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Understanding high pressure molecular hydrogen with a
hierarchical machine-learned potential

Hongxiang Zong, Heather Wiebe and Graeme J. Ackland

1Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of

Edinburgh, Edinburgh, EH9 3ET, UK

The hydrogen phase diagram has several unusual features which are well reproduced by den-

sity functional calculations. Unfortunately, these calculations do not provide good physical

insights into why those features occur. Here, we present a fast interatomic potential, which

reproduces the molecular hydrogen phases: orientationally disordered Phase I; broken-

symmetry Phase II and reentrant melt curve. The H2 vibrational frequency drops at high

pressure because of increased coupling between neighbouring molecules, not bond weaken-

ing. Liquid H2 is denser than coexisting close-packed solid at high pressure because the fa-

vored molecular orientation switches from quadrupole-energy-minimizing to steric-repulsion-

minimizing. The latter allows molecules to get closer together, without the atoms getting

closer, but cannot be achieved within in a close-packed layer due to frustration. A similar

effect causes negative thermal expansion. At high pressure, rotation is hindered in Phase I,

such that it cannot be regarded as a molecular rotor phase.

Keywords:Hydrogen, Pressure, Melting, Machine-learning
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Introduction

Since the discovery of solid molecular hydrogen in 1899, the nature of this phase has remained

controversial1. It is now believed that the solid �Phase I� comprises rotating hydrogen molecules

on a hexagonal close-packed lattice2. With increasing pressure the rotation becomes hindered3 by

intermolecular interactions, both steric and electrostatic, leading ultimately to phase transforma-

tions to a low temperature Phase II4, in which quadrupole-quadrupole interactions (EQQ) arrest

the rotation5, and a high pressure Phase III6, 7, in which steric interactions dominate.

Experimental study of these phases has proved challenging. X-ray study showed the hcp

structure, but could not resolve molecular orientation at low temperature8, and the �rst room tem-

perature only completed in 20199. Raman spectroscopy shows peaks corresponding to quantum

rotors at low pressure, which gradually broaden and shift with pressure, and a distinctive sharp

phonon mode which rules out cubic close packing as a structure10�15. The melt line has a strongly

positive Clapeyron slope at low pressures, with a turnover around 100 GPa16�19. The negative slope

means that even though the solid is hexagonal �close-packed�, the liquid must be even denser. The

turnover also means the liquid has higher compressibility, but how this comes about remains un-

explained. X-ray studies at low temperature traversing Phase I-II-III do not show any convincing

structural changes, in part because it has proven impossible to get suf�cient resolution to determine

the molecular orientation8, 9.

Spectroscopy gives vibrational data, which are still insuf�cient to determine the structures

of phases II, III and IV. There have been many and varied attempts to identify the structures via
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simulations?, 20�29. However, a consensus has not yet been reached. Based on fully ab initio calcu-

lations, including density functional theory (DFT) or quantum Monte Carlo (QMC)30, a number of

candidate structures have been proposed for Phase II and III. Besides differing molecular orienta-

tion, they are all similar, consisting of primitive cells with lattice sites close to hcp22. Among the

structures, the P21=c-24, C2=c-24 and Pc-48 structures provide low-energy candidate structures

for phases II, III, and IV.

The modern theory of the structure of these phases is based around electronic structure cal-

culations. The early work involved calculating the ground state, assuming classical nuclei, then

adding quantum-nuclear effects via the quasiharmonic approximation. This methodology, whether

based on DFT or QMC, predicts hcp-like ground states for Phases I-III in agreement with X-ray

data. However the spectroscopic signature of the Phase II - the appearance of many sharp, low-

frequency, peaks11, 31 - is not well reproduced by the quasiharmonic calculations. As explained in

the previous paragraph, the likely cause is a failure of the harmonic mode assumption for excited

states, rather than the DFT itself.

To understand the high-temperature phases, one needs to examine non-harmonic behaviour,

including rotation, which means going beyond a single unit cell, e.g. using molecular dynamics.

Molecular dynamics requires forces on each atom based on the positions of all the atoms in the

system, which requires a force model which is fast enough to allow large simulations. Here we

use a machine-learning approach to derive a transferable force model based on an interatomic

potential. There are several approaches to machine learning interatomic forces32�34, which balance
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speed, transferability and accuracy. We adopt an approach focusing on transferability.

