HALPHEN PENCILS ON QUARTIC THREEFOLDS

IVAN CHELTSOV AND ILYA KARZHEMANOV

Abstract. For any smooth quartic threefold in \mathbb{P}^4 we classify pencils on it whose general element is an irreducible surface birational to a surface of Kodaira dimension zero.

1. Introduction

Let X be a smooth quartic threefold in \mathbb{P}^4. The following result is proved in [4].

Theorem 1.1. The threefold X does not contain pencils whose general element is an irreducible surface that is birational to a smooth surface of Kodaira dimension $-\infty$.

On the other hand, one can easily see that the threefold X contains infinitely many pencils whose general elements are irreducible surfaces of Kodaira dimension zero.

Definition 1.2. A Halphen pencil is a one-dimensional linear system whose general element is an irreducible subvariety birational to a smooth variety of Kodaira dimension zero.

The following result is proved in [2].

Theorem 1.3. Suppose that X is general. Then every Halphen pencil on X is cut out by

$$\lambda l_1(x, y, z, t, w) + \mu l_2(x, y, z, t, w) = 0 \subset \text{Proj}\left(\mathbb{C}[x, y, z, t, w]\right) \cong \mathbb{P}^4,$$

where l_1 and l_2 are linearly independent linear forms, and $(\lambda : \mu) \in \mathbb{P}^1$.

The assertion of Theorem 1.3 is erroneously proved in [1] without the assumption that the threefold X is general. On the other hand, the following example is constructed in [3].

Example 1.4. Suppose that X is given by the equation

$$w^3 x + w^2 q_2(x, y, z, t) + wxp_2(x, y, z, t) + q_4(x, y, z, t) = 0 \subset \text{Proj}\left(\mathbb{C}[x, y, z, t, w]\right) \cong \mathbb{P}^4,$$

where q_i and p_i are forms of degree i. Let P be the pencil on X that is cut out by

$$\lambda x^2 + \mu \left(wx + q_2(x, y, z, t)\right) = 0,$$

where $(\lambda : \mu) \in \mathbb{P}^1$. Then P is a Halphen pencil if $q_2(0, y, z, t) \neq 0$ by [2, Theorem 2.3].

The purpose of this paper is to prove the following result.

Theorem 1.5. Let M be a Halphen pencil on X. Then

- either M is cut out on X by the pencil

$$\lambda l_1(x, y, z, t, w) + \mu l_2(x, y, z, t, w) = 0 \subset \text{Proj}\left(\mathbb{C}[x, y, z, t, w]\right) \cong \mathbb{P}^4,$$

where l_1 and l_2 are linearly independent linear forms, and $(\lambda : \mu) \in \mathbb{P}^1$,

\[\text{The work was partially supported by RFFI grant No. 08-01-00395-a and grant N.Sh.-1987.2008.1.}\]

\[\text{We assume that all varieties are projective, normal and defined over } \mathbb{C}.\]
or the threefold X can be given by the equation
\[w^3x + w^2q_2(x, y, z, t) + wxp_2(x, y, z, t) + q_4(x, y, z, t) = 0 \subset \text{Proj} \left(\mathbb{C}[x, y, z, t, w] \right) \cong \mathbb{P}^4 \]
such that $q_2(0, y, z, t) \neq 0$, and \mathcal{M} is cut out on the threefold X by the pencil
\[\lambda x^2 + \mu \left(wx + q_2(x, y, z, t) \right) = 0, \]
where q_i and p_i are forms of degree i, and $(\lambda : \mu) \in \mathbb{P}^1$.

Let P be an arbitrary point of the quartic hypersurface $X \subset \mathbb{P}^4$.

Definition 1.6. The mobility threshold of the threefold X at the point P is the number
\[\iota(P) = \sup \left\{ \lambda \in \mathbb{Q} \text{ such that } \left| n\left(\pi_*(-K_X) - \lambda E \right) \right| \text{ has no fixed components for } n \gg 0 \right\}, \]
where $\pi : Y \to X$ is the ordinary blow up of P, and E is the exceptional divisor of π.

