The ring of evenly weighted points on the projective line

Citation for published version:

Digital Object Identifier (DOI):
10.1007/s00209-013-1272-4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Mathematische Zeitschrift

Publisher Rights Statement:
The final publication is available at Springer via http://dx.doi.org/10.1007/s00209-013-1272-4

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
THE RING OF EVENLY WEIGHTED POINTS ON THE LINE

MILENA HERING AND BENJAMIN J. HOWARD

Abstract. Let \(M_w = (\mathbb{P}^1)^n / \text{SL}_2 \) denote the geometric invariant theory quotient of \((\mathbb{P}^1)^n\) by the diagonal action of \(\text{SL}_2\) using the line bundle \(O(w_1, w_2, \ldots, w_n) \) on \((\mathbb{P}^1)^n\). Let \(R_w \) be the coordinate ring of \(M_w \). We give a closed formula for the Hilbert function of \(R_w \), which allows us to compute the degree of \(M_w \). The graded parts of \(R_w \) are certain Kostka numbers, so this Hilbert function computes stretched Kostka numbers. If all the weights \(w_i \) are even, we find a presentation of \(R_w \) so that the ideal \(I_w \) of this presentation has a quadratic Gröbner basis. In particular, \(R_w \) is Koszul. We obtain this result by studying the homogeneous coordinate ring of a projective toric variety arising as a degeneration of \(M_w \).

1. Introduction

The study of the ring of invariants for the action of the automorphism group of \(\mathbb{P}^1 \) on \(n \) points on \(\mathbb{P}^1 \) goes back to the 19th century. In 1894 Kempe [20] proved that this ring is generated by the invariants of lowest degree. More than a century later Howard, Millson, Snowden, and Vakil [17] were finally able to describe the ideal of relations between Kempe’s generators, when the characteristic of the ground field \(k \) is zero or \(p > 11 \).

More generally, for \(w = (w_1, \ldots, w_n) \in \mathbb{Z}^n \), let \(L_w = O_{(\mathbb{P}^1)^n}(w_1, \ldots, w_n) \). Assume that all \(w_i \) are positive, so that \(L_w \) is very ample. The group \(\text{SL}(2) \) acts diagonally on \((\mathbb{P}^1)^n\) and the line bundle \(L_w \) admits a unique linearization. Let

\[
R_w = \left(\bigoplus_{d \geq 0} H^0 \left((\mathbb{P}^1)^n, L_w^d \right) \right)^{\text{SL}(2)}
\]

denote the corresponding ring of invariant sections, and let \(M_w = (\mathbb{P}^1)^n / \text{SL}(2) \) denote the GIT quotient. When \(w_i = 1 \) for \(1 \leq i \leq n \), we write \(w = 1^n \).

In [16] Theorem 2.3] the authors show that \(R_w \) is generated by the invariants of lowest degree for arbitrary \(w \) and in [17] Theorem 1.1] that, in characteristic zero or \(p > 11 \), the ideal of relations \(I_w \) is generated by quadratic polynomials in the generators unless \(w = 1^6 \), in which case there is an essential cubic relation. Moreover, in [16] Section 2.15], the authors obtain a recursive formula for the degree of \(M_w \).
Our first theorem is an extension of Howe’s formula \[18, 5.4.2.3\] for the Hilbert function of \(R_w\) in the case \(w = 1^n\) to arbitrary \(w\). In particular, we obtain a closed formula for the degree of \(M_w\).

Theorem 1.1. Let \([n] = \{1, \ldots, n\}\), and for \(J \subseteq [n]\), set \(|w_J| = \sum_{j \in J} w_j\), \(w_\emptyset = 0\) and \(|w| = w_1 + \cdots + w_n\).

1. The Hilbert function for \(R_w\) is given by

\[
h(d) = \sum_{J \subseteq [n]} (-1)^{|J|} \left(d \left(\frac{|w|}{2} - |w_J| \right) + n - |J| - 2 \right)\]

if \(d|w|\) is even, and zero otherwise.

2. For \(|w|\) even, the degree of \(M_w\) is

\[
\frac{1}{n-2} \left(\sum_{J \subseteq [n]} (-1)^{|J|} \left(\frac{|w|}{2} - |w_J| \right)^{n-3} \left(\sum_{i=0}^{n-3} n - |J| - 2 - i \right) \right).
\]

Let \(K(\lambda, \mu)\) be the Kostka number counting semistandard Young tableaux of shape \(\lambda\) with filling \(\mu\). The dimension of the \(d\)-th graded part \((R_w)_d\) of \(R_w\) is equal to the stretched Kostka number \(K(d\lambda, d\mu)\) where \(\lambda = (|w|/2, |w|/2)\) and \(\mu = w\) (see 2.1). We give a closed formula for Kostka numbers of this form in Proposition 3.2. It was shown in \[22\] and \[2\] that for partitions \(\lambda\) and \(\mu\) the function \(K(d\lambda, d\mu)\) is a polynomial in \(d\). Thus the Hilbert function gives a closed formula for the polynomials \(K(d\lambda, d\mu)\) in this special case.

In \[37\] Jakub Witaszek studies the multigraded Poincaré-Hilbert series of the homogeneous coordinate ring of the Plücker embedding of the Grassmannian \(G(2, n)\) for a certain \(\mathbb{N}^n\)-grading. We obtain a closed formula for the multigraded Hilbert function and for the Poincaré-Hilbert series, see Remark 3.3.

For a field \(k\), recall that a graded \(k\)-algebra \(R\) is Koszul if \(k\) admits a linear free resolution as an \(R\)-module. If \(R = k[X_0, \ldots, X_N]/I\), then the existence of a quadratic Gröbner basis for \(I\) implies that \(R\) is Koszul, which in turn implies that \(I\) is generated by quadratic equations. In \[19\], Keel and Tevelev show that the section ring of the log-canonical line bundle on \(\overline{M}_{0,n}\) is Koszul. However, while for \(w = 1^8\), \(I_w\) is generated by quadratic equations, we show in Example 3.9 that \(R_w\) is not Koszul.

In general, high enough Veronese subrings of graded rings are Koszul \[11\] \[14\], and up to a linear transformation, they admit a quadratic Gröbner basis \[8\]. We show that for \(R_w\) already the second Veronese subring satisfies these properties.

Theorem 1.2. Assume \(w \in (2\mathbb{Z})^n\). Then \(I_w\) admits a squarefree quadratic Gröbner basis. In particular, \(R_w\) is Koszul.
Both theorems apply in all characteristics, and in fact more generally over the integers. Note that Theorem 1.2 implies that for w with $|w|$ odd, I_w admits a squarefree quadratic Gröbner basis, since in this case $R_w = R_{2w}$ by Proposition 2.1. In particular, if $w = 1^n$ with n odd, then I_w admits a quadratic Gröbner basis. However, it is not known whether for $w = 1^{10}$, R_w is Koszul, see Remark 3.10.

As in [16, 17], our proof is based on a toric degeneration. This toric degeneration is a SAGBI degeneration, and we show that this toric degeneration admits a quadratic Gröbner basis. After we shared our result with Manon, he was able to extend it to more general polytopes that arise as degenerations of the coordinate rings of the moduli stack of quasi-parabolic $SL(2, \mathbb{C})$ principal bundles on a generic marked projective curve in [24, Theorem 1.10], see Remark 5.12.

Acknowledgments. We benefited from discussions with many people, including Federico Ardila, Aldo Conca, Sergey Fomin, Nathan Ilten, Chris Manon, Sam Payne, Bernd Sturmfels, and Ravi Vakil. We would also like to thank the referee, Diane Maclagan, and Burt Totaro for helpful comments on a previous version of this paper. Our main thanks is to Vic Reiner who was shaping the direction of this project. Part of this work was done at the Institute of Mathematics and its Applications, at the Mathematisches Forschungsinstitut Oberwolfach, and at the Max-Planck-Institut für Mathematik, and we would like to thank these institutes for providing a great research environment.

2. The coordinate ring R_w of M_w

In this section we set up basic notation and describe the invariant ring R_w in terms of certain semistandard Young tableaux. Let k be a field, and let

$$S = k[x_1, y_1, x_2, y_2, \ldots, x_n, y_n],$$

which we view as the set of polynomial functions on the space $\mathbb{A}^{2 \times n}$ of $2 \times n$ matrices with entries in the field k:

$$
\begin{pmatrix}
 x_1 & \cdots & x_n \\
 y_1 & \cdots & y_n
\end{pmatrix}.
$$

The polynomial ring S is graded by \mathbb{N}^n, where the degree of the monomial $\prod_{i=1}^{n} x_i^{a_i} y_i^{b_i}$ is equal to $(a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n)$. Given $r = (r_1, \ldots, r_n) \in \mathbb{N}^n$, let S_r denote the r-th graded part of S. Let $L_r = \mathcal{O}(r_1, \ldots, r_n)$. Viewing x_i, y_i as homogeneous coordinates for the i’th point in $(\mathbb{P}^1)^n$, we have $H^0((\mathbb{P}^1)^n, L_r) = S_r$. The line bundle L_r admits a linearization for the diagonal action of $SL(2, k)$ on $(\mathbb{P}^1)^n$, (see [28 Chapter 3.1]) such that the induced action on the section ring $R(L_r)$ is given by matrix multiplication on the left.

