The role of long-range transport and domestic emissions in determining atmospheric secondary inorganic particle concentrations across the UK

Citation for published version:

Digital Object Identifier (DOI):
10.5194/acp-14-8435-2014

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Atmospheric Chemistry and Physics

Publisher Rights Statement:
© Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The role of long-range transport and domestic emissions in determining atmospheric secondary inorganic particle concentrations across the UK

M. Vieno1,2, M. R. Heal3, S. Hallsworth1, D. Famulari1, R. M. Doherty2, A. J. Dore1, Y. S. Tang1, C. F. Braban1, D. Leaver1, M. A. Sutton1, and S. Reis1,4

1Natural Environment Research Council, Centre for Ecology & Hydrology, Edinburgh Research Station, Bush Estate, Penicuik, UK
2School of GeoSciences, The University of Edinburgh, Edinburgh, UK
3School of Chemistry, The University of Edinburgh, Edinburgh, UK
4University of Exeter Medical School, Knowledge Spa, Truro, UK

Correspondence to: M. Vieno (vieno.massimo@gmail.com)

Received: 21 October 2013 – Published in Atmos. Chem. Phys. Discuss.: 23 December 2013
Revised: 8 July 2014 – Accepted: 11 July 2014 – Published: 21 August 2014

Abstract. Surface concentrations of secondary inorganic particle components over the UK have been analysed for 2001–2010 using the EMEP4UK regional atmospheric chemistry transport model and evaluated against measurements. Gas/particle partitioning in the EMEP4UK model simulations used a bulk approach, which may lead to uncertainties in simulated secondary inorganic aerosol. However, model simulations were able to accurately represent both the long-term decadal surface concentrations of particle sulfate and nitrate and an episode in early 2003 of substantially elevated nitrate measured across the UK by the AGANet network. The latter was identified as consisting of three separate episodes, each of less than 1 month duration, in February, March and April. The primary cause of the elevated nitrate levels across the UK was meteorological: a persistent high-pressure system, whose varying location impacted the relative importance of transboundary versus domestic emissions. Whilst long-range transport dominated the elevated nitrate in February, in contrast it was domestic emissions that mainly contributed to the March episode, and for the April episode both domestic emissions and long-range transport contributed. A prolonged episode such as the one in early 2003 can have substantial impact on annual average concentrations. The episode led to annual concentration differences at the regional scale of similar magnitude to those driven by long-term changes in precursor emissions over the full decade investigated here. The results demonstrate that a substantial part of the UK, particularly the south and southeast, may be close to or exceeding annual mean limit values because of import of inorganic aerosol components from continental Europe under specific conditions. The results reinforce the importance of employing multiple year simulations in the assessment of emissions reduction scenarios on particulate matter concentrations and the need for international agreements to address the transboundary component of air pollution.

1 Introduction

Atmospheric particulate matter (PM) concentrations are governed by the transport, transformation and deposition of many chemical species. PM has a range of impacts including on climate through radiative forcing and on human health. Considering the health impacts alone, exposure to PM$_{2.5}$ (the size fraction of particles with an aerodynamic diameter \leq 2.5μm) has been estimated to contribute to an average loss of life expectancy of around 6–7 months for residents of the UK, with an associated economic cost of some £16 billion per annum (IGCB, 2007). EU legislation sets standards for ambient concentrations of PM, and now includes an obligation on individual member states to reduce...
population-weighted exposure to PM$_{2.5}$ by a specified percentage between 2010 and 2020 (Heal et al., 2012).

The complexity of ambient PM composition and formation, combined with the influence of meteorology on chemistry, dispersion and deposition, considerably complicates pinpointing the contributions of different chemical pollutant emission sources to ambient PM at specific locations (AQEG, 2012). Consequently, it is a complicated process to formulate cost-effective policy action to reduce harm caused by PM. The inorganic chemical components of PM – ammonium (NH$_4^+$), sulfate (SO$_4^{2-}$) and nitrate (NO$_3^-$) – constitute a major fraction of PM$_{2.5}$ (Pataud et al., 2010). The anthropogenic emissions of the gaseous precursors of inorganic PM – ammonia (NH$_3$), sulfur dioxide (SO$_2$) and nitrogen oxides (NO$_x$) – are also subject to various legislation that seeks to limit and reduce either a country’s total emissions or the emissions from individual sources or source sectors (Heal et al., 2012; Reis et al., 2012). For SO$_2$ and NO$_x$ in particular, emissions reductions have been very effective over the past few decades and this is reflected in reductions in ambient concentrations of the gases (RoTAP, 2012). Despite this, PM$_{10}$ concentrations across much of western Europe have not fallen significantly since the year 2000 (Harrison et al., 2008).

