

\[
qH^Z_i(p) = \frac{1}{q-1} \left(1 - \sum p_i((Zp)_i)_{q-1} \right) \quad \text{if } q \neq 1
\]

\[
= -\sum p_i \ln((Zp)_i) \quad \text{if } q = 1.
\]

As usual, the sums are over all \(i = 1, \ldots, S \) such that \(p_i \neq 0 \).

These indices \(qH^Z_i \) are the entropies of Ricotta and Szeidl (2006), who explained them in terms of interspecies conflict; the interpretation as expected surprise is new. Ricotta and Szeidl used the dissimilarity matrix \(\Delta \), with entries \(\Delta_{ij} = 1 - Z_{ij} \), rather than the similarity matrix \(Z \); Proposition A4 of the Appendix proves the equivalence of their formula and ours. (We adopt the policy that the word dissimilarity and the symbol \(\Delta \) refer to a measure of difference on a scale of 0 to 1, whereas distance and \(d_{ij} \) refer to a measure of difference on a scale of 0 to \(\infty \). So although Ricotta and Szeidl called their coefficients “distances” and denoted them by \(d_{ij} \), we call them dissimilarities \(\Delta_{ij} \) because they are measured on a scale of 0 to 1.)

The diversities \(qD^Z \) and entropies \(qH^Z \) are related by the following transformation:

\[
qH^Z(p) = \begin{cases}
\frac{1}{q-1} \left(1 - qD^Z(p)^{1-q} \right) & \text{if } q \neq 1 \\
\ln \left(qD^Z(p) \right) & \text{if } q = 1.
\end{cases}
\]

The indices \(qH^Z \) and \(qD^Z \) carry the same information, and they always make the same judgment on which of two communities is the more diverse. (This is because the transformation is invertible and increasing.) However, only \(qD^Z \) has the cardinal virtue of being an effective number.

The entropy of order 2 is

\[
2H^Z(p) = 1 - \sum_{i,j=1}^S p_i Z_{ij} p_j.
\]

This is the quadratic entropy of Rao (1982a, b), notably used to measure nucleotide diversity (Nei and Tajima 1981). Usually it is expressed in terms of the dissimilarity matrix \(\Delta \); then

\[
2H^Z(p) = \sum_{i,j=1}^S p_i \Delta_{ij} p_j
\]

which is the expected dissimilarity between a random pair of individuals. The effective number form \(qD^Z(p) \) was also derived by Ricotta and Szeidl (2009).

Quadratic entropy in the naive model is the Gini-Simpson index, \(qH(p) = 1 - \Sigma p_i^2 \). Many authors have used quadratic entropy with matrices in which some of the dissimilarities \(\Delta_{ij} \) are greater than 1, or equivalently \(Z_{ij} < 0 \) (e.g., Izsák and Papp 1995). This still gives a meaningful index of diversity; but since \(Z_{ij} < 0 \) indicates “more-than-total dissimilarity,” it destroys the possibility of a meaningful relationship between quadratic entropy and the Gini-Simpson index.

In the naive model \(Z = 1 \), the Ricotta-Szeidl entropies \(qH^Z \) become a well-known family of entropies \(qH = qH^Z \). These first appeared, in a slightly different form, in information theory (Havrda and Charvát 1967, Aczél and Daróczy 1975). In ecology, they were introduced by Patil and Taillie (1982), and in physics, finally, by Tsallis (1988). See Table 1.

The apparent profusion of diversity indices is, then, partly an illusion. Many familiar indices are special cases of our measures, or simple transformations thereof. Chao et al. (2010) proposed a family of diversity measures taking into account phylogenetic similarities, derived from a phylogenetic tree. Their measures, called the mean phylogenetic diversity of order \(q \), have excellent properties and are closely related to ours. (See Proposition A7 of the Appendix. There is a subtlety concerning non-ultrametric trees, detailed there.) Chao et al. showed that, after applying a simple transformation, the phylogenetic diversity measure of Faith (1992) and the phylogenetic entropy of Allen et al. (2009) are special cases of mean phylogenetic diversity. Hence they, too, are closely related to ours. As we show in the next section, new insights into mean phylogenetic diversity are gained by connecting it with our measures.

Further diversity indices can be obtained by combining \(qD^Z \) for several values of \(q \). For example, Hurlbert (1971) and Smith and Grassle (1977) studied the expected number of species occurring in a random
sample of m individuals. This turns out to be a combination of the diversities 2D, 3D, \ldots, mD (Appendix: Proposition A8). By incorporating as many indices as possible into the family $(^qD^q)$, we move toward a systematic understanding of diversity measures.