The machine-learned potential should conserve energy, and therefore be based on a Hamil-

tonian (the potential). Forces are guaranteed to be conservative if they depend on translational

and rotational invariant quantities: the ��ngerprint� of each atom. We are interested in molecular

phases here, so our potential speci�es which atoms are �bonded� and allows stretching but not

breaking of bonds.

For hydrogen the machine-learning approach is trained on energies and classical Hellmann-

Feynman forces derived from standard density functional theory. In the Born-Oppenheimer ap-

proximation adopted by all standard DFT codes, the interatomic potential is the same for deu-

terium, HD and hydrogen. Contributions from quantum-nuclear effects can be incorporated using

lattice dynamics or path integral methods.

Results

Fitting Forces and the Phase diagram. A particular challenge for hydrogen comes from the hi-

erarchy of energies. The covalent bond is much stronger than the van der Waals attraction between

molecules, which is turn is much stronger than the EQQ interactions which determine molecu-

lar orientations. To address this our potential combines a hierarchical �tting strategy alongside

machine learning (HMLP) described below.

For transferability testing, we used the standard approach of �tting to a subset of the data and
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testing against a different subset. Furthermore, we used an iterative �tting process: a trial potential

was �tted, and applied in both Phase II annealing and melting line MD simulations. If novel

con�gurations were found, they were used to generate more reference states for the DFT database,

and the �tting process was repeated. This iterative process ensures that spurious structures are

suppressed and the ground state structure is the same as found in DFT. Technical details of the

force�eld parameterization are given in the methods section.

Phase diagram. Figure 1 shows the very good agreement between the classical HMLP and the

DFT phase diagrams. By eliminating �nite size effects, the HMLP can capture the full long-range

correlations, however, this does not appear to have a signi�cant effect on the phase boundaries.

In Phase I, the H2 molecules exhibit free rotation at pressures below 40 GPa and temperatures

below 900 K (orange hexagon symbols); at higher pressures the rotation is inhibited but there is

no long-ranged orientational order. At low temperatures, Phase II becomes stable (red triangles),

and the stable temperature region increases gradually with pressures. At high temperatures, the

hcp lattice collapses to a liquid state. The calculated melting curve has a strong positive slope

(dT=dP > 0) at low pressures, reaches a maximum at around 900 K and 90 GPa, and then drops.

The HMLP predicted phase diagram agrees reasonably with experimental observations, as well as

DFT (Fig. 1).

The HMLP and DFT predictions are good for the melt curve, but both overstabilise the

broken-symmetry Phase II. This is due to the lack of quantum nuclear effects, notably the zero-

point energy, and can be addressed by including quantum nuclear effects in the simulation. The
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discrepancy in the Phase I-II line does not indicate any inaccuracy of the HMLP itself. Our pre-

dicted melting curve is consistent with experiments: the value for the melting curve maximum

is located between 80-100 GPa and 900 K, similar to the HMLP potential values. It also agrees

with two-phase ab initio simulations, which proposed a gradual softening of the intermolecular

repulsive interactions as its cause16. The close agreement of the HMLP transition pressure with

experimental data enables us to accurately simulate behaviors of temperature- or pressure- driven

phase transition between Phase I and II. A �Phase III� is observed at higher pressures, correspond-

ing to a different symmetry-breaking. However, by design the present HMLP model should start

to fail to capture the properties of H2 at still higher pressures, where molecule dissociation needs

to be considered.

Nature of Phase I. Phase I can be easily recognised in MD by ordering of the molecular centres

on the hcp lattice, and disorder of the orientations. Although frequently referred to as a free rotor

phase, we �nd this to be true only at low pressures. As pressure is increased the angular momentum

autocorrelation becomes shorter than a single rotation, and then acquires a negative component,

indicating that the molecule is librating.

Another characteristic of Phase I is the molecular vibration or �vibron�: in Raman scattering

this corresponds to the in-phase vibration of all molecules. The vibron frequency �rst increases,

then decreases with pressure. Two plausible reasons are given for this reduction: either increased

intermolecular coupling or weakening of the covalent bond. In our model, the covalent bond is

always described by the same Morse parameters, so changes in the vibron frequency can arise
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only from resonant interactions between molecules, not weakening of the bond. Thus reproducing

the reentrant vibron behaviour is a test of both the physical basis and the parameterization of the

model.