The longer lifetime of secondary PM components compared with their gaseous precursors means that transboundary transport from Europe and meteorology are important drivers. Previous studies suggest that transatlantic transport of these secondary inorganic aerosol (SIA) species has a small effect on EU surface SIA concentrations and deposition (Sanderson et al., 2008; Simpson et al., 2012), hence “transboundary” hereafter refers to Europe. This is of particular relevance for the design of air quality policies seeking to reduce PM concentrations, especially as some limit values may be sensitive to a small number of high-concentration episodes rather than long-term average concentrations. This is particularly important for the nitrate component which has been shown to be the dominant component on days when PM$_{10}$ exceeds 50 μg m$^{-3}$ (Yin and Harrison, 2008).

There remains a gap in understanding the extent to which domestic emissions and transboundary import of secondary inorganic PM contribute inter-annually and to episodes of elevated concentrations in the UK (RoTAP). This was the motivation for this work. Ambient concentrations of the inorganic components have been measured since the 1990s on a monthly average basis, as part of the UK Acid Gas and Aerosol Network (AGANet http://uk-air.defra.gov.uk/networks/network-info?view=aganet, see Tang et al. (2009) for description of the approach), providing a data set against which to compare model output.

In Sect. 2 the modelling approach using the EMEP4UK Eulerian atmospheric chemistry transport model (ACTM) (Vieno et al., 2009, 2010) simulations and AGANet measurements are fully described. In Sect. 3, first the model performance is evaluated against these AGANet measurements and then the results of sensitivity simulations to assess the contributions of trans-boundary and domestic emissions to secondary inorganic particle concentrations in the UK and their inter-annual variability are assessed. Section 4 discusses this novel decadal inter-comparison and attribution results and conclusions are presented in Sect. 5.

2 Methods

2.1 Model description and setup

The EMEP4UK model used for this work is a nested regional ACTM based on version v3.7 of the main EMEP MSC-W model (Simpson et al., 2012). A detailed description of the EMEP4UK model framework and setup are given in Vieno et al. (2010) and only brief relevant details are presented here.

The EMEP4UK model is driven by the Weather Research Forecast (WRF) model version 3.1.1 (http://www.wrf-model.org). The model horizontal resolution scales down from 50 km x 50 km in the main EMEP “Greater European” domain to 5 km x 5 km for the domain covering the British Isles (Fig. 1). The boundary conditions for the inner domain are derived from the results of the European domain in a one-way nested setup. The EmChem09 chemical scheme was chosen for the present study, as it has been extensively validated at the European scale (Simpson et al., 2012, www.emep.int). The EMEP model is based on Berge and Jakobsen (1998), but extended with photo-oxidant chemistry (Andersson-Skold and Simpson, 1999; Simpson et al.,...
1995). The EmChem09 mechanism used for this work has 72 species and 137 reactions. Full details of the chemical scheme are given by Simpson et al. (2012). Gas/aerosol partitioning used the EQSAM formulation (Metzger et al., 2002a, b). The calculated nitrate is then split into coarse and fine mode using a parameterised approach dependent on relative humidity, as described by Simpson et al. (2012). In this version of the EMEP model, nitrate is the only secondary inorganic component present in PM$_{\text{coarse}}$ (the difference between PM$_{10}$ and PM$_{2.5}$). This split between PM$_{2.5}$ and PM$_{2.5-10}$ for nitrate is rather uncertain as discussed in Aas et al. (2012); a more explicit aerosol scheme is under development. The EQSAM scheme used here is equivalent to the EQSAM2 scheme used in the global model TM5 (Karl et al., 2009; Huijnen et al., 2010).

Anthropogenic emissions of NO$_x$, NH$_3$, SO$_2$, primary PM$_{2.5}$, primary PM$_{\text{coarse}}$, CO and non-methane volatile organic compounds are included. PM$_{10}$ is the size fraction of particles with an aerodynamic diameter $\leq 10\ \mu$m. For the UK, emissions values are taken from the National Atmospheric Emission Inventory (NAEI, www.atmos-chem-phys.net/14/8435/2014/ Atmos. Chem. Phys., 14, 8435–8447, 2014). Emis-

...
Table 1. Mean concentrations, and correlation and regression statistics, for monthly averaged modelled and measured \(\text{NO}_3^- \) and \(\text{SO}_4^{2-} \) in particulate matter, and HNO₃ and SO₂ gas for the period 2001–2010 at four sites of the AGANet network: Strathvaich Dam (northwest Scotland), Bush 1 (central Scotland), Rothamsted (southeast England), and Yarner Wood (southwest England). The comparison is based on a linear fit where measurement = slope × model + intercept.