Arguing as in the proof of Theorem [1.5] we obtain the following result.

Theorem 1.7. The following conditions are equivalent:

- the equality $\iota(P) = 2$ holds,
- the threefold X can be given by the equation
\[w^3x + w^2q_2(x, y, z, t) + wxp_2(x, y, z, t) + q_4(x, y, z, t) = 0 \subset \text{Proj} \left(\mathbb{C}[x, y, z, t, w] \right) \cong \mathbb{P}^4, \]
where q_i and p_i are forms of degree i such that
\[q_2(0, y, z, t) \neq 0, \]
and P is given by the equations $x = y = z = t = 0$.

One can easily check that $2 \geq \iota(P) \geq 1$. Similarly, one can show that

- $\iota(P) = 1 \iff$ the hyperplane section of X that is singular at P is a cone,
- $\iota(P) = 3/2 \iff$ the threefold X contains no lines passing through P.

The proof of Theorem 1.7 is completed on board of IL-96-300 Valery Chkalov while flying from Seoul to Moscow. We thank Aeroflot Russian Airlines for good working conditions.

2. Important Lemma

Let S be a surface, let O be a smooth point of S, let R be an effective Weil divisor on the surface S, and let \mathcal{D} be a linear system on the surface S that has no fixed components.

Lemma 2.1. Let D_1 and D_2 be general curves in \mathcal{D}. Then
\[\text{mult}_O \left(D_1 \cdot R \right) = \text{mult}_O \left(D_2 \cdot R \right) \leq \text{mult}_O (R) \text{mult}_O \left(D_1 \cdot D_1 \right). \]

Proof. Put $S_0 = S$ and $O_0 = O$. Let us consider the sequence of blow ups
\[S_n \xrightarrow{\pi_n} S_{n-1} \xrightarrow{\pi_{n-1}} \cdots \xrightarrow{\pi_2} S_1 \xrightarrow{\pi_1} S_0 \]
such that π_1 is a blow up of the point O_0, and π_i is a blow up of the point O_{i-1} that is contained in the curve E_{i-1}, where E_{i-1} is the exceptional curve of π_{i-1}, and $i = 2, \ldots, n$.

Let D^i_j be the proper transform of D_j on S_i for $i = 0, \ldots, n$ and $j = 1, 2$. Then
\[D^i_1 \equiv D^i_2 \equiv \pi^*_i \left(D^{i-1}_1 \right) - \text{mult}_O \left(D^{i-1}_1 \right) E_i \equiv \pi^*_i \left(D^{i-1}_2 \right) - \text{mult}_O \left(D^{i-1}_2 \right) E_i \]
for $i = 1, \ldots, n$. Put $d_i = \text{mult}_O (D^{i-1}_1) = \text{mult}_O (D^{i-1}_2)$ for $i = 1, \ldots, n$.

Let R^i be the proper transform of R on the surface S_i for $i = 0, \ldots, n$. Then
\[R^i \equiv \pi^*_i \left(R^{i-1} \right) - \text{mult}_{O_{i-1}}(R^{i-1}) E_i \]
for $i = 1, \ldots, n$. Put $r_i = \text{mult}_{O_{i-1}}(R^{i-1})$ for $i = 1, \ldots, n$. Then $r_1 = \text{mult}_O(R)$.

We may chose the blow ups π_1, \ldots, π_n in a way such that $D^n_1 \cap D^n_2$ is empty in the neighborhood of the exceptional locus of $\pi_1 \circ \pi_2 \circ \cdots \circ \pi_n$. Then
\[\text{mult}_O(D_1 \cdot D_2) = \sum_{i=1}^n d_i^2. \]