It is easy to see that for $i < j$ the polynomials

$$p_{ij} = \det \begin{pmatrix} x_i & x_j \\ y_i & y_j \end{pmatrix}$$

are invariant under the $SL(2, k)$ action. Note that p_{ij} are the Plücker coordinates on the Grassmannian $G(2, n)$. The First Fundamental Theorem of Invariant Theory says that they generate the ring of invariants $S^{SL(2, k)}$, [6 Theorem 2.1]. Note that $S^{SL(2, k)}$ is the homogeneous coordinate ring of $G(2, n)$ in the Plücker embedding.
Proposition 2.1. Let \(R_{w} \) be the invariant ring of the introduction and let \(|w| = w_{1} + \cdots + w_{n}\).

Proof. Let \(X = (\mathbb{P}^{1})^{n} \). The torus \(T_{w} = \{ \text{diag}(t_{1}, \ldots, t_{n}) \in \text{GL}(n, k) \mid t_{1}^{w_{1}}t_{2}^{w_{2}} \cdots t_{n}^{w_{n}} = 1 \} \) acts on the right of \(A^{2 \times n} \) by matrix multiplication inducing an action on \(S \) such that \(S^{T_{w}} = \bigoplus S_{d_{w}} \). We get

\[
R_{w} = \left(\bigoplus_{d} H^{0} \left((\mathbb{P}^{1})^{n} \times T_{w}, l_{d_{w}}^{\text{SL}(2,k)} \right) \right) = \left(\bigoplus_{d} S_{d_{w}} \right) = \left(S^{T_{w}} \right)^{\text{SL}(2,k)}.
\]

Since the actions of \(\text{SL}(2,k) \) and \(T_{w} \) commute, we have \(\left(S^{T_{w}} \right)^{\text{SL}(2,k)} = (S^{\text{SL}(2,k)})^{T_{w}} \).

Now, \(S^{\text{SL}(2,k)} \) has a vector space basis consisting of \(s_{\tau} \) where \(\tau \) ranges over semi-standard Young tableaux of shape \((k, k)\), see for example [6] Theorem 2.3. Let \(f = \sum_{\tau} a_{\tau} s_{\tau} \in S^{\text{SL}(2,k)} \), where \(\tau \) runs over semi-standard tableaux. Since the action of \(T_{w} \) is linear, and the \(s_{\tau} \) are linearly independent, \(f \) is invariant under \(T_{w} \) if and only if every \(s_{\tau} \) is invariant. Note that for a tableau \(\tau \) with content \(w(\tau) \), we have \(t \cdot s_{\tau} = t_{w(\tau)}^{w(\tau)} \cdots t_{n}^{w(\tau)} s_{\tau} \). In particular, \(s_{\tau} \) is invariant if and only if there is \(d \) with \(w(\tau) = d_{w} \). The claim follows. \(\square \)

In particular, when \(w = 1^{n} \) and \(n = 2m \) even, the dimension of the space of lowest degree invariants in \(R_{w} \) is the Catalan number \(C_{m} \).

Remark 2.2. One can view \(R_{w} \) as a multigraded Veronese subring of the Plücker algebra. The Plücker algebra \(S^{\text{SL}(2,k)} \) admits a \(\mathbb{N}^{n} \)-grading determined by the weight under the action of the diagonal torus \(T = \text{diag}(t_{1}, \ldots, t_{n}) \) via \(t \cdot p_{i,j} = t_{i,j} p_{i,j} \). Then for a tableau \(\tau \) with content \(w(\tau) \), we have \(t \cdot s_{\tau} = t_{w(\tau)}^{w(\tau)} s_{\tau} \) and thus we can conclude as in the proof of Proposition 2.1 that

\[
\left(S^{\text{SL}(2,k)} \right)_{w} = \{ s_{\tau} \mid \tau \text{ is semi-standard of shape } (|w|/2, |w|/2) \text{ with filling } w(\tau) = w \}.
\]
Here $\langle \cdots \rangle$ denotes the span as a vector space over k. In particular, $\left(S^{SL(2,k)} \right)_w = 0$ if $|w|$ is odd. It then follows that $R_w = \bigoplus_{d \in \mathbb{N}} \left(S^{SL(2,k)} \right)_{dw}$.

Definition 2.3. To a tableau τ of shape (k,k) is associated a partition $\nu_\tau = (\nu_1, \ldots, \nu_n)$ of d, the content of the first row of τ, i.e., $\nu_i = |\{j \mid i_j = i\}|$.

The following Lemma can be easily deduced from the discussion in [15, Section 3]. We include a sketch of the proof for the convenience of the reader.

Lemma 2.4. The semistandard Young tableaux of shape $(|w|/2,|w|/2)$ with filling w are in bijection with partitions $\nu = (\nu_1, \ldots, \nu_n)$ of $|w|/2$ satisfying

$$
(2.2) \quad 0 \leq \nu_\ell \leq w_\ell \text{ and }
(2.3) \quad 2(\nu_1 + \cdots + \nu_{\ell-1}) + \nu_\ell \geq w_1 + \cdots + w_\ell
$$

for $1 \leq \ell \leq n$. These conditions imply $\nu_1 = w_1$ and $\nu_n = 0$.

Proof. To a tableau with filling w and increasing rows is associated a partition of $|w|/2$ by Definition 2.3. Conversely, to a partition ν satisfying (2.2), we associate a tableau τ of shape $(\lfloor |w|/2 \rfloor, \lfloor |w|/2 \rfloor)$ by filling the first row with ν_1 1's, ν_2 2's, etc., and the second row with $(w_1 - \nu_1)$ 1's, $(w_2 - \nu_2)$ 2's, etc. By construction the rows of this tableau are increasing and it has filling w. These associations are inverse to each other. Moreover, τ is semistandard if and only if $\nu_1 + \cdots + \nu_{\ell-1} \geq (w_1 - \nu_1) + \cdots + (w_\ell - \nu_\ell)$ for $1 \leq \ell \leq n$. This condition is equivalent to (2.3). \hfill \square

3. The Hilbert Polynomial and Degree of M_w

In this section we will prove the formulas for the Hilbert function of R_w and the degree of M_w of Theorem 1.1. Our techniques are similar to those of Howe [18, 5.4.2.3.] who computed the case when $w = 1^n$.

Let $\lambda = (|w|/2,|w|/2)$ and $\mu = w$. For partitions λ and μ the Kostka numbers $K(\lambda,\mu)$ are defined to be the number of semistandard Young tableaux of shape λ and content μ. For a partition $\lambda = (\lambda_1, \ldots, \lambda_s)$, we let $d\lambda = (d\lambda_1, \ldots, d\lambda_s)$. Note that by Proposition 2.1 the dimension of $(R_w)_d$ is equal to $K(d\lambda, d\mu)$.