<table>
<thead>
<tr>
<th>Particle</th>
<th>Strathvaich Dam</th>
<th>Bush 1</th>
<th>Rothamsted</th>
<th>Yarner Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NO}_3^-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement mean</td>
<td>0.49 (\mu g \ m^{-3})</td>
<td>1.37 (\mu g \ m^{-3})</td>
<td>3.35 (\mu g \ m^{-3})</td>
<td>1.98 (\mu g \ m^{-3})</td>
</tr>
<tr>
<td>Model mean</td>
<td>0.77 (\mu g \ m^{-3})</td>
<td>1.42 (\mu g \ m^{-3})</td>
<td>2.73 (\mu g \ m^{-3})</td>
<td>2.23 (\mu g \ m^{-3})</td>
</tr>
<tr>
<td>(r)</td>
<td>0.49</td>
<td>0.91</td>
<td>0.81</td>
<td>0.86</td>
</tr>
<tr>
<td>(\text{slope})</td>
<td>0.59</td>
<td>0.96</td>
<td>0.68</td>
<td>0.95</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.48 (\mu g \ m^{-3})</td>
<td>0.10 (\mu g \ m^{-3})</td>
<td>0.44 (\mu g \ m^{-3})</td>
<td>0.34 (\mu g \ m^{-3})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\text{SO}_4^{2-})</th>
<th>Strathvaich Dam</th>
<th>Bush 1</th>
<th>Rothamsted</th>
<th>Yarner Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement mean</td>
<td>0.57 (\mu g \ m^{-3})</td>
<td>0.94 (\mu g \ m^{-3})</td>
<td>1.75 (\mu g \ m^{-3})</td>
<td>1.20 (\mu g \ m^{-3})</td>
</tr>
<tr>
<td>Model mean</td>
<td>0.61 (\mu g \ m^{-3})</td>
<td>0.95 (\mu g \ m^{-3})</td>
<td>1.48 (\mu g \ m^{-3})</td>
<td>1.28 (\mu g \ m^{-3})</td>
</tr>
<tr>
<td>(r)</td>
<td>0.72</td>
<td>0.79</td>
<td>0.65</td>
<td>0.69</td>
</tr>
<tr>
<td>(\text{slope})</td>
<td>0.86</td>
<td>0.76</td>
<td>0.56</td>
<td>0.65</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.12 (\mu g \ m^{-3})</td>
<td>0.24 (\mu g \ m^{-3})</td>
<td>0.50 (\mu g \ m^{-3})</td>
<td>0.36 (\mu g \ m^{-3})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HNO₃</th>
<th>Strathvaich Dam</th>
<th>Bush 1</th>
<th>Rothamsted</th>
<th>Yarner Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement mean</td>
<td>0.23 (\mu g \ m^{-3})</td>
<td>0.57 (\mu g \ m^{-3})</td>
<td>1.89 (\mu g \ m^{-3})</td>
<td>0.73 (\mu g \ m^{-3})</td>
</tr>
<tr>
<td>Model mean</td>
<td>0.16 (\mu g \ m^{-3})</td>
<td>0.36 (\mu g \ m^{-3})</td>
<td>0.96 (\mu g \ m^{-3})</td>
<td>0.56 (\mu g \ m^{-3})</td>
</tr>
<tr>
<td>(r)</td>
<td>0.77</td>
<td>0.45</td>
<td>0.35</td>
<td>0.59</td>
</tr>
<tr>
<td>(\text{slope})</td>
<td>0.59</td>
<td>0.44</td>
<td>0.32</td>
<td>0.65</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.03 (\mu g \ m^{-3})</td>
<td>0.11 (\mu g \ m^{-3})</td>
<td>0.36 (\mu g \ m^{-3})</td>
<td>0.09 (\mu g \ m^{-3})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SO₂</th>
<th>Strathvaich Dam</th>
<th>Bush 1</th>
<th>Rothamsted</th>
<th>Yarner Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement mean</td>
<td>0.18 (\mu g \ m^{-3})</td>
<td>1.28 (\mu g \ m^{-3})</td>
<td>1.92 (\mu g \ m^{-3})</td>
<td>0.75 (\mu g \ m^{-3})</td>
</tr>
<tr>
<td>Model mean</td>
<td>0.43 (\mu g \ m^{-3})</td>
<td>1.43 (\mu g \ m^{-3})</td>
<td>2.05 (\mu g \ m^{-3})</td>
<td>1.16 (\mu g \ m^{-3})</td>
</tr>
<tr>
<td>(r)</td>
<td>0.62</td>
<td>0.60</td>
<td>0.80</td>
<td>0.83</td>
</tr>
<tr>
<td>(\text{slope})</td>
<td>1.55</td>
<td>0.57</td>
<td>0.71</td>
<td>1.09</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.16 (\mu g \ m^{-3})</td>
<td>0.71 (\mu g \ m^{-3})</td>
<td>0.68 (\mu g \ m^{-3})</td>
<td>0.35 (\mu g \ m^{-3})</td>
</tr>
</tbody>
</table>