Since the molecules are rotating in Phase I, lattice dynamics cannot be used, so Raman

phonon frequency is numerically characterised by the in-phase mode-projected velocity auto-

correlation function (VAF) 35. Trajectories and velocities were produced from 150 K HMLP-MD

simulations within the micro-canonical ensemble (NVT) initiated in the P21=c-24 structure. A

very �ne time step of 0.05 fs was used and the trajectory and velocities were saved every 10 time

steps. By calculating the bond stretching velocities and Fourier transformation of the VAFs we

calculate both the total vibron density of states26, 36 from

gtot(!) =
X

ik

Z
[r2
ik(t)] exp i!t (1)

and the signal from the most strongly Raman-active mode,

gRaman(!) =
Z "X

ik

r2
ik(t)

#

exp i!t (2)

where ik runs over all molecules (comprising atoms i and k). A similar projection method is used

for the E2g phonon37.

Figure 2 plots the calculated total vibron spectra of solid and liquid hydrogen as a function of

pressure from MD simulations. Both show a signature of vibron turnover above a critical pressure

(about 54 GPa), consistent with the experimental observations11. This proves that bond weakening

is not required for the turnover, since our potential has a �xed bond strength. Notably, the mean
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bondlength in Phase I decreases monotonically with pressure (Fig. 2c), again at odds with ideas

of bond weakening. What appears to be happening is a competition between two effects: at higher

pressures the compression of the bond causes an increase in the frequency due to anharmonicity

in the potential, whereas above 54 GPa the frequency is lowered due to coupling between the

molecules.

The hcp structure has a Raman-active optical mode (E2g symmetry) in the phonon spectrum

which corresponds to the out-of-phase shear motions in the basal plane. The frequency range of

this Raman mode is experimentally well-determined and extremely large, from 36 cm�1 at zero

pressure to 1100 cm�1 at 250 GPa 38�41. The comparison between theoretical and experimental

pressure dependencies �(P ) of the E2g optical phonon Raman active mode is presented in Fig.

2d. The red symbols in are our HMLP-MD predictions, consistent with the DFT data of this mode

extracted from our calculations. Comparing the present theoretical results with experiment we

see that the HMLP predicted frequency curves agree with experiment slightly better than existing

isotropic empirical potentials42, 43 (olive curve).

Denser than close-packed liquid. Figure 1 shows that the potential correctly reproduces the

turnover and negative Clapeyron slope. We investigated the possible explanation for this denser-

than close-packed liquid. Fig. 3a shows the equation of state for both solid and liquid phases, with

the crossover indicating where the liquid is denser than the solid. The HMLP predicts a negative

thermal expansion, which is consistent with DFT44. The normalised radial distribution function

(Fig. 3b) shows that the liquid structure is essentially unchanged with pressure up to the pressures
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where bond-breaking becomes a factor. We therefore deduce that the denser liquid is not related to

the molecular-atomic transition.

Figure 4 compares the solid and liquid at the melting point. They are remarkably similar:

close to the phase boundary the liquid shows �ve discernible neighbour peaks indicating short

ranged structure to 10 	A. The molecular bondlength is longer in the liquid than the solid (shown

more clearly in Fig. 2), but the separation between molecules is noticeably smaller in the liquid

as evidenced by the �rst peak in the molecule-molecule RDF. This means that the molecules get

closer together in the liquid, despite being longer.

Intermolecular interactions are dominated by quadrupole-quadrupole interactions and steric

repulsion. Table 1 shows the implied contribution from quadrupole-quadrupole interactions cal-

culated by electrostatics from HMLP simulations. Although the ML potential has no explicit

electrostatic terms, there is a strong orientation correlation, which lowers the quadrupolar energy,

not only in Phase II, but also in Phase I and to a lesser extent in the liquid.

We hypothesised that molecules can get closer together if their constituent atoms are further

apart (i.e. in an �X� shape viewed down the intermolecular vector). By contrast, the solid has

orientations which offer higher cohesive energy.