In order to compute the Hilbert polynomial, we give a formula for these particular Kostka numbers. The main step in proving this formula is to set up a relationship between the Kostka numbers and numbers of the corresponding partitions of Definition 2.3. We let $\Pi(n, \infty, k) = \{(\nu_1, \ldots, \nu_n) \mid 0 \leq \nu_i \text{ for } i \in [n] \text{ and } \nu_1 + \cdots + \nu_n = k\}$, and let

$$
(3.1) \quad \pi(n, \infty, k) = |\Pi(n, \infty, k)| = \binom{n-1+k}{n-1}.
$$

Let $w = (w_1, \ldots, w_n) \in \mathbb{N}^n$. We let $\Pi(n, w, k) = \{(\nu_1, \ldots, \nu_n) \mid 0 \leq \nu_i \leq w_i \text{ for } i \in [n] \text{ and } \nu_1 + \cdots + \nu_n = k\}$ and let $\pi(n, w, k) = |\Pi(n, w, k)|$. For a subset $I \subseteq [n] = \{1, \ldots, n\}$, we let $\Pi(n, w_I, k) = \{(\nu_1, \ldots, \nu_n) \in \Pi(n, \infty, k) \mid 0 \leq \nu_i \leq w_i \text{ for } i \in I\}$ and $\pi(n, w_I, k) = |\Pi(n, w_I, k)|$.
Lemma 3.1. For any $I \subseteq [n]$,
\[
\pi(n, w_I, k) = \sum_{J \subseteq I} (-1)^{|J|} \pi(n, \infty, k - (|w_J| + |J|)) \\
= \sum_{J \subseteq I} (-1)^{|J|} \left(\frac{n - 1 + k - (|w_J| + |J|)}{n - 1}\right).
\]

Proof. We proceed by induction on the cardinality of I. When $I = \emptyset$, the above claim is immediate. If $I \neq \emptyset$, let $j \in I$. Since
\[
\pi(n, w_I, k) = \pi(n, w_{I \setminus \{j\}}, k) - \pi(n, w_{I \setminus \{j\}}, k - w_j - 1),
\]
the claim follows from the induction hypothesis. The last equality follows from (3.1). \hfill \Box

Proposition 3.2. Let $w \in \mathbb{N}^n$ and assume that $|w|$ is even. Then for $\lambda = (|w|/2, |w|/2)$ and $\mu = w$, we have
\[
K(\lambda, \mu) = \pi(n, w, |w|/2) - \pi(n, w, |w|/2 - 1) \\
= \sum_{\substack{J \subseteq [n] \\ |w_J| < |w|/2}} (-1)^{|J|} \left(\frac{|w|/2 - |w_J| + n - |J| - 2}{n - 2}\right).
\]

Proof. For the first equality, we need to express the Kostka numbers in terms of partitions. For $\nu \in \mathbb{R}^n$, we define a function $f_\nu: [n] \to \mathbb{R}$ by
\[
f_\nu(i) = 2\nu_1 + \cdots + 2\nu_{i-1} + \nu_i - (w_1 + \cdots + w_i)
\]
for $1 \leq i \leq n$. Then Lemma 3.4 implies that for $w \in \mathbb{Z}^n$ with $|w|$ even, $\lambda = (|w|/2, |w|/2)$, and $\mu = w$ we have
\[
K(\lambda, \mu) = \{|\nu \in \Pi(n, w, |w|/2) | f_\nu(i) \geq 0 \text{ for all } 1 \leq i \leq n|\}.
\]
For $\nu \in \mathbb{Z}^n$ we let $m_\nu = \min\{f_\nu(j) | j \in [n]\}$ and $i_\nu = \max\{j | f_\nu(j) = m_\nu\}$ and define
\[
\phi: \{\nu \in \Pi(n, w, |w|/2) | \exists \ i \text{ such that } f_\nu(i) < 0\} \to \Pi(n, w, |w|/2 - 1) \\
(\nu_1, \ldots, \nu_n) \mapsto (\nu_1, \ldots, \nu_{i_\nu} - 1, \ldots, \nu_n).
\]
We claim that ϕ is well-defined and gives a bijection. Note that the first equality then follows from this claim together with (3.3).

The following equalities follow easily from the definition of f_ν:
\[
f_\nu(i + 1) = f_\nu(i) + \nu_i - w_{i+1} + \nu_{i+1}
\]
\[
f_\nu(n) = 2|\nu| - |w| - \nu_n.
\]
To see that ϕ is well defined, we have to show that $\nu_{i_\nu} > 0$. When $i_\nu < n$ then $f_\nu(i + 1) > f_\nu(i)$ and (3.4) implies $\nu_i > w_{i+1} - \nu_{i+1} \geq 0$. If $i_\nu = n$, then $f_\nu(n) = m_\nu < 0$, since there exists i such that $f_\nu(i) < 0$ and $m_\nu \leq f_\nu(i)$. Since $|\nu| = |w|/2$, $f_\nu(n) = -\nu_n$ by (3.5), so we have $\nu_n > 0$.

To see that ϕ is a bijection, we exhibit the inverse map. For $\nu' \in \Pi(n, w, |w|/2 - 1)$, we let $j_{\nu'} = \min\{i | f_\nu(i) = m_\nu\}$ and define
\[
\psi: (\nu'_1, \ldots, \nu'_n) \mapsto (\nu'_1, \ldots, \nu'_{j_{\nu'}} + 1, \ldots, \nu'_n).
\]
We have

\[
(f_{\nu}(i)) = \begin{cases}
 f_{\nu}(i) & \geq m_{\nu} + 1 \quad \text{if } i < j_{\nu} \\
 f_{\nu}(i) + 1 & = m_{\nu} + 1 \quad \text{if } i = j_{\nu} \\
 f_{\nu}(i) + 2 & \geq m_{\nu} + 2 \quad \text{if } i > j_{\nu}.
\end{cases}
\]

We have to show that \(\psi\) is well-defined. If \(j_{\nu} > 1\), then \(f_{\psi}(\nu)(j_{\nu}) = f_{\psi}(\nu)(j_{\nu} - 1) + \nu_{j_{\nu} - 1} - w_{j_{\nu}} + \nu_{j_{\nu} - 1} + 1\) by (3.4). Plugging in the values from (3.6), we see that \(w_{j_{\nu}} \geq \nu_{j_{\nu}} + 1\). If \(j_{\nu} = 1\), then \(f_{\psi}(\nu)(1) = \nu_{1} + 1 - w_{1} = m_{\nu} + 1\). However, note that \(m_{\nu} \leq f_{\nu}(n) \leq -2\) by [3.5] and so it follows that \(\nu_{1} + 2 \leq w_{1}\). Moreover, (3.6) implies that \(i_{\psi}(\nu) = j_{\nu}\). One can check similarly that \(j_{\phi}(\nu) = \nu\) and it follows that \(\phi\) and \(\psi\) are inverse to each other.

For the second equality, note that Lemma 3.1 implies that

\[
\pi (n, w, |w|/2) - \pi (n, w, |w|/2 - 1) = \sum_{J \subseteq [n]} (-1)^{|J|} \binom{n - 1 + |w|/2 - (|w|/2 + |J|)}{n - 1} - \binom{n - 2 + |w|/2 - (|w|/2 + |J|)}{n - 1}
\]

Using the identity \(\binom{m}{n} - \binom{m-1}{n} = \binom{m}{n-1}\), one obtains the formula in the statement. Note that if \(|w| \geq |w|/2\), the expression in the top of the binomial coefficient is less than \(n - 2\), so it suffices to sum over those \(J \subseteq [n]\) such that \(|w| < |w|/2\).

Proof of Theorem 1.1 Fix \(w \in \mathbb{N}^n\), let \(\lambda = (|w|/2, |w|/2)\), and let \(\mu = w\). It follows from Proposition 2.1 that \(\dim(R_w)_d = 0\) if \(d|w|\) is odd and that \(\dim(R_w)_d = K(d, \lambda, d\mu)\) if \(d|w|\) is even. The formula for \(h(d)\) then follows from Proposition 3.2.

The formula for the degree of \(M_w\) is obtained by computing the coefficient of \(d^{n-3}\) in the Hilbert polynomial and multiplying by \((n - 3)!\).

Remark 3.3. Our formula also implies a closed formula for the multigraded Hilbert function and Poincaré-Hilbert series of the coordinate ring of the Grassmannian \(G(2, n)\) in the Plücker embedding with the multigrading described in Remark 2.2. In [37, Theorem 3.4.3] Jakub Witaszek gives a recursive formula for the multigraded Poincaré-Hilbert series \(\sum_{w \in \Lambda} \dim(S_{\text{SL}(2, k)})(w) z^w\) of the Plücker algebra for the multigrading described in Remark 2.2. He also obtains a combinatorial formula for the Poincaré-Hilbert series.

Let \(\Lambda = \{w \in \mathbb{Z}^n \mid |w| \in 2\mathbb{Z}\}\). By Remark 2.2 we have \(\dim(S_{\text{SL}(2, k)})(w) = K(\lambda, \mu)\), where \(\lambda = (|w|/2, |w|/2)\) and \(\mu = w\). It follows that the support of the multigraded Hilbert function \(h\) is \(\{w \in \Lambda \mid |w|/2 \geq w_j \text{ for all } 1 \leq j \leq n\}\). Then Proposition 3.2 implies that for \(w \in \Lambda\),

\[
h(w) = \dim(S_{\text{SL}(2, k)})(w) = \sum_{J \subseteq [n]} (-1)^{|J|} \binom{|w|/2 - |w|/2 + n - |J| - 2}{n - 2}.
\]

So we obtain a closed formula for the multigraded Poincaré-Hilbert series.