the other nine panels show the differences in annual mean concentrations for each of years 2002–2010 relative to 2001. The maps for 2001 show highest concentrations of \(\text{NO}_2 \) and \(\text{SO}_2 \) over central and southeast England, related to UK emission sources, and over the English Channel, mostly related to shipping emission sources. The highest concentrations of \(\text{NO}_2 \) and \(\text{SO}_2 \) over the UK are in 2003, with the lowest concentrations during 2008–2010. The extended periods of elevated \(\text{NO}_3^- \) between February and April 2003 were sufficient to enhance the annual average \(\text{NO}_3^- \) concentration across the whole of the UK in 2003 by between 0.2 and 0.3 \(\mu g \ N \ m^{-3} \) compared with preceding and subsequent years (Fig. 5a), with a even larger enhancement in the annual mean for 2003 of 0.2–0.5 \(\mu g \ N \ m^{-3} \) for \(\text{NH}_4^+ \) (Fig. 5c). In contrast, the somewhat less elevated \(\text{SO}_4^{2-} \) concentrations during this period led to a modest increase in annual average \(\text{SO}_4^{2-} \) for 2003 of 0.0–0.1 \(\mu g \ S \ m^{-3} \) (Fig. 5b). The spatial distribution of \(\text{NH}_3 \) shows a very different pattern to the other modelled components, with highest modelled concentrations in Brittany and northwest France and northwest England, reflecting the distribution of modelled \(\text{NH}_3 \) emissions which mainly arise from agricultural sources.

The concentrations of the particle components \(\text{NO}_3^- \), \(\text{SO}_4^{2-} \), and \(\text{NH}_4^+ \) are spatially smoother across the UK than the gaseous precursors (Figs. 4 and 5). The modelled annual surface concentrations of \(\text{NO}_2 \) and \(\text{SO}_2 \) (Fig. 4a and b) show that the concentrations of these gaseous components decline during 2001–2010 by substantially more than the decline in \(\text{NO}_3^- \) and \(\text{SO}_4^{2-} \). Over much of the UK (particularly England), declines in modelled \(\text{NO}_2 \) and \(\text{SO}_2 \) between 2001
Figure 2. Monthly average surface concentrations of particulate matter nitrate, observed (red) and modelled (blue), for 2001–2010 at four sites of the AGANet network: Strathvaich Dam (northwest Scotland), Bush (central Scotland), Rothamsted (southeast England), and Yarner Wood (southwest England).

Figure 3. Monthly average surface concentration of particulate matter sulfate, observed (red) and modelled (blue), for 2001–2010 at four sites of the AGANet network: Strathvaich Dam (northwest Scotland), Bush (central Scotland), Rothamsted (southeast England), and Yarner Wood (southwest England).

and 2010 exceed 1 µg N/S m⁻³ in 2010 compared with the 0.1–0.2 µg N m⁻³ decline in NO₃⁻, and the 0.1–0.3 µg S m⁻³ decline in SO₂⁻₄ (up to 0.4 µg S m⁻³ decline in eastern England). On the other hand, the model shows concentrations of NH₃ hardly changing over the decade – in fact increasing slightly, up to ∼ 0.2 µg N m⁻³ over England, especially for 2009 and 2010 (Fig. 4c) – whereas, with the exception of 2003, the modelled concentration of NH₄⁺ in PM decreases from 2001 to 2010. Of note also is a decrease of SO₂ annual surface concentration over the North Sea from 2007 onwards (Fig. 4b).

Figure 6a and b (upper panels) show the modelled monthly mean surface concentrations of NO₂ and SO₂, respectively, for the first 5 months of 2003, which covers the period of high secondary inorganic particle concentrations shown in (Figs. 2 and 3). To highlight the role of UK sources, the differences between the base simulations and the simulations with zero UK emissions are shown in the lower panels of Fig. 6a and b, with the data expressed as the percentage of the modelled concentrations that are directly attributable to UK domestic emissions (i.e. 100 × (Base Run − Experiment)/Base), again as monthly averages. While the lower maps clearly show the dominating contribution of UK domestic sources to NO₂ and SO₂ concentrations over mainland UK, a smaller
contribution in the vicinity of major shipping channels reflects the fact that the scenario treated international shipping as part of the non-UK emissions.

Figure 7a and b show similar model results to Fig. 6 but for surface concentrations of particle NO$_3^-$ and SO$_4^{2-}$, respectively. For these components, there is a smaller percentage contribution from UK sources than for SO$_2$ and NO$_x$ concentrations.

The highest concentrations of NO$_2$ and SO$_2$ occurred during February and March (Fig. 6), with highest concentrations for NO$_3^-$ and SO$_4^{2-}$ occurring during February, March and April (Fig. 7). Figure 7 shows that, for February, up to 40 % of the monthly average NO$_3^-$ concentrations over the UK are attributable to UK emissions. In March and April, the UK contribution to NO$_3^-$ concentrations rises to up to 80 %.