Figure 5b investigates this further using DFT, showing that the T con�guration which op-

timises the quadrupole interaction becomes unfavourable with respect to the X con�guration at a

separation of 2.25 	A. As we saw in Fig. 4, the nearest neighbours are already this close by 20 GPa.
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To quantify this, we looked across the various �ngerprints to see which most strongly dif-

ferentiate liquid from solid con�gurations on the melt line. This turns out to be fp EQQ, the

�ngerprint with the same functional form as the quadrupole-quadrupole interaction: the MLP has

learned that this is important. Fig. 5a shows that the contribution from fp EQQ becomes signif-

icantly higher in the solid above 70 GPa. We note that fp EQQ is dimensionless, and its �tted

contribution to the potential is different from the estimated quadrupole-quadrupole energy com-

pared in Table 1.

These �ndings explain why the liquid is denser than the solid. At pressures above the

melting point maximum, orientation-dependent interactions are strong enough that rotation is

inhibited45�47. However, these low energy arrangements are typically associated with larger inter-

molecular distances (e.g. the T con�guration). By contrast, the liquid favours other arrangements

which allow the molecules to come closer.

The X con�guration maximises the atom-atom distance for a given intermolecular separation.

This and similar arrangements compensates for the smaller molecule-molecule distance in the

liquid to give the same peak position in the atom-atom RDF in both liquid and solid.

Nature of Phase II. We performed extensive HMLP-MD simulations around the Phase I-II bound-

ary, with different starting con�gurations, to determine candidate structures and phase stability of

H2 Phase II. At 150 K and 20 GPa, the orientations of the H2 molecular axes are almost randomly

distributed along different directions, indicating Phase I with freely rotating molecules. Upon

compression to the high pressure of 80 GPa and cooling to a low temperature of 50 K, the material
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transforms to an orientationally ordered phase in which the molecular rotations are restricted (Fig.

1). By carefully comparing it with candidate structures proposed by ab initio calculations, we

�nd that the lattice and molecular ordering is close to P21=c-24, which has been one of the most

thoroughly studied and strongest candidate for Phase II5, 22, 23, 48.

The HMLP does not include quadrupole interactions explicitly - it has �learnt� them. Table

1 shows what the quadrupole interactions would be, using electrostatic calculation based on the

HMLP con�gurations. The large negative values indicate the prevalence of quadrupole-type or-

dering: strongest in Phase II. The differences, tens of meV, is of similar magnitude to the phase

transformation temperature. The HMLP has learnt that Phase II is stabilised by quadrupole inter-

actions.

The corresponding RDF indicates that the center of each molecule remains close to the hcp

lattice sites. Consequently, we de�ne an order parameter O relating the structures of Phase II

in our HMLP-MD simulations with the static-lattice DFT predictions of P21=c-24. The average

value hOi exhibits a sharp change as the system transitions from the structured Phase II to the

rotationally symmetric Phase I with increasing temperature. Transition temperatures were taken

at discontinuous jumps in hOi. This produces the phase diagram shown in Fig. 6b. Note that

the transition temperatures obtained from analysis of hOi agree with those obtained from peaks in

the heat capacity calculated as
�@H
@T

�
P from �nite differences (see Supplementary Figure 5). The

phase boundary agrees well with the experiment31, particularly for the more classically-behaved

deuterium. Similarity to experiments on deuterium rather than hydrogen is perhaps unsurprising,
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since nuclear quantum effects (NQE) such as zero point motion are signi�cant at the low tempera-

tures investigated here.

Transition to Phase III. Above 160 GPa we �nd a high-pressure transformation to a broken-

symmetry structure different from Phase II dominated by ef�cient packing rather than EQQ, this

is at approximately the same pressure as Phase III.

Experimentally, Phase III is associated with a sharp drop in the vibron frequency and the

appearance of a strong IR signal. This implies a non-centrosymmetric structure and a weakening

of the molecules. In studies of hydrogen-deuteride (HD) a process of bond dissociation and recom-

bination (�DISREC�, 2HD! H2+D2) has been observed49. This bond breaking is seen in DFT to

also occur in pure H2
26, 29. Our potential does not allow for bond breaking, so we have not studied

the dynamics of this �Phase III� in detail.