A point \(p = (p_1, \ldots, p_n) \in (\mathbb{P}^1)^n\) is stable (resp. semistable) for the \(\text{SL}(2, k)\)-linearization of \(L_w\) if for all subsets of indices of colliding points \(J = \{j \in [n] \mid p_j = p \text{ for some } p\}\) we have \(|w| < |w|/2\) (resp. \(|w| \leq |w|/2\)), see [28, Chapter 3], [36, Section
6, or [13 Section 8]. Identifying \(\mathbb{N}^n \) with the effective divisors on \((\mathbb{P}^1)^n \), we see that the fact that in the formula for the multigraded Hilbert function we sum over those \(J \subseteq [n] \) such that \(|w_j| < |w|/2 \) reflects the chamber structure for the GIT chambers whose walls are given by \(|w_j| = |w|/2 \). In particular, the multigraded Hilbert function is piecewise polynomial in \(w \in \Lambda \) and the domains of polynomiality agree with the GIT chambers.

Remark 3.4. In the formula for the Hilbert polynomial of Theorem 1.1, the terms of degree \((n - 2)\) cancel out since \(\dim M_w = n - 3 \). Thus we obtain the following identity:

\[
\sum_{J \subseteq [n]} (-1)^{|J| (|w|/2 - |w_J|)^{n-2}} = 0.
\]

Remark 3.5. Let \(g(d) \) denote the Hilbert function of \(G(2, n) \) in the Plücker embedding. Recall the multigraded Hilbert function \(h \) for the Plücker embedding from Remark 3.3. Then we have

\[
g(d) = \sum_{w \in \mathbb{N}^n \atop |w| = 2d} h(w),
\]

implying the identity

\[
(3.7) \quad \binom{n + d - 1}{d}^2 - \binom{n + d}{d+1} \binom{n + d - 2}{d-1} = \sum_{w \in \mathbb{N}^n \atop |w| = 2d, |w_j| < |w|/2} \sum_{J \subseteq [n]} (-1)^{|J| \left(\frac{|w|}{2} - |w_J| + n - |J| - 2 \right)}.
\]

Remark 3.6. While our formula counts semistandard tableaux, it contains negative signs. It would be nice to have a formula with positive coefficients. In fact, King, Toulu and Toumazet conjecture that for arbitrary \(\lambda, \mu \) the coefficients of the polynomial \(K(d\lambda, d\mu) \) are positive in [21 Conjecture 3.2].

Remark 3.7. Narayanan shows in [29 Theorem 1] that the problem of computing Kostka numbers \(K(\lambda, \mu) \) is \#P-complete. Note that for our formula, one has to compute first all subsets of \([n]\), where \(n \) is the length of \(\mu \).

Example 3.8. The formula in Theorem 1.1 shows that \(\deg(M_4) = 1 \), \(\deg(M_6) = 3 \), \(\deg(M_8) = 40 \), \(\deg(M_{10}) = 1225 \), \(\deg(M_{12}) = 67956 \), \(\deg(M_{14}) = 5986134 \), \(\deg(M_{16}) = 769550496 \), so this sequence agrees with A012250 on Sloane’s online encyclopedia of integer sequences [32], compare [16 Section 2.15]. Similarly, when \(w = (2, \ldots, 2) \), the degrees of \(M_w \) are \(\deg(M_2^w) = 2 \), \(\deg(M_5^w) = 5 \), \(\deg(M_6^w) = 24 \), \(\deg(M_7^w) = 154 \), \(\deg(M_8^w) = 1280 \), \(\deg(M_9^w) = 13005 \), \(\deg(M_{10}^w) = 156800 \), \(\deg(M_{11}^w) = 2189726 \) which agrees with sequence A012249 [33].

The following example shows that while for \(w = 1^8 \), \(I_w \) is generated by quadratic equations by [17], the ring of invariants \(R_w \) is not Koszul.

Example 3.9. Recall that for a graded algebra \(R \) the Hilbert series is given by \(H(z) = \sum_{d=0}^\infty \dim(R_d)z^d \). Similarly, the Poincaré series is given by \(P(z) = \sum_{i=0}^\infty \dim\text{Tor}^R_i(k, k)z^i \). Let \(P(u, v) = \sum_{i=0}^\infty \dim\text{Tor}^R_i(k, k)_ju^iv^j \). Then we have \(H(z)P(-1, z) = 1 \) by [31 Chapter
2, Proposition 2.1]. If R is Koszul, then the minimal free graded resolution of k over R is linear, and so $P(uv) = P(u, v)$. Then $H(z)P(-z) = 1$ if and only if R is Koszul, see [10, Theorem 1]. In particular, the power series $H(-z)^{-1} = P(z)$ must have positive coefficients.

Note that for $w = 1^8$, the Hilbert function is given by

$$h(d) = \sum_{j=0}^{3} (-1)^j \binom{8}{j} \binom{d(4-j) + 6-j}{6},$$

so the Hilbert series is

$$H(z) = 1 + 14z + 91z^2 + 364z^3 + 1085z^4 + 2666z^5 + 5719z^6 + 11096z^7 + 19929z^8 + O(z^9)$$

$$= \frac{1 + 8z + 22z^2 + 8z^3 + z^4}{(1 - z)^6}. $$

Then

$$H(-z)^{-1} = 1 + 14z + 105z^2 + 560z^3 + 2296z^4 + 6880z^5 + 8904z^6 \quad - 62320z^7 - 641704z^8 + O(z^9).$$

Remark 3.10. For $w = 1^{10}$ it is not known whether R_w is Koszul or whether the ideal of relations between the generators admits a quadratic Gröbner basis. One can check that the first 800 coefficients of $H(-z)^{-1}$ are positive, however it is not known whether the relation $H(-z)P(z) = 1$ is satisfied. In general one might hope that for n large and $w = 1^n$ the ring R_w is Koszul or has other nice properties, such as Green’s property N_p, see for example [23, Section 1.8.D].

4. A SAGBI degeneration of R_w

A crucial part in the proof of [17, Theorem 1.1] is the existence of toric degenerations of M_w indexed by trivalent trees on n leaves, see [17, Section 3.3]. The existence of one of these toric degenerations had been established by Foth and Hu in [9, Theorem 3.2]. In fact, the toric degenerations are torus quotients of the toric degenerations of the Grassmannian $G(2, n)$ studied by Sturmfels and Speyer [34] and by Gonciulea and Lakshmibai in [12]. Manon mentions in [26, Theorem 1.3.6] that the ring of invariants R admits a SAGBI degeneration. In this section we will give an explicit description of this SAGBI degeneration, by taking the torus invariants of the SAGBI degeneration described in [27, Section 14.3].

Let R be a finitely generated subalgebra of the polynomial ring $S = k[x_1, \ldots, x_n]$, and let \prec be a term order on S. Let $\text{in}_{\prec}(R)$ be the subalgebra of S generated by the initial terms of the elements of R. Assume this subalgebra is finitely generated. (Note that this is rarely the case). A set of generators $\{f_1, \ldots, f_r\}$ is called a SAGBI basis for R with respect to \prec if $\text{in}_{\prec} f_1, \ldots, \text{in}_{\prec} f_r$ generate $\text{in}_{\prec}(R)$. Let I be the ideal of relations between the generators of R. Then $\text{in}_{\prec}(R) \cong R/\text{in}_{\prec} I$, see [4, Proof of Corollary 2.1]. Since $\text{in}_{\prec}(R)$ is a monomial algebra, it is toric, and therefore the existence of a SAGBI basis for an
algebra implies the existence of a flat degeneration of this algebra to a toric algebra [7, Theorem 15.17]. Note that the toric algebra need not be normal.

Now let \(S = k[x_1, \ldots, x_n, y_1, \ldots, y_n] \) and \(R \) the ring of invariants as in Section \(2 \). Let \(\prec \) be the the purely lexicographic term order with \(x_1 \succ \cdots \succ x_n \succ y_1 \succ \cdots \succ y_n \).

Recall the polynomial \(s_{\tau} \) associated to a \(2 \times n \) tableau \(\tau = \begin{array}{ccc} i_1 & i_2 & \cdots & i_r \\ j_1 & j_2 & \cdots & j_r \end{array} \). We also associate a monomial \(m_{\tau} = x_{i_1} \cdots x_{i_r} y_{j_1} \cdots y_{j_r} \in S \).

Lemma 4.1. A monomial \(m \) is a leading monomial of an element in \(R \) if and only if \(m = m_{\tau} \), where \(\tau \) is semistandard with filling \(dw \), for some \(d \). In particular, the set of these \(m_{\tau} \) is a vector space basis for \(\text{in}_\prec(R) \).