The spatial pattern of the UK contribution to these concentrations differs between the months, with February showing the smallest contribution of UK sources to SO$_2$, NO$_2$, NO$_3^-$ and SO$_4^{2-}$ concentrations. In contrast, the episodes in March and April 2003 have substantially larger contributions of UK emissions to NO$_3^-$ and SO$_4^{2-}$ concentrations.

A detailed comparison for 2003 between the measured and modelled NO$_3^-$ concentrations at the Bush 1 site (Scotland) is shown in Fig. 8 with the modelled values presented as both monthly and daily means. There is a close agreement between observations (red line) and model (blue line) for these high-concentration episodes, with the monthly values broadly agreeing within 10 %.
The monthly modelled concentrations for the simulation with zero UK emissions are also shown in Fig. 8 (green line). The modelled monthly NO$_2$ concentrations (blue line) were enhanced by 2.6 µg m$^{-3}$ by UK emissions in February, but by 5.0 µg m$^{-3}$ in March and by 2.6 µg m$^{-3}$ in April as compared with the model simulation with no UK emissions (green line). The daily mean model NO$_2$ concentrations highlight substantial temporal variability within this February–April period. The daily average surface concentrations (orange line of Fig. 8) show three separate episodes; the first approximately matches the period 12–28 February (F), the second 10–27 March (M) and the third 1–30 April (A).

The characteristic differences between these three periods are illustrated in Fig. 9. Here the 12:00 wind vector is superimposed to the mean modelled surface concentration of PM NO$_2$ for selected days during the three component episodes. It is seen that 12–15 February (episode F) and 17–20 March (episode M) were associated with stagnant air masses allowing NO$_2$ PM concentrations to build up, while the period 11–14 April (episode A) was associated with a highlight polluted air mass arriving from the east.
Figure 9. Modelled daily mean surface concentration of \(\text{NO}_3^- \) and the 12:00 wind vector for 12–15 February (episode F), 17–20 March (episode M) and 11–14 April (episode A).

The UK February episode was associated with an easterly light wind advecting \(\text{PM NO}_3^- \) produced in the area of the north of France, Holland, north of Germany, and Denmark, where the centre of the high pressure was located (Fig. 9). During the March episode, the centre of the high pressure was over the UK with an associated light wind, clear sky, and cooler conditions leading to the accumulation of \(\text{NO}_3^- \) from UK emissions with little import of \(\text{NO}_3^- \) or its precursors from outside the UK. The April episode was a mixture of conditions described for February and March.

The model sensitivity analyses of the proportions of UK nitrate and sulfate derived from UK emissions of anthropogenic precursors was extended over the whole period 2001–2010, and the results for the locations of the four study sites, Strathvaich Dam, Bush, Rothamsted and Yarnier Wood (highlighted in Fig. 1) are shown in Fig. 10. The 10 years analysed here shows that the monthly averaged UK emissions contributions to \(\text{SO}_4^{2-} \) and \(\text{NO}_3^- \) at these sites range from 10 to 80 %. Yarnier Wood and Strathvaich Dam are closer than the other selected sites to areas of shipping emissions, therefore on average the \(\text{SO}_4^{2-} \) concentration at this site is less influenced by UK emissions compared with the other two sites.

Based on the simulations it is possible to estimate the annual contribution of non-UK emissions to the different components of \(\text{PM}_{10} \) at the four study sites. This is summarised in Fig. 11 for the year 2003, also including the contribution of primary particulate matter (emitted PM). Pollution import for \(\text{PM}_{2.5} \) from non-UK sources ranges from an estimated 41 % for Bush 1, up to 63 % for Yarnier Wood, highlighting the importance of transboundary pollution import on UK \(\text{PM}_{2.5} \) concentrations. The same model results for 2003 can be expressed in terms of the contribution of non-UK emissions to the current European Commission (EC, 2013) limit value for \(\text{PM}_{2.5} \) and to the World Health Organization (WHO, 2005) guideline value for \(\text{PM}_{2.5} \) at each of the four sites (Table 2). For these example sites, up to 18 and 45 %
Table 2. Model simulated contributions of Continental European PM$_{2.5}$ import to the current European Commission limit value (EC, 2013) and to the World Health Organization guideline value (WHO, 2005) at each of the four sites for the EMEP4UK model simulations for the year 2003.