Discussion

In summary, we have introduced a heirarchical, iterative machine learning based interatomic po-

tential for atomistic simulations of H2 molecules, by directly learning from reference ab initio

molecular dynamics simulations. The resultant HMLP-MD approach predicts angular energy de-

pendence in the range of tens of meV/atom and demonstrates good transferability to various struc-

tural environments. Several applications have been presented for which our potential is particularly

well suited. The fast, transferrable potential is also suitable for a wide range of further applications

and extensions, including compounds, bond breaking and path integral calculations.
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The simulations reproduce the equilibrium temperature-pressure phase diagram for molec-

ular phases (I, II,III and melt, P < 160 GPa). The maximum in the melt curve in hydrogen is

highly counterintuitive - it requires that the liquid is denser than the hexagonal-close packed solid.

By detailed simulation we resolve this by showing that certain molecular orientations (e.g. X) al-

low the molecules to approach more closely, while others (e.g. T) have lower quadrupole energy.

By monitoring an order parameter corresponding to the quadrupolar interactions �nd that, at high

pressures, Phase I develops intermolecular correlations which lower the energy, while the liquid

has correlation which lower the volume.

The simulations of the Phase I-II boundary show a transition from an ordered Phase II to a

orientation-disordered Phase I. The molecules in Phase I are not freely rotation, and we �nd that

rotation about the c-axis persists to higher-pressure/lower-temperature than rotation out of plane.

Our HMLP potential also has shown the capability of predicting the pressure dependence of

the Raman-active E2g mode, consistent with experiment and previous DFT calculations. We ex-

plain the maximum frequency of the vibron as due to competition between molecular compression

and stronger intermolecular coupling. Weakening of the covalent bond is not required.
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Table 1. EQQ for liquid and solid phases

Pressure (GPa) < EL
QQ >melt < ES

QQ >melt < ES
QQ >PhaseI < ES

QQ >PhaseII

20 -5.5897 -6.2366 -15.5999 -

40 -7.3219 -7.7636 -25.4964 -43.4700

60 -8.9744 -9.8332 -35.9825 -52.9075

80 -10.9062 -13.6786 -44.4900 -65.9290

100 -11.7181 -15.9932 -53.0947 -76.0736

120 -11.8199 -17.7660 -59.5902 -91.3044

140 -11.8821 -18.5865 -65.5554 -103.4814

The EQQ for liquid and solid phases at the melt points, alongside values calculated for

stable Phase I (T = 150 K) and Phase II (T = 50 K) structures.All values are in units of

meV/molecule. For uncorrelated free rotors, < EQQ >=0
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Fig. 1 Machine learning interatomic potential simulated phase diagram of hydrogen. Each

datapoint represents a machine learning interatomic potential based molecular dynamic simulation

(HMLP-MD) which is itself in agreement with the equivalent DFT simulation. Blue squares rep-

resent the melting points form Z-method while the data of stable Phase I and Phase II appears as

orange hexagon and red triangles, respectively. The dashed melt line and phase I-II boundary is to

guide the eye. Experimental phase boundaries (solid lines) are taken from Ref. 15.
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Fig. 2 Calculated Raman signals of solid and liquid H2 as a function of pressures. a Pressure

dependence of vibron frequencies from the solid H2 at T = 150 K, arrows emphasise the turnover

of the peak frequency; b Pressure dependence of vibron frequencies from the liquid H2 at T = 1000

K; c The mean H-H bond length as a function of pressures, the dotted horizontal line is to guide

the eye; d The pressure dependent E2g phonon frequency compared with our DFT, recent (to be

published) experiments by Pena-Alvarez, and Silvera-Goldman potential42, 43.
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Fig. 3 Structural properties and EOS of liquid H2 at different densities. a Equation of state

(EOS) for liquid and solid H2 at selected temperatures. The green and blue solid line is the EOS

of Phase I at 300 K and Tm (melting point), respectively. The pink and red dash line is the EOS

of liquid at Tm and 1500K, respectively. b Normalised radial distribution function of molecular

centers at selected pressures and T = 1000 K, indicating no liquid-liquid phase transition below