We may chose the blow ups π_1, \ldots, π_n in a way such that $D^n_1 \cap R^n$ and $D^n_2 \cap R^n$ are empty in the neighborhood of the exceptional locus of $\pi_1 \circ \pi_2 \circ \cdots \circ \pi_n$. Then
\[\text{mult}_O(D_1 \cdot R) = \text{mult}_O(D_2 \cdot R) = \sum_{i=1}^n d_i r_i, \]

where some numbers among r_1, \ldots, r_n may be zero. Then
\[\text{mult}_O(D_1 \cdot R) = \text{mult}_O(D_2 \cdot R) = \sum_{i=1}^n d_i r_i \leq \sum_{i=1}^n d_i r_1 \leq \sum_{i=1}^n d_i^2 r_1 = \text{mult}_O(R) \text{mult}_O(D_1 \cdot D_2), \]
because $d_i \leq d_i^2$ and $r_i \leq r_1 = \text{mult}_O(R)$ for every $i = 1, \ldots, n$. □

The assertion of Lemma 2.1 is a cornerstone of the proof of Theorem 1.5.

3. Curves

Let X be a smooth quartic threefold in \mathbb{P}^4, let \mathcal{M} be a Halphen pencil on X. Then
\[\mathcal{M} \sim -nK_X, \]

since $\text{Pic}(X) = \mathbb{Z}K_X$. Put $\mu = 1/n$. Then
- the log pair $(X, \mu\mathcal{M})$ is canonical by [3, Theorem A],
- the log pair $(X, \mu\mathcal{M})$ is not terminal by [2, Theorem 2.1].

Let $\mathcal{CS}(X, \mu\mathcal{M})$ be the set of non-terminal centers of $(X, \mu\mathcal{M})$ (see [2]). Then
\[\mathcal{CS}(X, \mu\mathcal{M}) \neq \emptyset, \]
because $(X, \mu\mathcal{M})$ is not terminal. Let M_1 and M_2 be two general surfaces in \mathcal{M}.

Lemma 3.1. Suppose that $\mathcal{CS}(X, \mu\mathcal{M})$ contains a point $P \in X$. Then
\[\text{mult}_P(M) = n\text{mult}_P(T) = 2n, \]

where M is any surface in \mathcal{M}, and T is the surface in $| - K_X|$ that is singular at P.

Proof. It follows from [6, Proposition 1] that the inequality
\[\text{mult}_P(M_1 \cdot M_2) \geq 4n^2 \]
holds. Let H be a general surface in $| - K_X|$ such that $P \in H$. Then
\[4n^2 = H \cdot M_1 \cdot M_2 \geq \text{mult}_P(M_1 \cdot M_2) \geq 4n^2, \]
which gives $(M_1 \cdot M_2)_P = 4n^2$. Arguing as in the proof of [6, Proposition 1], we see that
\[\text{mult}_P(M_1) = \text{mult}_P(M_2) = 2n, \]
Lemma 3.2. Suppose that $\text{CS}(X, \mu M)$ contains a point $P \in X$. Then
\[M_1 \cap M_2 = \bigcup_{i=1}^{r} L_i, \]
where L_1, \ldots, L_r are lines on the threefold X that pass through the point P.

Proof. Let H be a general surface in $|-K_X|$ such that $P \in H$. Then
\[4n^2 = H \cdot M_1 \cdot M_2 = \mu_P(M_1 \cdot M_2) = 4n^2 \]
by Lemma 3.1. Then $\text{Supp}(M_1 \cdot M_2)$ consists of lines on X that pass through P. □

Lemma 3.3. Suppose that $\text{CS}(X, \mu M)$ contains a point $P \in X$. Then
\[n/3 \leq \mu_L(M) \leq n/2 \]
for every line $L \subset X$ that passes through the point P.

Proof. Let D be a general hyperplane section of X through L. Then we have
\[M|_D = \mu_L(M)L + \Delta, \]
where M is a general surface in M and Δ is an effective divisor such that
\[\mu_P(\Delta) \geq 2n - \mu_L(M). \]

On the surface D we have $L \cdot L = -2$. Then
\[n = (\mu_L(M)L + \Delta) \cdot L = -2\mu_L(M) + \Delta \cdot L \]
on the surface D. But $\Delta \cdot L \geq \mu_P(\Delta) \geq 2n - \mu_L(M)$. Thus, we get
\[n \geq -2\mu_L(M) + \mu_P(\Delta) \geq 2n - 3\mu_L(M), \]
which implies that $n/3 \leq \mu_L(M)$.