Properties

Here we state the principal properties of our diversity measures. These properties encode basic scientific intuition, and any diversity measure taking species similarity into account should satisfy them all. For each value of q ($0 \leq q \leq \infty$), the diversity measure $^qD^q$ passes this test.

Some of these properties might seem so obvious as not to merit a mention. But the literature on diversity measurement is strewn with indices failing to satisfy properties that might seem obvious. Some indices have been used for decades, and have even become the textbook standard, before it is pointed out that the supposedly obvious properties are, in fact, false; see Jost (2008) for an example.

Comparable lists of properties can be found in Rényi (1961), Routledge (1979), Chakravarty and Eichhorn (1991), Suyari (2002) and Jost (2009). However, none of the indices discussed there take account of the varying differences between species.

The properties are arranged in three groups and are proved in the Appendix (Propositions A9–A19).

Partitioning properties

1) **Effective number.** The diversity of a community of S equally abundant, totally dissimilar species is S.

2) **Modularity.** Suppose that the community is partitioned into m subcommunities, with no species shared between subcommunities, and with species in different subcommunities being totally dissimilar. Then the diversity of the community is entirely determined by the sizes and diversities of the subcommunities.

3) **Replication.** If, moreover, these m subcommunities are of equal size and equal diversity, d, then the diversity of the whole community is md.

Modularity enables us to calculate the diversity of a partitioned community from the diversities and sizes of the subcommunities alone, without having to know the abundance and similarity data within the subcommunities. The formula is as follows. Write w_1, \ldots, w_m for the relative sizes of the subcommunities, so that $\Sigma w_i = 1$. Write d_i for the diversity of order q of the ith subcommunity. Then the diversity of order q of the whole community is

$$
\begin{cases}
\left(\sum w_i d_i^{1-q}\right)^{1/q} & \text{if } q \neq 1, \infty \\
^qD(w) d_1^q d_2^q \cdots d_m^q & \text{if } q = 1 \\
\min(d_i/w_i) & \text{if } q = \infty
\end{cases}
$$

where the sum and the minimum are over all i such that $w_i \neq 0$. This is proved in the Appendix (Proposition A10).

For a simple example of replication, suppose that m islands are each populated by d species, with all the species totally dissimilar and equally abundant. Then the whole community consists of md totally dissimilar equally abundant species. Diversity is an effective number, so each island has diversity d and the whole community has diversity md, as claimed. When $m = 2$, replication is called “doubling.” Its importance is explained in Hill (1973) and Jost (2006). As shown by Jost (2009), replication is essential for reasoning logically about conservation.

The replication and modularity principles for our measures give some new results on existing measures. For example, Chao et al. (2010) proved that their mean phylogenetic diversity satisfies replication, but only under the assumption that the subcommunities all have the same mean evolutionary change. Our general results show that their measures satisfy replication even without this assumption (Appendix: Corollary A12). Moreover, our results provide modularity formulas for the mean phylogenetic diversity of a community partitioned into completely distinct subcommunities, even when the subcommunities have different sizes and different diversities.

Elementary properties

1) **Symmetry.** Diversity is unchanged by the order in which the species happen to be listed.

2) **Absent species.** Diversity is unchanged by adding a new species of abundance 0.

3) **Identical species.** If two species are identical, then merging them into one leaves the diversity unchanged.

The identical species property is formulated mathematically in the Appendix (Proposition A16). It means that “a community of 100 species that are identical in every way is no different from a community of only one species” (Ives 2007:102).

Uncontroversial as this may be, it has the important consequence that our measures are not oversensitive to decisions about taxonomy. Consider, for example, a system of three species with relative abundances $p = (0.1, 0.3, 0.6)$, and with the species regarded as totally dissimilar. Suppose that on the basis of new genetic evidence, the last species is reclassified into two separate species of equal abundance, so that the relative abundances become 0.1, 0.3, 0.3, 0.3.