140 GPa.
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Fig. 4 Radial distribution functions (RDFs) of coexisting solid and liquid. a Atom-atom RDFs,

b atom-molecule RDFs and c molecule-molecule RDFs, with the full length shown on the left and

a close-up of the �rst two neighbour shells on the right. The RDFs show that the liquid can pack

more tightly than the hcp solid phase. This is true both at 20 GPa, which is before the turnover in

the Clapeyron slope, and at 120 GPa, well into the negative slope region. The higher density of the

liquid is most apparent in the molecule-molecule RDF. These RDFs are on good agreement with

the RDFs obtained from AIMD simulations44.
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Fig. 5 Local hydrogen molecule arrangement of solid and liquid phases. a The contribution of

the fp EQQ �ngerprint in solid and liquid. Data was obtained as a time average of single-phase

calculations the solid-liquid phase boundary. b DFT calculations of the interaction between two

hydrogen molecules as a function of distance for three orientations. In the DFT calculations the

separation vector lies along the z-axis, and one of the molecules to point along x; H,X, and T

represent the second molecule pointing along x, y and z respectively. The con�guration with both

pointing along z is always unfavorable. Main �gure: energy differences relative to T , Inset: total

energy relative to free atoms.
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Fig. 6 Order parameter and phase boundary for the I-II transition. a Order parameter hOi

as a function of temperature for the 7 pressures investigated in this work. In all cases there is a

sharp decrease from an ordered system (hOi = 1) to a disordered system (hOi = 0). The system

is considered to be Phase I after hOi drops discontinuously below 0.1. b The resultant phase

boundary for the I-II transition in the classical solid. The dashed lines represent the experimental

phase boundaries for hydrogen and deuterium respectively31.
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Methods

Machine Learned interatomic potential.

Learning data set.

Structures for reference atomic environments and benchmarks were accumulated from density

functional theory (DFT)-based ab initio MD runs. The DFT calculations were performed using

the CASTEP package50 within the Perdew-Burke-Ernzerhof generalised gradient approximation

(PBE)51 for the exchange-correlation function. A cutoff energy of 1000 eV for the plane-wave

basis set and a k-point mesh of 1x1x1 were selected. To ensure the transferability of the potential

to a wide variety of atomistic situations, H2 in different geometric arrangements was considered,

including modest-sized bulk samples in Phase I, II and liquid, composed of 144 H2 molecules.

Moreover, unusual con�gurations found in HMLP-MD with preliminary versions of the potential

were added to the DFT training set to improve performance and transferability. The �nal accu-

mulated dataset includes up to 41468 con�gurations, which are provided as a separated �le in the

Supplementary Information.

The PBE functional was chosen because it has become the de facto standard in studies of

molecular systems, and high pressure hydrogen. PBE has been criticised for overstabilising the

metallic phases: this is due to its behaviour at high electron density gradients52, and not vdW

corrections. In this work we only consider molecular phases, so this is not a concern.
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We emphasize that determining the suitable dataset is not straightforward. Numerous itera-

tions of the potential were required to obtain a good �t to the phase diagram. A good �t to DFT

energies of known phases is not evidence that other phases are unstable: we test each iteration of

the potential by running MD simulations in NPT ensemble, cycling the pressure and temperature

between the regions expected for Phases I, II and III to ensure that all phase transitions were be-

tween the �tted phases. When a crystal structure different from the �tted one was found, this new

phase was calculated using DFT. If this showed that the ML potential described the phase poorly,

it was added to the training set and the training redone. The success of such strategy is supported

by an example shown in Supplementary Note 2.

Covalent bond.

The covalent bonding contribution to the force is approximated as (F �12
1 �F �12

2 )=2, where F �12
1 is

the component of atomic force projected down the molecular axis. We examined various options

for �tting the covalent bond: harmonic, Lennard-Jones and Morse potentials. Although the Morse

form provides the best �t across our dataset using simple regression, we adopt the harmonic form

in our potential to prevent arti�cial bond-breaking events at high pressure (>120 GPa). Supple-

mentary Table 1 shows the �tted parameters for the harmonic and Morse form, respectively.
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Non-bonded interactions.

We describe the short-ranged Coulomb and van der Waals potentials using pairwise functions to

create the �ngerprint. These are built using Gaussians with a smooth cutof�n the form

V k
i =

X
exp(�jrij=�kj2)fcut(rij) (3)

combined with damped sinusoidal function form

V k
i =

X
sin(krij) exp(�rij=�k)fcut(rij) (4)

where r ij is the distance between atom i and j with �k the range of the kth �ngerprint,and fcut(rij)

is a damping function for atoms within the cutoff distance.

These �ngerprints are mapped onto the corresponding residual energies, de�ned by the DFT

energies less the contribution from the covalent bonding contribution.