Proof. By Proposition \(2.1 \) the polynomials \(s_{\tau} \), where \(\tau \) ranges over semistandard Young tableaux of shape \(2 \times \frac{|w|}{2} \) with content \(dw \) form a vector space basis of \(R \). Note that every monomial occurring in \(s_{\tau} \) is of the form \(m_{\tau'} \), where \(\tau' \) is a (not necessarily semistandard) tableau with the same shape and same content as \(\tau \). Among those monomials, the largest with respect to the term order \(\prec \) is \(m_{\tau} \). In particular, \(m_{\tau} \in \text{in}_\prec(R) \). Moreover, the leading monomial of an element \(\sum_{\tau \in T} a_{\tau} s_{\tau} \in R \) is \(m_{\tau'} \), where \(m_{\tau'} \) is the largest monomial in \(\{ m_{\tau} \mid \tau \in T a_{\tau} \neq 0 \} \) with respect to the term order \(\prec \). Since to distinct semistandard tableaux are associated distinct monomials, the \(m_{\tau} \) are also linearly independent. See also [27, Lemma 14.13]. \(\square \)

Definition 4.2. Let \(w \in \mathbb{N}^n \). Let \(Q_w \subset \mathbb{R}^n \) be the polytope defined by \(\nu_1 + \cdots + \nu_n = \frac{|w|}{2} \) and the inequalities (2.2) and (2.3).

Example 4.3. Let \(w = (2, 2, 2, 2) \). Then the inequalities for \(Q_w \) imply \(\nu_1 = 2, \nu_5 = 0, \) and \(\nu_4 = 3 - \nu_2 - \nu_3 \). Thus \(Q_w \) is the 2-dimensional polytope given by the inequalities \(0 \leq \nu_2, \nu_3 \leq 2, 0 \leq 3 - \nu_2 - \nu_3 \leq 2, \) and \(2\nu_2 + \nu_3 \geq 2 \). From this we can see that \(Q_w \) is isomorphic to the convex hull of \(\{ (1, 0), (2, 0), (2, 1), (1, 2), (0, 2) \} \).

![Figure 1. The polytopes \(Q_w \) of Example 4.3 (with reference lattice \(\mathbb{Z}^n \)) and \(P_w \) of Example 5.2 (with reference lattice \((2\mathbb{Z})^n \)) for \(w = (2, 2, 2, 2) \).](image)

Note that when \(w = (1, 1, 1, 1, 1) \), \(Q_w \) contains no lattice points; in particular, it is not a lattice polytope. However, it follows from Lemma 5.3 and Lemma 5.4 that \(2Q_w \) is a lattice polytope for all \(w \).
Remark 4.4. Note that Q_w is a Gelfand-Tsetlin polytope, see for example [5].

Recall that to a rational polytope P is associated a graded monoid $S_P = \{(u, d) \mid u \in dP \cap \mathbb{Z}^n, d \in \mathbb{N}\}$ and an algebra $k[S_P] = \langle x^u z^d \mid (u, d) \in S_P \rangle$.

Proposition 4.5. The subalgebra $\in_{\tau} R$ is isomorphic to the polytopal semigroup algebra $k[S_{Q_w}]$. In particular, $\in_{\tau} R$ is finitely generated.

Proof. By Lemma 4.4, $\in_{\tau}(R)$ is generated as a vector space by m_τ where τ runs over all semistandard Young tableaux of shape $2 \times \frac{d|w|}{2}$ with content dw. Note that for such a semistandard Young tableau τ we have $m_\tau = x^\nu z^w$, where ν is the partition associated to τ as in Definition 2.3. Let $\phi: \in_{\tau} R \to k[x_1, \ldots, x_n, z]$ be the homomorphism induced by letting $\phi(m_\tau) = x^\nu z^d$, when τ has shape $2 \times \frac{d|w|}{2}$. Since ν determines τ, this homomorphism is injective. It follows from Lemma 2.4 that it is surjective onto $k[S_{Q_w}]$. Note that for any rational polytope, the associated polytopal semigroup algebra $k[S_{Q_w}]$ is finitely generated. \square

Remark 4.6. When $w = 1^n$, one can show that this toric degeneration is a degeneration of Fano varieties, and the corresponding line bundle the anticanonical line bundle. As this seems well known, we omit the proof.

5. The quadratic Gröbner basis

We now assume that $w \in (2\mathbb{Z})^n$. The goal of this section is to show that in this case, the polytopal semigroup algebra $k[S_{Q_w}]$ is generated in degree 1, and admits a presentation such that the ideal of relations has a quadratic Gröbner basis. It then follows from general properties of SAGBI degenerations that R_w also admits such a presentation.

Instead of showing these properties directly for the polytopes Q_w, we will show them for a family of isomorphic polytopes P_w. The latter ones exhibit more symmetry that we will exploit later on. We denote the i'th component of a vector $u \in \mathbb{R}^{n-3}$ by $u(i + 1)$ instead of u_i.

Definition 5.1. We say that a point $(x, y, z) \in \mathbb{R}^3$ satisfies the triangle inequalities if $x + y \geq z, x + z \geq y, \text{ and } y + z \geq x$. To $w \in (2\mathbb{N})^n$ is associated a polytope $P_w \subset \mathbb{R}^{n-3}$ consisting of $(u(2), \ldots, u(n-2))$ such that

$$(w_1, w_2, u(2)), (u(n-2), w_{n-1}, w_n), \text{ and } (u(i-1), w_i, u(i))$$

satisfy the triangle inequalities for $3 \leq i \leq n-2$.

Example 5.2. When $w = (2, 2, 2, 2, 2)$, the polytope P_w is given by the inequalities $0 \leq u(2) \leq 4, 0 \leq u(3) \leq 4, u(2) + u(3) \geq 2, u(2) + 2 \geq u(3), u(3) + 2 \geq u(2)$. See Figure 4.3.

It follows from Lemma 5.4 that P_w is a lattice polytope for the lattice $M := (2\mathbb{Z})^{n-3}$.

Lemma 5.3. The polytopal semigroups $S_{Q_w} = \{(v, d) \mid d \in \mathbb{N}, v \in dQ_w \cap \mathbb{Z}^n\}$ and $S_{P_w} = \{(u, d) \mid d \in \mathbb{N}, u \in dP_w \cap M\}$ are isomorphic.
Proof. Let \(V = \{(v_1, \ldots, v_n, d) \in \mathbb{R}^n \times \mathbb{R} \mid v_1 = dw_1, v_n = 0, \text{ and } v_1 + \cdots + v_n = \frac{d|w|}{2}\} \),
an affine subspace of \(\mathbb{R}^n \times \mathbb{R} \). Then \(S_{Q_w} \subset V \). We identify \(V \) with \(\mathbb{R}^{n-3} \times \mathbb{R} \) via \((v_1, \ldots, v_n, d) \mapsto (v_2, \ldots, v_{n-2}, d), \) with inverse \((v_2, \ldots, v_{n-2}, d) \mapsto (dw_1, v_2, \ldots, v_{n-2}, \frac{d|w|}{2} - dw_1 - v_2 - \cdots - v_{n-2}, 0, d) \). Since \(|w| \) is even, this identification respects the lattices \(V \cap (\mathbb{Z}^n \times \mathbb{Z}) \) and \(\mathbb{Z}^{n-3} \times \mathbb{Z} \). Let
\[
\phi : \mathbb{R}^{n-3} \times \mathbb{R} \rightarrow \mathbb{R}^{n-3} \times \mathbb{R}, (v_2, \ldots, v_{n-2}, d) \mapsto (u(2), \ldots, u(n-2), d),
\]
where \(u(\ell) = 2(v_2 + \cdots + v_{\ell}) - d(w_2 + \cdots + w_\ell - w_1) \) for \(2 \leq \ell \leq n - 2 \). Then \(\phi \) has an inverse given by letting
\[
\nu_2 = \frac{u(2) - dw_1 + dw_2}{2} \quad \text{and} \quad \nu_\ell = \frac{u(\ell) - u(\ell - 1) + dw_\ell}{2}
\]
for \(3 \leq \ell \leq n - 2 \). So \(\phi \) is an isomorphism. Moreover, it induces an isomorphism between \(\mathbb{Z}^{n-3} \times \mathbb{Z} \) and \(M \times \mathbb{Z} \).