Under the wholly unrealistic assumption that the two new species are totally dissimilar, the diversity profile jumps dramatically (Fig. 1). For example, the diversity of order ∞ jumps by 100%, from 1.67 to 3.33. But if, based on the genetic evidence, the two new species are given a high similarity, the diversity profile changes only slightly. Fig. 1 shows the profile with a similarity of $Z_{54} = Z_{43} = 0.9$ between the two new species (and $Z_{ij} = 0$ for $i \neq j$ otherwise).
This sensible behavior is guaranteed by the identical species property. For if the two new species were deemed to be identical then, by that property, the profile would be unchanged. Since our measures are continuous, if the new species are deemed to be nearly identical then the profile is nearly unchanged.

Effect of species similarity on diversity

1) Monotonicity. When the similarities between species are increased, diversity decreases.

2) Naive model. When similarities between species are ignored, diversity is greater than when they are taken into account.

3) Range. The diversity of a community of \(S \) species is between 1 and \(S \).

Monotonicity is formulated mathematically in Proposition A17 of the Appendix. It means that a community is more diverse when its species are more dissimilar. The naive model property is an extreme case: if a measure knows nothing of the commonalities between species, it will evaluate the community as more diverse than it really is. The naive model typically overestimates diversity.

This completes the list of fundamental properties satisfied by the diversity measures \(^q D^Z \). It is a logical consequence that they are also satisfied by the mean phylogenetic diversity of Chao et al. (2010) when the phylogenetic tree is ultrametric. This is proved in the Appendix (Proposition A7). For non-ultrametric trees, mean phylogenetic diversity can be greater than the number of species, contravening the naive model and range properties; see the supplement to Chao et al. (2010) and Example A20 in the Appendix.

The Ricotta-Szeidl entropies \(^q H^Z \) satisfy some of the properties, but not effective number, replication, or range. This is a major advantage of the diversities \(^q D^Z \) over the entropies \(^q H^Z \).

Diversity Profiles

We now have not just a single measure of a community’s diversity, but a family of measures: \(^q D^Z (p) \), for each value of the sensitivity parameter \(q \). The diversity profile of a community is the graph of \(^q D^Z (p) \) against \(q \).

Diversity profiles convey a great deal of meaningful information. Although various other types of diversity profile have been discussed for decades (Hill 1973, Patil and Taillie 1979, 1982, Dennis and Patil 1986, Tóthmérész 1995, Patil 2002, Mendes et al. 2008), the idea has not achieved its full potential. When coupled with a model that takes species similarity properly into account, they are a powerful graphical tool for comparing ecological communities. The examples that follow show that one should draw the whole profile, rather than just calculating one or two indices. A diversity profile tells us more about ecological reality.

The left-hand end of a diversity profile gives information about species richness and rare species: when \(q \) is small, \(^q D^Z (p) \) is affected almost as much by rare species as common ones. The right-hand tail gives information about dominance and common species: when \(q \) is large, \(^q D^Z (p) \) is barely affected by rare species. For discussion in the naive case, see Whittaker (1972) and Hill (1973).

The sensitivity parameter \(q \) is, therefore, the insensitivity to rare species. As it grows, the perceived diversity \(^q D^Z (p) \) drops. More precisely, the diversity profile is always a decreasing continuous curve (Appendix: Proposition A21).

In the first few examples, for the sake of exposition, we use the naive similarity matrix \(Z = I \).

Example 1

Riegl et al. (2009) monitored coral cover on the Roatán fringing reef (western Caribbean) from 1996 to 2005. The diversity profiles for the first and last years, using the naive similarity matrix, are shown in Fig. 2(a). The profiles cross, so we cannot unambiguously say which of the two communities is the more diverse. An ecologist most concerned with species richness would say that diversity had dropped; as the profiles show, three fewer species were observed in 2005 than 1996. But the profiles cross very far to the left (\(q \sim 0.3 \)), so from almost any other point of view, the diversity increased. Indeed, for \(q \geq 1 \), the diversity of order \(q \) of the 2005 community is 2–3 species greater than in 1996. In short, the profiles indicate that the coral community became less rich in species but more even.

Individually, the two curves display properties typical of diversity profiles. Diversity tends to drop sharply between \(q = 0 \) and \(q = 1 \), leveling off soon after \(q = 2 \). (For this reason, the values of \(^0 D \), \(^1 D \), \(^2 D \), and \(^Z D \) usually give a good indication of the shape of the whole profile.)
The abrupt drop of the 1996 curve in the region $0 \leq q \leq 1$ indicates that there were many rare species.