Let T be the surface in $|-K_X|$ that is singular at P. Then $T \cdot D$ is reduced and
\[T \cdot D = L + Z, \]
where Z is an irreducible plane cubic curve such that $P \in Z$. Then
\[3n = (\mu_L(M)L + \Delta) \cdot Z = 3\mu_L(M) + \Delta \cdot Z \]
on the surface D. The set $\Delta \cap Z$ is finite by Lemma 3.2. In particular, we have
\[\Delta \cdot Z \geq \mu_P(\Delta) \geq 2n - \mu_L(M), \]
because $\text{Supp}(\Delta)$ does not contain the curve Z. Thus, we get
\[3n \geq 3\mu_L(M) + \mu_P(\Delta) \geq 2n + 2\mu_L(M), \]
which implies that $\mu_L(M) \leq n/2$. □

In the rest of this section we prove the following result.
Proposition 3.4. Suppose that $\text{CS}(X, \mu M)$ contains a curve. Then $n = 1$.

Suppose that $\text{CS}(X, \mu M)$ contains a curve Z. Then it follows Lemmas 3.2 and 3.3 that the set $\text{CS}(X, \mu M)$ does not contain points of the threefold X and

\[
\text{mult}_Z(M) = n,
\]

because $(X, \mu M)$ is canonical but not terminal. Then $\deg(Z) \leq 4$ by [2, Lemma 2.1].

Lemma 3.6. Suppose that $\deg(Z) = 1$. Then $n = 1$.

Proof. Let $\pi : V \rightarrow X$ be the blow up of X along the line Z. Let B be the proper transform of the pencil M on the threefold V, and let B be a general surface in B. Then

\[
B \sim -nK_V
\]

by (3.5). There is a commutative diagram

\[
\begin{array}{c}
V \\
\downarrow \pi \\
X \\
\downarrow \psi \\
\eta \\
\downarrow \\
\mathbb{P}^2
\end{array}
\]

where ψ is the projection from the line Z and η is the morphism induced by the linear system $| - K_V|$. Thus, it follows from (3.7) that B is the pull-back of a pencil P on \mathbb{P}^2 by η.

We see that the base locus of B is contained in the union of fibers of η.

The set $\text{CS}(V, \mu B)$ is not empty by [2, Theorem 2.1]. It easily follows from (3.5) that the set $\text{CS}(V, \mu B)$ does not contain points because $\text{CS}(X, \mu M)$ contains no points.

We see that there is an irreducible curve $L \subset V$ such that

\[
\text{mult}_L(B) = n
\]

and $\eta(L)$ is a point $Q \in \mathbb{P}^2$. Let C be a general curve in P. Then $\text{mult}_Q(C) = n$. But

\[
C \sim \mathcal{O}_{\mathbb{P}^2}(n)
\]

by (3.7). Thus, we see that $n = 1$, because general surface in M is irreducible. \(\square\)

Thus, we may assume that the set $\text{CS}(X, \mu M)$ does not contain lines.

Lemma 3.8. The curve $Z \subset \mathbb{P}^4$ is contained in a plane.

Proof. Suppose that Z is not contained in any plane in \mathbb{P}^4. Let us show that this assumption leads to a contradiction. Since $\deg(Z) \leq 4$, we have

\[
\deg(Z) \in \{3, 4\},
\]

and Z is smooth if $\deg(Z) = 3$. If $\deg(Z) = 4$, then Z may have at most one double point.