We claim that \(\phi(dQ_w \times \{d\}) = dP_w \times \{d\} \). Using the fact that for \((v_1, \ldots, v_n) \in dQ_w \) we have \(v_1 = dw_1, v_n = 0, \) and \(v_{n-1} = \frac{d|w|}{2} - (dw_1 + v_2 + \cdots + v_{n-2}) \), the inequalities for \(dQ_w \cap \mathbb{R}^{n-3} \) are in the left column below, where \(3 \leq \ell \leq n - 2 \). The corresponding inequalities for \(dP_w \) are on the right.
\[
\begin{align*}
\nu_2 &\geq 0 & u(2) &\geq dw_1 - dw_2 \\
\nu_2 &\leq dw_2 & u(2) &\leq dw_1 + dw_2 \\
\nu_2 &\geq dw_2 - dw_1 & u(2) &\geq dw_2 - dw_1 \\
\nu_\ell &\geq 0 & u(\ell - 1) - u(\ell) &\leq dw_\ell \\
\nu_\ell &\leq dw_\ell & u(\ell) - u(\ell - 1) &\leq dw_\ell \\
2(\nu_2 + \cdots + \nu_{\ell-1}) + \nu_\ell &\geq d(w_2 + \cdots + w_\ell - w_1) & u(\ell) + u(\ell - 1) &\geq dw_\ell \\
\nu_2 + \cdots + \nu_{n-2} &\leq \frac{d|w|}{2} - dw_1 & u(n - 2) &\leq dw_{n-1} + dw_n \\
\nu_2 + \cdots + \nu_{n-2} &\geq \frac{d|w|}{2} - dw_1 - dw_{n-1} & u(n - 2) &\geq dw_n - dw_{n-1} \\
\nu_2 + \cdots + \nu_{n-2} &\geq \frac{d|w|}{2} - dw_1 - dw_n & u(n - 2) &\geq dw_{n-1} - dw_n
\end{align*}
\]
where the last inequality on the left follows from \((2.3)\) for \(\ell = n - 1 \). It is now easy to check that the inequalities on the left correspond to the inequalities on the right under \(\phi \), so \(\phi \) induces the required isomorphism of semigroups.

\[\square\]

Lemma 5.4. We have the following properties of \(P_w \).

(i) The polytope \(P_w \) is normal with respect to \(M \), i.e., every lattice point in \(mP_w \cap M \) is a sum of \(m \) lattice points in \(P_w \cap M \).

(ii) For \(v, v' \in P_w \cap M \) there is \(u, u' \in P_w \cap M \) such that \(v + v' = u + u' \) and \(|u(i) - u'(i)| \leq 2 \) for all \(2 \leq i \leq n - 2 \).

Proof. The proof of (i) closely follows \[16\] Lemma 7.3 and is essentially the proof of Lemma 6.4 in \[15\]. We first need to introduce some notation. Let \(\sigma \in \{+, -\} \) and let \(e^\sigma \) denote rounding to the nearest even integer, where for \(a \in \mathbb{Z} \), we let \(e^+ (2a + 1) = 2a + 2 \)
and \(e^{- (2a + 1)} = 2a\). For \(r = (r(2), \ldots, r(n - 2)) \in mP_w \cap M\), we say that a sequence of signs \(\sigma(i) \in \{+, -\}\) for \(2 \leq i \leq n - 3\) is \((r, m)\)-admissible if it satisfies \(\sigma(i + 1) = -\sigma(i)\) if and only if \(r(i)m = r(i+1)m\) are odd integers and \(r(i)m + r(i+1)m = w_{i+1}\). Such a sequence exists and is unique up to a global sign change.

We claim that if \(\sigma(i)\) is \((r, m)\)-admissible, then

\[
 u_{r} = (u(2), \ldots, u(n - 2)) = \left(e^{\sigma(2)} \left(\frac{r(2)}{m} \right), \ldots, e^{\sigma(n-2)} \left(\frac{r(n-2)}{m} \right) \right),
\]

is a lattice point in \(P_w\).

The following properties of \(e^\sigma\) for \(\sigma \in \{+, -\}, a \in 2\mathbb{Z}\) and \(x, y \in \mathbb{R}\) will be useful:

1. \(e^\sigma\) is increasing.
2. \(e^\sigma(x + a) = e^\sigma(x) + a\).
3. If \(a \geq x\) then \(a \geq e^\sigma(x)\).
4. If \(x + y \geq a\) then \(e^\sigma(x) + e^-\sigma(y) \geq a\).
5. \(e^\sigma(x) + e^\sigma(y) \geq x + y - 2\).
6. \(e^\sigma(-x) = -e^-\sigma(x)\).

That \((w_1, w_2, u(2))\) and \((u(n - 2), w_{n-1}, w_n)\) satisfy the triangle inequalities follows from the assumption that \(\left(w_1, w_2, \frac{r(2)}{m} \right)\) and \(\left(\frac{r(n-2)}{m}, w_{n-1}, w_n \right)\) satisfy the triangle inequalities and (1), (2) and (3). For example, we have \(w_1 + u(2) = w_1 + e^\sigma \left(\frac{r(2)}{m} \right) = e^\sigma \left(w_1 + \frac{r(2)}{m} \right) \geq e^\sigma(w_2) = w_2\) and \(w_1 + w_2 \geq e^\sigma \left(\frac{r(2)}{m} \right) = u(2)\).

When \(2 \leq i \leq n - 3\), we have to show

\[
\begin{align*}
 (5.1) & \quad u(i) + w_{i+1} \geq u(i + 1) \\
 (5.2) & \quad u(i + 1) + w_{i+1} \geq u(i) \\
 (5.3) & \quad u(i) + u(i + 1) \geq w_{i+1}.
\end{align*}
\]

We consider two cases. We first assume that \(\sigma(i) = \sigma(i + 1)\), and we let \(\sigma = \sigma(i) = \sigma(i + 1)\). Then \(\frac{r(i)}{m}\) and \(\frac{r(i+1)}{m}\) are not both odd integers or \(\frac{r(i)}{m} + \frac{r(i+1)}{m} > w_{i+1}\). To see (5.2), note that \(u(i + 1) + w_{i+1} = e^\sigma \left(\frac{r(i+1)}{m} \right) + w_{i+1} = e^\sigma \left(\frac{r(i+1)}{m} + w_{i+1} \right) \geq e^\sigma \left(\frac{r(i)}{m} \right) = u(i)\) by (1), (2) and the assumption that \(\left(\frac{r(i)}{m}, \frac{r(i+1)}{m}, w_{i+1} \right)\) satisfy the triangle inequalities. \((5.1)\) follows similarly. For \((5.3)\), if both \(\frac{r(i)}{m}\) and \(\frac{r(i+1)}{m}\) are odd integers then \(\frac{r(i)}{m} + \frac{r(i+1)}{m} > w_{i+1}\) by assumption. Hence, by (5), \(u(i) + u(i + 1) \geq \frac{r(i)}{m} + \frac{r(i+1)}{m} - 2 > w_{i+1} - 2\) which implies \((5.3)\) since \(u(i), u(i + 1)\) and \(w_{i+1}\) are even. Otherwise there exists \(x \in \left\{ \frac{r(i)}{m}, \frac{r(i+1)}{m} \right\}\) that is not an odd integer. Then \(e^\sigma(x) = e^-\sigma(x)\) and now \((5.3)\) follows from (4).

Suppose now that \(\sigma(i + 1) = -\sigma(i)\). Then \(\frac{r(i)}{m}\) and \(\frac{r(i+1)}{m}\) are odd integers and \(\frac{r(i)}{m} + \frac{r(i+1)}{m} = w_{i+1}\). Then \((5.3)\) follows from (4). If \(\sigma(i) = +\) and \(\sigma(i + 1) = -\) then \((5.1)\) follows easily. Since \(\frac{r(i+1)}{m}\) is a positive odd integer, we have \(2\frac{r(i+1)}{m} > 0\), and using the assumption \(\frac{r(i)}{m} + \frac{r(i+1)}{m} = w_{i+1}\), we obtain \(u(i + 1) + w_{i+1} = \frac{r(i+1)}{m} - 1 + w_{i+1} > \frac{r(i)}{m} - 1 = \)
Proof.
To prove the Lemma, we will need the following fact: we have
Lemma 5.7.
A monomial \(u \) is norm-minimal if and only if for all \(X_u \) dividing \(m \), we have \(\| u(i) - 2 \| = \| u(i) \| = 2 \) for all \(i \leq |v(i) - u(i)| \leq 2 \) for all \(2 \leq i \leq n - 2 \).

For (i), we proceed by induction on \(m \). For \(m = 1 \) there is nothing to show. Assume that \(m \geq 2 \). For \(r \in mP \cap M \), let \(u = u_r \) as in the claim. Then by the claim, \(u \) lies in \(P_w \cap M \). Let \(v = (v(2), \ldots, v(n - 2)) \), where \(v(i) = e^{-\sigma(i)} (\frac{m-1}{m}r(i)) \). Note that it follows from (4) and (6) that \(u(i) + v(i) = r(i) \), so \(u + v = r \). Replacing \(u \) by \(v \), \(\sigma \) by \(-\sigma \), \(w_i \) by \((m-1)w_i \) and \(\frac{r(i)}{m} \) by \(\frac{m-1}{m}r(i) \), and noting that \((\frac{m-1}{m}) \in (m-1)P_w \) and that \(\frac{r(i)}{m} \) is odd if and only if \(\frac{(m-1)r(i)}{m} \) is odd, the same arguments as in the proof of the claim show that \(v = u \in (m-1)P_w \cap M \). But \(v \) is a sum of \(m-1 \) lattice points in \(P_w \) by induction.