At the heart of Hurlbert’s (1971) critique of the “nonconcept” of diversity lay the observation that different diversity measures can make different judgments on which of two communities is the more diverse. All this means is that diversity profiles can cross. In fact this happens frequently. For example, Ellingsen (2001: Table 1) gives data on populations of soft-sediment macrobenthos at 16 sites on the Norwegian continental shelf. There are $1 + 2 + \ldots + 15 = 120$ pairs of sites, and the data show that for at least 53 of the 120 pairs, the profiles cross.

When the profile of one community is wholly above that of another, it can simply be called “more diverse.” But when diversity profiles cross, the locations of the crossings give meaningful information about how the communities differ. Contrast Example 1 with the following.

Example 2

DeVries et al. (1997) surveyed butterfly populations in the canopy and understory at a site in the Ecuadorian rain forest. The diversity profiles for the subfamily Nymphalinae, using the naive similarity matrix, are shown in Fig. 2(b). In contrast to Example 1, the profiles cross at a high value of q (approximately 3.1). So if one is principally concerned with dominance, the population in the canopy appears to be fractionally more diverse, but from any other point of view, there is more diversity in the understory.

In practice, diversity profiles do not usually cross more than once, although in principle there is no limit to the number of crossings. Fig. 2(c) shows diversity profiles for the diet of flounders (*Platichthys flesus*) at three different sites in an Irish estuary (Wirjoatmodjo 1980). One pair of profiles crosses twice, although with very small magnitude. The answer to the question “where is flounder diet most diverse?” depends heavily on the sensitivity parameter: as q varies, the ranking of the three sites changes several times.

Patil and Taillie (1982) and Patil (2002) plotted diversity profiles using the entropies qH instead of the Hill numbers qD. This conveys the same information, but, as Patil noted, often makes it hard to see where profiles cross. This is another advantage of effective numbers.

Diversity profiles give much more information than one or two diversity indices, but their biological relevance remains limited if they are used with the naive model. The following examples illustrate the effect of incorporating species similarity.
Example 3

Again we use the butterfly data of DeVries et al. (1997), this time taking the species of subfamily Charaxinae (Fig. 3a, b).

According to the naive model, the diversity profile of the canopy lies above that of the understory until about $q = 5$, from which point they are almost identical. So for any sensitivity value, the canopy is more diverse than, or as diverse as, the understory.

When no other species similarity data are available, one can fall back on taxonomy. Define a similarity matrix Z by

$$
Z_{ij} = \begin{cases}
0 & \text{if the } i\text{th and } j\text{th species are of different genera} \\
0.5 & \text{if the } i\text{th and } j\text{th species are different but congeneric} \\
1 & \text{if } i = j.
\end{cases}
$$

The diversity profiles now tell a different story. For q greater than about 1, it is the understory that is more diverse. It is easy to see why. Most of the population in the canopy is from the *Memphis* genus, whereas the understory population is spread more evenly between genera. So when we build into the model the principle that species of the same genus tend to be somewhat similar, the canopy looks much less diverse than it did before.

All the diversity values drop when similarity is taken into account. This illustrates the “naive model” property of the previous section.

Taxonomic models of this kind are certainly crude, and the similarity coefficient 0.5 was chosen arbitrarily. (Existing taxonomic models are just as arbitrary, e.g., Warwick and Clarke [1995] and Shimatani [2001].) Some ecologists might prefer to stick to the naive model,
dueling the question of how to choose the similarity coefficients. But to do so is to pretend that taxonomy says nothing about the commonalities and contrasts between species. It throws away relevant information.

Example 4

Turnbaugh et al. (2009) compared the microbial communities in the guts of lean and overweight humans. Here we compare the diversity profiles for two particular test subjects from that study, a lean child and an overweight mother. Since only a fraction of microbial species have been isolated and given taxonomic classifications, it is not possible to partition the microbes into species. Instead we work directly with DNA sequencing data, kindly supplied to us by Christopher Quince, treated with the noise removal algorithms described in the supplement of Turnbaugh et al. (2010).

Using the naive similarity matrix, the diversity profiles cross at $q \approx 1$ (Fig. 3c). This suggests that the gut microbiome of the lean child has greater variety, but is less evenly distributed, than that of the overweight mother. However, using a genetic similarity matrix, the diversity in the lean child is seen to be greater for all values of q. This supports the results of Turnbaugh et al. (2009).

Example R code illustrating the calculation of diversity profiles is available in the Supplement.

Discussion

We have described a general and biologically meaningful system for quantifying diversity. It is versatile enough to accommodate diversity of different types (e.g., functional or genetic). It produces quantities that satisfy the ecologically intuitive properties of the *Properties* section. The system acknowledges the spectrum of viewpoints on the relative importance of rare and common species. In this way, it meets a wide variety of ecological needs.