Suppose that Z is smooth. Let $\alpha : U \rightarrow X$ be the blow up at Z, and let F be the exceptional divisor of the morphism α. Then the base locus of the linear system

\[
\left| \alpha^* \left(- \deg(Z) K_X \right) - F \right|
\]

does not contain any curve. Let D_1 and D_2 be the proper transforms on U of two sufficiently general surfaces in the linear system M. Then it follows from (3.5) that

\[
\left(\alpha^* \left(- \deg(Z) K_X \right) - F \right) \cdot D_1 \cdot D_2 = n^2 \left(\alpha^* \left(- \deg(Z) K_X \right) - F \right) \cdot \left(\alpha^* \left(- K_X \right) - F \right)^2 \geq 0,
\]
because the cycle $D_1 \cdot D_2$ is effective. On the other hand, we have

$$\left(\alpha^* \left(- \deg(Z) K_X \right) - F \right) \cdot \left(\alpha^* \left(- K_X \right) - F \right)^2 = \left(3 \deg(Z) - \left(\deg(Z) \right)^2 - 2 \right) < 0,$$

which is a contradiction. Thus, the curve Z is not smooth.

Thus, we see that Z is a quartic curve with a double point O.

Let $\beta: W \to X$ be the composition of the blow up of the point O with the blow up of the proper transform of the curve Z. Let G and E be the exceptional surfaces of the morphism β such that $\beta(E) = Z$ and $\beta(G) = O$. Then the base locus of the linear system

$$\left| \beta^* \left(- 4K_X \right) - E - 2G \right|$$

does not contain any curve. Let R_1 and R_2 be the proper transforms on W of two sufficiently general surfaces in M. Put $m = \text{mult}_O(M)$. Then it follows from \((3.5)\) that

$$\left(\beta^* \left(- 4K_X \right) - E - 2G \right) \cdot R_1 \cdot R_2 = \left(\beta^* \left(- 4K_X \right) - E - 2G \right) \cdot \left(\beta^* \left(- nK_X \right) - nE - mG \right)^2 \geq 0,$$

and $m < 2n$, because the set $\mathcal{CS}(X, \mu M)$ does not contain points. Then

$$\left(\beta^* \left(- 4K_X \right) - E - 2G \right) \cdot \left(\beta^* \left(- nK_X \right) - nE - mG \right)^2 = -8n^2 + 6mn - m^2 < 0,$$

which is a contradiction. \qed

If $\deg(Z) = 4$, then $n = 1$ by Lemma 3.8 and [2, Theorem 2.2].

Lemma 3.9. Suppose that $\deg(Z) = 3$. Then $n = 1$.

Proof. Let \mathcal{P} be the pencil in $|-K_X|$ that contains all hyperplane sections of X that pass through the curve Z. Then the base locus of \mathcal{P} consists of the curve Z and a line $L \subset X$.

Let D be a sufficiently general surface in the pencil \mathcal{P}, and let M be a sufficiently general surface in the pencil \mathcal{M}. Then D is a smooth surface, and

\[(3.10) \quad M|_D = nZ + \text{mult}_L(\mathcal{M})L + B \equiv nZ + nL,\]

where B is a curve whose support does not contain neither Z nor L.

On the surface D, we have $Z \cdot L = 3$ and $L \cdot L = -2$. Intersecting \((3.10)\) with L, we get

$$n = (nZ + nL) \cdot L = 3n - 2 \text{mult}_L(\mathcal{M}) + B \cdot L \geq 3n - 2 \text{mult}_L(\mathcal{M}),$$

which easily implies that $\text{mult}_L(\mathcal{M}) \geq n$. But the inequality $\text{mult}_L(\mathcal{M}) \geq n$ is impossible, because we assumed that $\mathcal{CS}(X, \mu M)$ contains no lines. \qed

Lemma 3.11. Suppose that $\deg(Z) = 2$. Then $n = 1$.

Proof. Let $\alpha: U \to X$ be the blow up of the curve Z. Then $|-K_U|$ is a pencil, whose base locus consists of a smooth irreducible curve $L \subset U$.

Let D be a general surface in $|-K_U|$. Then D is a smooth surface.