<table>
<thead>
<tr>
<th>Continental European contribution</th>
<th>Strathvaich Dam</th>
<th>Bush I</th>
<th>Rothamsted</th>
<th>Yarnet Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC limit value of 25 µg m$^{-3}$</td>
<td>5 %</td>
<td>8 %</td>
<td>18 %</td>
<td>15 %</td>
</tr>
<tr>
<td>WHO guideline of 10 µg m$^{-3}$</td>
<td>14 %</td>
<td>20 %</td>
<td>45 %</td>
<td>38 %</td>
</tr>
</tbody>
</table>

Figure 11. Mean composition of PM$_{10}$ components as estimated by the EMEP4UK model for four sites across the UK, averaged for the whole of 2003. The model base run (including all national and international emissions) is compared with the results from a simulation excluding UK emissions (*). The difference in magnitudes between the pairs of adjacent bars indicates the PM derived from emissions within the UK. As well as the SIA components, the total modelled PM$_{10}$ includes the contribution from emitted primary fine PM (PM$_{2.5}$) and primary PM$_{coarse}$ (i.e. PM$_{2.5-10}$), and fine and coarse sea salt.

of the limit and guideline values, respectively, is provided by non-UK emissions.

4 Discussion

Inorganic particle components were simulated over the period 2001–2010. This is the first time that high spatial resolution (5 km) and temporal resolution (1 h) simulations of inorganic atmospheric species have been undertaken across the whole UK for a multi-year period, and the first time that the EMEP(4UK) simulations have been compared with the UK-wide AGANet monitoring network.

Two inorganic aerosol schemes were available for the EMEP and EMEP4UK model: the EQSAM (used in this work) and the MARS scheme (Simpson et al., 2012). As discussed in Sect. 2.1, both schemes use a bulk approach for particle formation. The EQSAM aerosol scheme was used here as it has demonstrated good performance in the TM5 atmospheric chemistry transport model (Karl et al., 2009; Huijnen et al., 2010). However, the bulk approach may lead to uncertainties in the simulated SIA, as shown in Hu et al. (2008), as the particle sizes are not explicitly resolved in the model. The current aerosols scheme and size partitioning in the EMEP model has been validated and compared with observations across Europe as shown in Fagerli and Aas (2008) and in Simpson et al. (2006). In addition, in a recent model inter-comparison (Carslaw, 2011a, b) SIA and its gaseous precursors simulated by EMEP4UK showed good agreement with observations.

The smoother distribution of particle components (Figs. 5 and 7) as compared with their gaseous precursors (Figs. 4 and 6) reflects the longer timescales for forming these secondary pollutants, as compared with the emissions-driven patterns for the primary pollutant gases (AQEG, 2012). The lifetime for oxidation of NO$_3$ and SO$_2$ to HNO$_3$ and H$_2$SO$_4$ is up to a few days and comparable to transnational air-mass transport times. Hence the lifetime of formation plays an important role in determining the influence of non-UK emissions on SIA concentrations in the UK.

The highest modelled concentrations over this period are in 2003, particularly for PM NO$_3^-$ and NH$_4^+$, and to a lesser extent for SO$_4^{2-}$, whilst lowest concentrations for each of these components are in 2008–2010. The notably high PM NO$_3^-$ concentrations in February to April 2003 were observed at AGANet stations across the UK and could be well reproduced by the model (Fig. 2, Table 1). Concentrations of PM SO$_4^{2-}$ were also elevated during this period, although by a smaller amount, and were also well captured by the model (Fig. 3, Table 1). The magnitude of this elevation in annual average PM NO$_3^-$ concentration in 2003 is greater than the decline in annual average concentration across the whole decade to 2010 of 0.1–0.2 µg N m$^{-3}$ (Fig. 5). The August 2003 heatwave (Vieno et al., 2010) was not associated with high nitrate as the higher temperature limits the partitioning to the condensed phase. However, a secondary peak in sulfate is noted during summer 2003, which is directly attributed to the 2003 August heatwave, whereby elevated temperatures lead to faster SO$_2$ oxidation to sulfate (Dawson et al., 2007; Jacob and Winner, 2009).

Although the magnitude of monthly/daily elevated NO$_3^-$ is similar for the three months of February, March and April 2003, each month has a different characteristic. A distinctive meteorological feature for the three months was a persistent high pressure over the UK and Europe (unusual for this season) with an associated relatively cool temperature and little rainfall (not shown). The location and persistency...
of the high pressure strongly influenced the production and transport of NO$_3$. Although emissions of NO$_3$ precursors are controlled, the model analysis shows the substantial influence of meteorology underpinning the high concentrations of NO$_3$ observed in the UK during the first part of 2003. Wang et al. (2014) examined the drivers of PM concentrations in the Shanghai region. Similar to our results for the UK they showed that meteorology determined whether the dominant contributor to PM concentrations was local emissions or regional transport. The authors suggest that particular attention should be given to emissions controls in the upwind adjacent provinces, as well as in local areas, for developing effective strategies to reduce PM$_{2.5}$ pollution in Shanghai, again consistent with our conclusions. Zhang et al. (2014) also found that PM concentrations in central China have a clear link with long-range transport. A recent study in the USA by Mwaniki et al. (2014) showed nitrate to have a large variation in winter time, contributing substantially to elevated PM events.