The field of diversity analysis has been criticized repeatedly over the years. We believe that our measures answer many of the criticisms. Let us consider some of them.

The varying differences between species are ignored.—A basic fault of most diversity indices is that they behave as if different species had nothing in common. This has long been recognized: “One would obviously regard [the diversity of a community] as greater if the species belonged to several genera than if they were all congeneric, and as greater still if these genera belonged to several families than if they were confamilial,” writes Pielou (1975:17). It is a glaringly obvious fault. Yet to this day, the most popular indices are wholly insensitive to the similarities between species.

There have been attempts to solve this problem. Some diversity indices depend only on species similarity, ignoring abundance (Faith 1992, Solow and Polasky 1994, Izsak and Papp 2000, Petchey and Gaston 2002). Rao’s quadratic entropy takes both abundance and similarity into account, but represents a particular viewpoint on the relative importance of rare and common species. Ricotta and Szeidl’s (2006) family of entropies qH^q allows for that viewpoint to be varied, by varying the parameter q, but their entropies suffer from not being effective numbers. The measures of Chao et al. (2010) are effective numbers, and do allow a varying q, but are particular to situations in which species similarity is derived from a tree (e.g., phylogenetic or taxonomic). We believe that ours is the first general system for quantifying diversity that takes species similarity into account, allows for any weighting of rare against common species, and produces an effective number.

The numbers produced by diversity indices are meaningless.—This is often a fair criticism. Diversity indices that are not effective numbers can be very hard to interpret, and to speak of percentage changes in their value, or ratios between values, is perilous (Jost 2007). But our diversity measures qD^q are effective numbers, so their values have an intuitive interpretation and one can speak safely of percentage changes and ratios.

Diversity indices carry little information.—A diversity index, being a single number, cannot carry much information; it must not be treated as a “talisman” (Pielou 1975:19). This is why we advocate the use of diversity profiles. Diversity profiles allow for much more subtle intercommunity comparison than a single number ever could. An ecologist who has enough information to calculate quadratic entropy (namely, a relative abundance vector p and a similarity matrix Z) has enough information to graph the diversity profile, and should do so.

Earlier we called the diversity profile of a community its “fingerprint.” There is a mathematical result justifying this, in the naive case at least: no two relative abundance vectors p have the same diversity profile, unless they consist of the same numbers p_1, \ldots, p_n listed in different orders (Appendix: Proposition A22). This says that the diversity profile is simply the relative abundance data repackaged, and repackaged in a way that lets ecologists extract meaningful information at a glance.

Diversity indices depend too much on the notion of species.—The division of living organisms into species is notoriously problematic. Conventional indices such as Shannon’s, Simpson’s, and species richness depend wholly on this division, and behave badly in the face of taxonomic reclassification.

We have demonstrated two ways in which our measures answer this criticism. First, as shown in the *Properties* section, our measures respond proportionately to changes in taxonomy. Second, we are able to measure diversity in situations where there is no clear division of organisms into species or other discrete units. We demonstrated this for microbes, and the method can be applied in other similar situations (e.g., soil types; McBratney and Minasny 2007).
We also anticipate, and answer, a possible objection to our own diversity measures. In order to compute \(q^D \), one has to assign a similarity coefficient \(Z_{ij} \) to each pair of species. There is no canonical way to do this, so it might be objected that this makes the quantification of diversity too subjective.

Our answer is that diversity is subjective: it depends on which characteristics of organisms are taken to be important. This flexibility is, in fact, an advantage. If community A is genetically more diverse, but functionally less diverse, than community B, that is not a contradiction but a point of interest. Different ways of quantifying similarity lead to different measures of diversity. The word “diversity” means little until one has specified the biological characteristics with which one is concerned.

Several methods for determining a similarity matrix \(Z \) have already been developed, principally in connection with Rao’s quadratic entropy. Some are genetic (Hughes et al. 2008); others are functional (Botta-Dukát 2005; Petchey and Gaston 2006), taxonomic (Vane-Wright et al. 1991, Warwick and Clarke 1995, Shimatani 2001), morphological (Pavoine et al. 2005), or phylogenetic (Faith 1992, Hardy and Senterre 2007). Typically one begins by associating with each species some data embodying the characteristics deemed to be important: for example, a list of functional traits, a DNA sequence, or a location on a phylogenetic tree. One then computes the similarity coefficients \(Z_{ij} \) in terms of some notion of difference between the associated data. There are as many possibilities as there are quantifiable characteristics of living organisms.