This mapping is achieved using the Kernel Ridge Regression method which is capable of

handling complex nonlinear relationships53. The details of parameterization and mapping algo-

rithms are shown in Supplementary Note 3.

Orientation-dependent interactions.

The orientation-dependent contribution is the last considered. These are �tted to the residuals

once covalent and pairwise interactions are subtracted from the DFT energies. The correspond-
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ing �ngerprints for the orientation-dependent interactions are listed in Supplementary Note 3 and

Supplementary Table 2.

The �delity of our HMLP is evaluated by the comparison of our ML prediction and the DFT

calculations in Supplementary Figure 6.The mean absolute error (MAE) is of the order of the ex-

pected numerical and theoretical accuracy of the reference quantum-mechanics-based calculations,

indicating good performance of the present ML model.

Machine Learned Molecular Dynamics. The simulations were performed using periodic bound-

ary conditions and a time step of 0.5 fs. The Nose-Hoover thermostat and the Parrinello-Rahman

barostat54 were used for controlling temperature and pressure, respectively. All simulations were

carried out using the LAMMPS package and the atomic con�gurations were visualised with the

AtomEye package. Typical models of the H2 system was created with P21=c-24 structure con-

taining up to 72,576 molecules. To reproduce the entire temperature-pressure phase diagram, the

NPT simulations of 1152-atom supercells of P21=c-24 structure were carried out at selected tem-

peratures and pressures, from which we can identify the corresponding stable phases and melting

point via the Z-method55. Furthermore, the phase-coexistence method56 with co-existing 27,648

molecules of H2 solid and liquid was adopted to determine the properties of solid and liquid phases

at the melting curve. To probe the Phase I-II boundary, 2,304 atom supercells of the Phase II

P21=c-24 structure were allowed to equilibrate for 250 ps at a series of pressures and tempera-

tures.
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Analysis of Molecular Dynamics. To distinguish between the broken symmetry structure of

Phase II and the free rotors of Phase I we introduce the orientational order parameter O.

O =

*P

b

P

i 6=j
(r̂ i;b � r̂ j;b)R ij;b

P

b

P

i 6=j
R ij;b

+

(5)

Here the summation is over unit cells i; j, each containing a set of basis molecules b. Unit vectors

r̂ i;b and r̂ j;b are oriented along the the H-H bond of the bth molecule in the ith and jth unit cell,

respectively, and R ij;b is the distance between the center of mass of these two molecules. The

angled brackets denote a time average. This parameter probes the long-range order in the system

relative to the chosen basis, which in our case is the P21=c-24 unit cell23. A value of 1 means

that the system has the P21=c-24 structure, and a value of 0 suggests that the system is disordered.

Note that this order parameter only detects similarity to the given basis and thus a phase change

to a structure with a different unit cell will yield an erroneously low value. The trajectories were

therefore visually inspected in addition to the order parameter analysis. A 4x6x4 supercell of

P21=c-24 (2304 atoms) was used for Phase II, and the unit cells and basis for this system are

illustrated in Supplementary Figure 7. MD trajectories were calculated for temperatures ranging

from 30 - 150 K and pressures from 20 - 160 GPa. After a 50 ps equilibration period, the order

parameter O was averaged over the remaining 200 ps of the trajectory. The results are shown in

Fig. 6a.

The Raman-active phonons were extracted from the MD using the projection method which

automatically includes anharmonic effects35, 37.

We tried numerous approaches to measure the orientation relationship between adjacent
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molecules, i and j with interatomic vectors ~�i and ~�j separated by ~̂R. For Table 1 we used the

explicit equation for linear quadrupoles:

EQQ =
3Q2

4��0

X

i;j

�(~�i; ~�j; ~̂R)

j ~̂Rj5
(6)

where Q = 0.26 D 	A is the quadrupole moment of the H2 molecule and the orientational factor

�(~�i; ~�j; ~̂R) is de�ned as:

�(~�i; ~�j; ~̂R) = 35(~�i � ~̂R)2(~�j � ~̂R)2 � 5(~�i � ~̂R)2 � 5(~�j � ~̂R)2

+ 2(~�i � ~�j)2 � 20(~�i � ~̂R)(~�j � ~̂R)(~�i � ~�j) + 1
(7)
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