The geographic origins of the PM episodes have been investigated in the model perturbation experiment. The monthly average surface concentrations for the zero UK emissions experiment show that surface concentrations of SO$_2$ and NO$_2$ are mainly driven by UK emissions (Fig. 6) and by similar proportions of UK emissions throughout the period of high surface concentrations of NO$_3$. However, the proportions of the NO$_3$ that are derived from UK and non-UK emissions change between months (Fig. 7). The model results show that for February 2003 trans-boundary emissions had a small influence on NO$_3$, whereas for March and April the trans-boundary transport of NO$_3$ and/or its precursors was substantial. Abdalmogith et al. (2006) suggest that the annual average import of NO$_3$ aerosol to the UK from Europe (as an average of 2002 and 2003) is between 35 and 65 % of the UK total NO$_3$ concentration. Our study has found that, for 2003 (Fig. 7), the import to the UK from Europe was in the range 20–60 % of UK total NO$_3$ concentrations, with this proportion varying between the three episodes (labelled F, M and A in Fig. 8).

Abdalmogith et al. (2006) concluded that the 2003 NO$_3$ spring event was not well represented by their model, and the low emissions resolution (10 km × 10 km grid) was suggested as a possible cause. In the present study the elevated NO$_3$ concentrations are well represented by the EMEP4UK model at 5 km × 5 km resolution. However, we find that simulation at 50 km × 50 km horizontal spatial resolution of the EMEP4UK model outer domain also represented these features (results not included here), indicating that transport and dispersion were the main drivers of the pollution events. As shown in Fig. 10, over the full 10-year period there was a substantial variation (10 to 80 %) in the contribution of UK emissions to SIA concentrations in the UK.

The simulated changes in the gaseous precursors for 2001–2010 follow the reductions in UK emissions over that period especially for NO$_2$ and SO$_2$ (MacCarthy et al., 2012). The change of SO$_2$ annual surface concentration especially after 2007 over the North Sea (Fig. 4b) is a direct response to the introduction of a sulfur emission control area (SECA) in the North Sea, including the English Channel, by the 2007 MARPOL convention on marine pollution (Dore et al., 2007). Under the convention the sulfur content of bunker fuel was restricted to 1.5 % by mass in 2007 (and will be further reduced to 0.1 % in SECAs by 2020). This has resulted in a substantial reduction of emissions of SO$_2$ from the shipping sector.

The results in Figs. 4 and 5 illustrate the non-linear relationship between changes over time in SO$_2$ and NO$_2$ surface concentrations over the 2001–2010 decade and changes in the respective PM SO$_4^{2-}$ and NO$_3$ concentrations. The sensitivity of PM SO$_4^{2-}$ to changes in its precursors is, however, considerably greater than for NO$_3$. The small decline in NO$_3$ and low sensitivity to UK NO$_x$ emission found in this work was supported by the results in Harrison et al. (2013). The formation of both NO$_3$ and SO$_4^{2-}$ requires NH$_4^+$ as a counter-ion and there appear to be sufficient NH$_3$ emissions not to be a limiting factor to SO$_4^{2-}$ formation. Conversely, UK NO$_x$ emissions are still relatively high, especially in urban areas, so with an abundance of NO$_x$ available for formation of ammonium nitrate available NH$_3$ eventually may be consumed. Consequently, in areas of high NO$_x$ emissions, NO$_3$ formation appears to be more sensitive to NH$_3$ emissions than is the case for SO$_4^{2-}$ formation. This is consistent with Redington et al. (2009) whose modelling showed that SO$_4^{2-}$ formation in the UK was less sensitive to a 30 % NH$_3$ emissions reduction than NO$_3$ formation.

The modelled annual average NH$_4^+$ shows a change between 2001 and 2010 over the UK which is intermediate between that of NO$_3$ and SO$_4^{2-}$ (Fig. 5c). By 2010, NH$_4^+$ concentrations decreased by 0.3–0.4 µg N m$^{-3}$ over most of England, but, as was the case for NO$_3$ concentrations, annual average NH$_4^+$ concentrations in 2003 were elevated by 0.2–0.3 µg N m$^{-3}$ compared with preceding and subsequent years. This confirms that the episodes of elevated NO$_3$ in 2003 were driven by ammonium nitrate specifically. The modelled decrease in PM NH$_4^+$ concentrations as compared with minimal decrease (and some increase) in NH$_3$ concentrations over the period 2001–2010 is consistent with the conclusions of Bleeker et al. (2009) and Horvath et al. (2009) for other parts of Europe that reducing SO$_2$ emissions have contributed to maintaining or even increasing gaseous NH$_3$ concentrations.