For (ii), we apply the claim to \(r = v + v' \) and let \((\sigma(2), \ldots, \sigma(n - 2)) \) be a \((r, 2)\)-admissible sequence of signs. Then by the claim we have that
\[
\begin{align*}
u & = \left(e^{\sigma(2)} \left(\frac{r(2)}{2} \right), \ldots, e^{\sigma(n-2)} \left(\frac{r(n-2)}{2} \right) \right) \\
u' & = \left(e^{-\sigma(2)} \left(\frac{r(2)}{2} \right), \ldots, e^{-\sigma(n-2)} \left(\frac{r(n-2)}{2} \right) \right)
\end{align*}
\]
are lattice points in \(P_w \). The assertion follows. \(\square \)

Let \(J \) be the toric ideal associated to the polytope \(P_w \), i.e., \(J \) is the kernel of the map \(k[X_u \mid u \in P_w \cap M] \to k[SP_w] \), where \(X_u \mapsto (u(2), u(3), \ldots, u(n-2), 1) \). Since \(P_w \) is normal, the line bundle associated to \(P_w \) induces a projectively normal embedding of the toric variety \(X_{P_w} \) associated to \(P_w \), with homogeneous coordinate ring \(k[X_u]/J \). By Proposition 4.5 and Lemma 5.3, the toric variety \(X_{P_w} \) is isomorphic to \(\text{Proj}(\text{in}_<(R)) \).

Definition 5.5. Let \(m = \prod_{t=1}^\ell X_{u_t} \) be a monomial in \(k[X_u] \). We define the \textit{norm} of \(m \) to be
\[
N(m) = \sum_{t=1}^\ell \| u_t \| = \sum_{t=1}^\ell \sum_{i=2}^{n-2} u_t(i)^2.
\]

Definition 5.6. We say that a monomial \(m \) is \textit{norm-minimal}, if for all \(m' \) with \(m' - m \in J \), we have \(N(m') \geq N(m) \).

The following lemma characterizes norm-minimal monomials.

Lemma 5.7. A monomial \(m \) is norm-minimal if and only if for all \(X_vX_w \) dividing \(m \), we have \(|v(i) - v'(i)| \leq 2 \) for all \(2 \leq i \leq n - 2 \).

Proof. To prove the Lemma, we will need the following fact:
\[(*) \text{ Let } a_i, b_i \in 2\mathbb{Z} \text{ with } a_i + \cdots + a_\ell = b_1 + \cdots + b_\ell, \text{ and } |a_i - a_j| \leq 2 \text{ for all } i, j. \text{ Then } \sum_{i=1}^\ell a_i^2 \leq \sum_{i=1}^\ell b_i^2. \text{ Moreover, equality holds if and only if } \{a_1, \ldots, a_\ell\} = \{b_1, \ldots, b_\ell\}. \]
Given \((*)\), assume that \(m \) is norm-minimal, but that there exists a quadratic factor \(X_vX_{u'} \) of \(m \) and \(2 \leq i \leq n - 2 \) such that \(|v(i) - v'(i)| > 2 \). By Lemma 5.4, there are
u, u' ∈ P_w ∩ M with v + v' = u + u' and |u(i) − u'(i)| ≤ 2 for all i. So X_uX_v − X_uX_v' ∈ J, and by (⋆), N(X_uX_v) < N(X_vX_v'). Thus for m' = mX_uX_v', we have m' − m ∈ J, but N(m') < N(m), a contradiction. The converse follows immediately from (⋆).

For (⋆), note that since |a_i − a_j| ≤ 2 for all i, j, there exists α such that a_i ∈ {α, α + 2} for all i. After renumbering, we may assume a_1 = · · · = a_p = α and a_{p+1} = · · · = a_ℓ = α + 2. If we set b_i = a_i + k_i, then \(\sum k_i = 0 \), and we have \(\sum_{i=1}^{\ell} b_i^2 - \sum_{i=1}^{\ell} a_i^2 = \sum_{i=1}^{\ell} k_i^2 + \sum_{i=p+1}^{\ell} 4k_i \). Note that when \(k_i \leq -4 \), then \(k_i^2 + 4k_i \geq 0 \), and if \(k_i \geq 0 \), then \(4k_i \geq 0 \), so it suffices to show that if \(\sum k_i \geq 0 \), \(k_i \in 2\mathbb{Z} \), and \(k_i = -2 \) for \(p + 1 \leq i \leq \ell \), then \(\sum_{i=1}^{\ell} k_i^2 + \sum_{i=p+1}^{\ell} 4k_i \geq 0 \). This in turn follows from the fact that for \(k \in 2\mathbb{N} \) we have \(k^2 \geq 2k \), for \(k_i \in 2\mathbb{N} \) with \(\sum_{i=1}^{\ell} k_i \geq 2(\ell - p) \), we have \(\sum_{i=1}^{p} k_i^2 \geq \sum_{i=1}^{p} 2k_i \geq 4(\ell - p) \). Now suppose equality holds, so \(\sum_{i=1}^{\ell} k_i^2 + \sum_{i=p+1}^{\ell} 4k_i = 0 \) where \(k_i \in 2\mathbb{Z} \) and \(\sum k_i = 0 \). Note that \(k_i^2 + 4k_i \) is non-negative unless \(k_i = -2 \). If \(R = \{ i \mid k_i = -2 \} \) and \(T = \{ i \mid k_i > 0 \} \), then we must have \(\sum_{i \in T} k_i \geq 2|R| \) and \(\sum_{i \in T} k_i^2 + \sum_{i \in T,i \geq p+1} 4k_i \leq 4|R| \), but the only situation when this holds is when \(k_i = 2 \) for all \(i \in T \), no element in \(T \) is larger than \(p \), and \(|T| = |R| \). The claim follows.

We now proceed to define a term order on the monomials in the variables \(X_u, u \in P_w \).

We first use the standard lexicographic ordering \(<_{\text{lex}} > \) on \(M \cong \mathbb{Z}^{n-3} \) to order the variables \(X_u, u \in P_w \). Let \(<_{\text{grevlex}} > \) be the graded reverse lexicographic order on \(k|X_u | u \in P_w \cap M \) induced by this ordering of the variables, i.e., \(m', <_{\text{grevlex}} > m \) if \(\deg(m') < \deg(m) \) or \(\deg(m') = \deg(m) \) and \(N(m') < N(m) \), or \(\deg(m') = \deg(m) \), \(N(m') = N(m) \), and \(m' <_{\text{grevlex}} > m \).

We shall consider two types A, B of quadratic binomial relations.

Definition 5.8. (Type A) The type A relations are relations \(X_uX_v - X_uX_v' \in J \), where \(N(X_uX_v) > N(X_uX_v') \).

Definition 5.9. (Type B at position \(j \)) Suppose that \(u, v \in P_w \cap M \), and \(3 \leq j \leq n - 2 \). Suppose that \((u(j - 1), w_j, v(j)) \) and \((v(j - 1), w_j, u(j)) \) satisfy the triangle inequalities. Let
\[
u' = (u(2), \ldots, u(j - 1), v(j), \ldots, v(n - 2)),
\]
\[
u' = (v(2), \ldots, v(j - 1), u(j), \ldots, u(n - 2)).
\]
We call \(X_uX_v - X_uX_v' \) a type B relation at position \(j \).

Note that \(u', v' \in P_w \) and \(u + v = u' + v' \), so a type B relation is well-defined. Moreover, \(N(X_uX_v) = N(X_u'X_v') \) for any relation \(X_uX_v - X_uX_v' \) of type B.
Theorem 5.10. The relations of type A and B form a quadratic Gröbner basis for the ideal \(J \).

Proof. It suffices to show that

\[
in_\prec(J) = \langle \text{in}_\prec f \mid f \text{ is a type A or a type B relation} \rangle.
\]

Let \(m \in \text{in}_\prec J \). Suppose \(m \) is not norm-minimal. By Lemma 5.7, there exists a quadratic factor \(X_vX_{v'} \) dividing \(m \) such that \(|v(i) - v'(i)| > 2 \) for some \(i \). By Lemma 5.4 there is \(u, u' \in P_w \cap M \) such that \(X_vX_{v'} - X_uX_{u'} \in J \), and \(|u(i) - u'(i)| \leq 2 \) for all \(i \). By Lemma 5.7, \(X_uX_{u'} \) is norm-minimal, and \(X_vX_{v'} \) is not, so \(X_vX_{v'} - X_uX_{u'} \) is a type A relation and \(m \in \langle X_vX_{v'} \rangle \subset \langle \text{in}_\prec f \mid f \text{ is a type A relation} \rangle \).