Similarity and diversity vary according to perspective. Suppose, for example, that we are interested in the antigenic diversity of a collection of strains of the parasite Plasmodium. If similarity is measured using a nucleotide comparison of the entire genome, then any two strains will look near-identical, giving the collection a very low diversity. But since we wish to measure antigenic diversity, we are really only concerned with the part of the genome that determines antigenicity. A nucleotide comparison localized to that region will reveal the sought-after differences, producing lower similarities and higher diversity.

The same question of perspective arises in other contexts. Chao et al. (2010) defined a measure of mean phylogenetic diversity since \(T \) years ago, which decreases as \(T \) increases. From the perspective of the history of all life on earth, all species of, say, eucalyptus look nearly identical, having diverged a relatively short time ago. Correspondingly, for large \(T \) the mean phylogenetic diversity of any eucalyptus community is very low. But if we wish to compare two eucalyptus communities, it would be sensible to take a smaller value of \(T \), or, for a more complete picture, plot diversity against \(T \) (as in Chao et al. 2010: Fig. 3).

Similarly, interspecies distances \(0 < d_{ij} < \infty \) can be transformed into similarities \(0 < Z_{ij} < 1 \) by putting \(Z_{ij} = \exp(-u d_{ij}) \), where the parameter \(u \) represents a choice of perspective. The complete picture emerges when we plot diversity against both \(q \) and \(u \). (This transformation and the variation of the parameter \(u \) have deep mathematical roots; see Leinster [2010].) Alternatively, we can choose a threshold \(d_{max} \) and define \(Z_{ij} = 1 - d_{ij}/d_{max} \) or \(Z_{ij} = 0 \) if \(d_{ij} > d_{max} \); this amounts to a piecewise linear approximation of the exponential transformation \(\exp(-u d_{ij}) \). Again, the choice of parameter \(d_{max} \) represents a choice of perspective on species similarity.

As a last resort, on the rare occasion when there is genuinely no information about species similarity, not even a taxonomic classification, one can use the naive model, \(Z = I \). However, the user should be aware that this represents an extreme assumption: distinct species have nothing whatsoever in common.

Every diversity index makes an assumption on the similarity of species. When no assumption is made explicit, there is invariably an implicit assumption of the naive model. For example, Shannon’s and Simpson’s indices use the naive model. To argue for the use of similarity-sensitive measures is to ignore the plain fact that some species are more similar than others. Deliberately ignoring biological reality is unlikely to lead to a helpful assessment of diversity.

At least two important questions remain. First, we have said very little about partitioning and \(\alpha \)-, \(\beta \)-, and \(\gamma \)-diversity. Jost (2007) (foreshadowed by Routledge 1979) showed that in the naive context, there is no room for debate: if \(\alpha \)- and \(\beta \)-diversity are to be independent, there is only one possible definition. (And in that context, \(q = 1 \) plays a special role.) It remains to extend this analysis to the similarity-sensitive context.

Second, we have deliberately avoided the evident statistical questions, preferring to separate the issue of principle (what are the meaningful quantities to measure?) from the issue of practice (how do we measure them?).

Our system of diversity measurement replaces a jumble of indices by a single formula. It behaves intuitively because it uses effective numbers. It allows for a nuanced comparison of communities because it produces diversity profiles, not just a single statistic. It provides a more faithful reflection of reality, because it takes into account the similarities between species. And it is highly versatile, since it allows similarity, hence diversity, to be measured in different ways according to ecologists’ differing needs.

Acknowledgments

We are very grateful to Anne Chao, Dan Haydon, Lou Jost, Louise Matthews, and Richard Reeve for their helpful comments on earlier versions of this article. We also thank John Baez, David Corfield, André Joyal, Chris Quince, Urs Schreiber, Jiří Velebil, and Simon Willerton. T. Leinster is supported by an EPSRC Advanced Research Fellowship, and thanks the School of Mathematics and Statistics at the University of Sheffield for its hospitality during part of this work.
Literature Cited

SUPPLEMENTAL MATERIAL

Appendix

Proofs of all the mathematical results (Ecological Archives E093-045-A1).

Supplement

Example R code illustrating the calculation of diversity profiles (Ecological Archives E093-045-S1).