Current EU legislation has established a limit value of 25 µg m$^{-3}$ for annual mean PM$_{2.5}$ for the protection of human health; at the same time, the World Health Organization (WHO) publishes a guideline value of 10 µg m$^{-3}$ annual mean PM$_{2.5}$ for the protection of human health. As Fig. 11 illustrates, determining the contribution of transboundary and regional transport to local PM concentrations is vital to inform policy development, as local measures can only address
the local contribution. For the four sites analysed for 2003, Fig. 11 shows the share of non-UK contribution to modelled PM$_{2.5}$ concentrations ranging from 63 % (Yarner Wood) to 41 % (Bush 1). It is also clear that PM$_{10}$ at these locations is dominated by sea salt. As these stations are representative of rural or background levels, it is likely that the relative long-range contribution to PM$_{2.5}$ concentrations at urban hotspots is smaller, but still substantial.

Table 2 expresses the non-UK contribution to modelled annual mean PM$_{2.5}$ relative to the EC limit value and WHO guideline value for PM$_{2.5}$ (for the protection of human health). The non-UK contribution ranges from 5 % at Strathvaich to 18 % at Rothamsted for the limit value at 25 µg m$^{-3}$ (or 14 to 45 % for the same sites with respect to the guideline value of 10 µg m$^{-3}$). This indicates a clear gradient of non-UK contribution from greatest in the southeast and least in the north; this is likewise visible in Fig. 5.

The results presented here clearly demonstrate the need for international agreements to address the transboundary component of air pollution. If, for instance, an overall limit value of 10 µg m$^{-3}$ were to be established following the WHO guideline, a substantial number of UK monitoring sites (Fig. 2) in particular in the south and southeast of the country may be close to or exceed annual mean limit values due to import of inorganic particle components from continental Europe under specific conditions.

In the view of these results, the rather moderate further reductions agreed by parties to the Convention on Long-range Transboundary Air Pollution in the revision of the Gothenburg Protocol (Reis et al., 2012) for the period between 2010 and 2020 would result in a substantial remaining contribution of transboundary aerosol transport to UK particulate matter concentrations for the next decade.

The results further illustrate how the inter-annual variability of surface concentrations of nitrate for the 2001–2010 decade as a response to changes in meteorological conditions is larger than the effect of changes in anthropogenic emissions. This suggests that for compliance assessment, an average over several years would provide a more robust basis than individual years, where a few short episodes can have a major influence.

5 Conclusions

For the first time the EMEP4UK model has been operated at high resolution for a multi-year period (2001–2010) and simulated secondary inorganic component concentrations compared with observations from the AGANet network. The drivers of three remarkably high secondary inorganic aerosol episodes across the UK have been investigated in detail, revealing contrasting causes for different periods. Whilst it has been documented that the bulk gas/particle partitioning approach used in these simulations (EQSAM formulation) may lead to uncertainties in simulated secondary inorganic aerosol, the EMEP4UK model was able to accurately represent both the long-term decadal (2001–2010) surface concentrations of particulate matter (PM) and specific episodes of elevated PM NO$_3$ in 2003. The latter was identified as consisting of three separate episodes, each of less than 1 month duration, in February, March and April. The primary cause of the elevated nitrate levels across the UK was meteorological, related to a persistent high-pressure system, with the contribution of imported pollution differing markedly between these events.

The findings emphasise the importance of employing multiple year simulations in the assessment of emissions reduction scenarios on PM concentrations. The inter-annual variability of surface concentrations of nitrate for the 2001–2010 decade as a response to changes in meteorological conditions is larger than the effect of changes in anthropogenic emissions. For instance, up to 60 % of NO$_3$ may be imported from outside the UK under specific conditions.

Our results highlight how inter-annual variability can profoundly affect the sensitivity to the attainment of limit values for ambient PM concentrations as a result of non-domestic contributions from transboundary air pollution transport.

Acknowledgements. This work is supported jointly by the UK Department for the Environment, Food and Rural Affairs (Defra) under the contract AQ0727, the NERC Centre for Ecology and Hydrology (CEH), the EMEP programme under the UNECE LRTAP Convention, the Norwegian Meteorological Institute and the European Union projects NitroEurope IP and ÉCLAIRE.

Edited by: A. Laskin

References

IGCB: An economic analysis to inform the air quality strategy, Updated third report of the Interdepartmental Group on Costs and Benefits, Department for Environment, Food and Rural Affairs, PB12637, 2007.

Yin, J. X. and Harrison, R. M.: Pragmatic mass closure study for PM$_{10}$, PM$_{2.5}$ and PM$_{10}$ at roadside, urban background and rural sites, Atmos. Environ., 42, 980–988, doi:10.1016/j.atmosenv.2007.10.005, 2008.