Suppose \(m \) is norm-minimal. Let \(f \in J \) be such that \(\text{in}_\prec f = m \). Since \(J \) is a homogeneous binomial ideal, we may assume that \(f = m - m' \), where \(m' \) is a norm-minimal monomial of the same degree as \(m \). Then \(N(m') = N(m) \), but \(m' \prec_{\text{grevlex}} m \). Let \(m = X_{u_1}X_{u_2} \cdots X_{u_t} \), where \(u_1 \leq_{\text{lex}} u_2 \leq_{\text{lex}} \cdots \leq_{\text{lex}} u_t \) and \(m' = X_{v_1}X_{v_2} \cdots X_{v_t} \) where \(v_1 \leq_{\text{lex}} v_2 \leq_{\text{lex}} \cdots \leq_{\text{lex}} v_t \). Note that since \(m - m' \in J \), we have

\[
\sum_{s=1}^{\ell} u_s = \sum_{s=1}^{\ell} v_s.
\]

Factoring out the largest common multiple of \(m \) and \(m' \), we may assume \(v_1 <_{\text{lex}} u_1 \). Let \(j \) be the first index where \(v_1(j) < u_1(j) \). Note that if \(i < j \) then \(u_1(i) = v_1(i) \).

It follows from Lemma 5.7 and from (5.4) that for every \(2 \leq k \leq n - 2 \) there exists an even integer \(\alpha_k \) such that for every \(X_u \) dividing \(m \) or \(m' \), \(u(k) \in \{ \alpha_k, \alpha_k + 2 \} \).

This implies that \(v_1(j) = \alpha_j \) and \(u_1(j) = \alpha_j + 2 \). It follows from (5.4) that there exists some \(t > 1 \) such that \(u_t(j) = v_1(j) = \alpha_j \). Note that, since \(u_1 <_{\text{lex}} u_t \) and \(u_1(j) > u_t(j) \), there is \(i' < j \) such that \(u_1(i') < u_t(i') \) and \(u_1(i) = u_t(i) \) for \(i < i' \). In particular, \(j \geq 2 \). Now \((u_1(j-1), w_j, u_1(j)) \) = \((v_1(j-1), w_j, v_1(j)) \) satisfy the triangle inequalities, since \(v_1 \in P_u \). If \((u_1(j-1), w_j, u_1(j)) \) satisfy the triangle inequalities, then there exists a type B relation at position \(j \) of the form \(X_{u_1}X_{u_t} - X_{u_1'}X_{u_t'} \). Since \(u_1 <_{\text{lex}} u_1 <_{\text{lex}} u_t \), we have \(X_{u_1}X_{u_t} \succ_{\text{grevlex}} X_{u_1'}X_{u_t'} \). Therefore, \(m \in \langle \text{in}_\prec \{ f \mid f \text{ is a type B relation} \} \rangle \).

Now suppose \((u_t(j-1), w_j, u_1(j)) \) do not satisfy the triangle inequalities. This implies that whenever \(v_s(j-1) = u_t(j-1) \), then \(v_s(j) \neq u_1(j) \), since \((v_s(j-1), w_j, v_s(j)) \) satisfy the triangle inequalities and so \(v_s(j) = v_1(j) \). Note however that \(v_1(j-1) = u_1(j-1) \neq u_t(j-1) \) by assumption. In particular,

\[
\{ s \mid 1 \leq s \leq \ell, v_s(j-1) = u_t(j-1) \} \subseteq \{ s \mid 1 \leq s \leq \ell, v_s(j) = v_1(j) \}.
\]

Since \(\sum u_s(j-1) = \sum v_s(j-1) \), we have

\[
\#\{ s \mid 1 \leq s \leq \ell, v_s(j-1) = u_t(j-1) \} = \#\{ s \mid 1 \leq s \leq \ell, u_s(j-1) = u_t(j-1) \}
\]

and similarly

\[
\#\{ s \mid 1 \leq s \leq \ell, v_s(j) = v_1(j) \} = \#\{ s \mid 1 \leq s \leq \ell, u_s(j) = v_1(j) \}.
\]
Using \(u_t(j) = v_1(j) \), we obtain
\[
\#\{s \mid 1 \leq s \leq \ell, u_s(j - 1) = u_t(j - 1)\} < \#\{s \mid 1 \leq s \leq \ell, u_s(j) = u_t(j)\}.
\]

Pick an \(s \) such that \(u_s(j - 1) \neq u_t(j - 1) \) but \(u_s(j) = u_t(j) \). Since \(u_1(j) \neq u_t(j) \), \(s \neq 1 \). By assumption, \(u_1(j - 1) \neq u_1(j - 1) \), hence \(u_s(j - 1) = u_1(j - 1) \) since \(\{u_s(j - 1), u_t(j - 1), u_1(j - 1)\} \subset \{\alpha_{j-1}, \alpha_{j-1} + 2\} \). So \((u_s(j - 1), w_j, u_1(j)) = (u_1(j - 1), w_j, u_1(j)) \) satisfy the triangle inequalities. On the other hand, since \(u_s(j) = u_t(j) = v_1(j) \), we have that \((u_1(j - 1), w_j, u_s(j)) = (v_1(j - 1), w_j, v_1(j)) \) satisfy the triangle inequalities. So there exists a type B relation \(X_{u_1}X_{u_2} - X_{u_1}X_{u_2}' \) at position \(j \). Note that \(X_{u_1}X_{u_2} \grevlex X_{u_1}X_{u_2}' \), so \(m \in \text{in}_{\prec}(f \mid f \text{ is a type B relation}) \).

Proposition 5.11. The initial ideal in \(\prec(J) \) is radical.

Proof. Since the initial ideal is generated by quadratic monomials, we only need to check there is no perfect square \(X_v^2 \in \text{in}_{\prec}(J) \). Suppose that \(X_v^2 - X_uX_w \in J \) is a non-zero relation for some \(u, v, w \). Then \(2v = u + w \), and so \(N(X_v^2) < N(X_uX_w) \), since by Lemma 5.7 \(X_v^2 \) is norm-minimal, but \(X_uX_w \) is not. So \(X_v^2 \) is no leading term of any binomial in \(J \).

Note that this implies that \(P_w \) admits a regular unimodular triangulation, see [35, Corollary 8.9]

Proof of Theorem 1.2. By Kempe’s theorem [16, Theorem 2.3], \(R_w \) is generated by its lowest degree invariants. Note that for \(w \in (2Z)^n \) this also follows from Lemma 5.4, Proposition 4.5, and Lemma 5.3. Recall that \(I_w \) denotes the ideal of relations between these generators. Since the polytopal semigroup algebra \(k[S_{P_w}] \) is a SAGBI degeneration of \(R_w \) by Proposition 4.5, and since the toric ideal \(J \) associated to \(P_w \) has a square free quadratic initial ideal by Theorem 5.10 and Proposition 5.11, the claim follows from [4, Corollary 2.2]. The Koszul property follows for example from [8, Proposition 3].

Remark 5.12. In [24, Theorem 1.10] Manon generalizes Theorem 1.2 to certain subpolytopes of \(P_w \). For \(L \geq 0 \), the polytope \(P_{L} \) is given by the adding to the inequalities of Definition 5.1 the inequalities \(w_1 + w_2 + u(2) \leq 2L, u(n - 2) + w_{n-1} + w_n \leq 2L, u(i - 1) + w_i + u_i \leq 2L \). Note that when \(L \) is large, then \(P_w = P_L \). For \(L = 1 \), the polytopes \(P_L \) are slices of the polytopes studied in [3].

Remark 5.13. It is easy to see that for \(w = 1^n \), \(P_w \) is reflexive and that \(S_{P_w} \) is Gorenstein. This implies that the toric variety \(V \) associated to \(P_w \) is arithmetically Gorenstein and Fano. In particular, \(V \) has canonical singularities. However, when \(w = 1^6 \), then \(V \) does not have terminal singularities. Compare also [30, Proposition 1.4]. The Gorenstein property for the toric varieties arising as degenerations of \(R_w \) corresponding to arbitrary trivalent trees was studied by Manon in [25].

References

Milena Hering, Maxwell Institute and School of Mathematics, University of Edinburgh, UK

E-mail address: m.hering@ed.ac.uk

Benjamin J. Howard, Center for Communications Research, Institute for Defense Analysis, Princeton, NJ 08540 USA

E-mail address: bjhowa3@idaccr.org