Let \mathcal{B} be the proper transform of the pencil \mathcal{M} on the threefold U. Then

$$-nK_U|_D \equiv B|_D \equiv nL,$$
where B is a general surface in B. But $L^2 = -2$ on the surface D. Then

$$L \in \mathcal{CS}(U, \mu B)$$

which implies that $B = |-K_U|$ by [2] Theorem 2.2. Then $n = 1$. □

The assertion of Proposition 3.4 is proved.

4. Points

Let X be a smooth quartic threefold in \mathbb{P}^4, let \mathcal{M} be a Halphen pencil on X. Then

$$\mathcal{M} \sim -nK_X,$$

since $\text{Pic}(X) = \mathbb{Z}K_X$. Put $\mu = 1/n$. Then

- the log pair $(X, \mu \mathcal{M})$ is canonical by [3] Theorem A,
- the log pair $(X, \mu \mathcal{M})$ is not terminal by [2] Theorem 2.1.

Remark 4.1. To prove Theorem 1.5 it is enough to show that X can be given by

$$w^3x + w^2q_2(x, y, z, t) + wxp_2(x, y, z, t) + q_4(x, y, z, t) = 0 \subset \text{Proj}(\mathbb{C}[x, y, z, t, w]) \cong \mathbb{P}^4,$$

where q_i and p_i are homogeneous polynomials of degree $i \geq 2$ such that $q_2(0, y, z, t) \neq 0$.

Let $\mathcal{CS}(X, \mu \mathcal{M})$ be the set of non-terminal centers of $(X, \mu \mathcal{M})$ (see [2]). Then

$$\mathcal{CS}(X, \mu \mathcal{M}) \neq \emptyset,$$

because $(X, \mu \mathcal{M})$ is not terminal. Suppose that $n \neq 1$. There is a point $P \in X$ such that

$$P \in \mathcal{CS}(X, \mu \mathcal{M})$$

by Proposition 3.4. It follows from Lemmas 3.1, 3.2 and 3.3 that

- there are finitely many distinct lines $L_1, \ldots, L_r \subset X$ containing $P \in X$,
- the equality $\text{mult}_P(\mathcal{M}) = 2n$ holds, and
 $$n/3 \leq \text{mult}_{L_i}(M) \leq n/2,$$

 where M is a general surface in the pencil \mathcal{M},
- the equality $\text{mult}_P(T) = 2$ holds, where $T \in |-K_X|$ such that $\text{mult}_P(T) \geq 2$,
- the base locus of the pencil \mathcal{M} consists of the lines L_1, \ldots, L_r, and
 $$\text{mult}_P(M_1 \cdot M_2) = 4n^2,$$

 where M_1 and M_2 are sufficiently general surfaces in \mathcal{M}.

Lemma 4.2. The equality $\mathcal{CS}(X, \mu \mathcal{M}) = \{P\}$ holds.

Proof. The set $\mathcal{CS}(X, \mu \mathcal{M})$ does not contain curves by Proposition 3.4.

Suppose that $\mathcal{CS}(X, \mu \mathcal{M})$ contains a point $Q \in X$ such that $Q \neq P$. Then $r = 1$.

Let D be a general hyperplane section of X that passes through L_1. Then

$$M|_D = \text{mult}_{L_1}(\mathcal{M})L_1 + \Delta,$$

where M is a general surface in \mathcal{M} and Δ is an effective divisor such that

$$\text{mult}_P(\Delta) \geq 2n - \text{mult}_{L_1}(\mathcal{M}) \leq \text{mult}_Q(\Delta).$$
On the surface D, we have $L_1^2 = -2$. Then
\[n = \left(\mult_{L_1}(\mathcal{M})L_1 + \Delta \right) \cdot L_1 = -2\mult_{L_1}(\mathcal{M}) + \Delta \cdot L \geq -2\mult_{L_1}(\mathcal{M}) + 2\left(2n - \mult_{L_1}(\mathcal{M}) \right), \]
which gives $\mult_{L_1}(\mathcal{M}) \geq 3n/4$. But $\mult_{L_1}(\mathcal{M}) \leq n/2$ by Lemma 3.3. \qed

The quartic threefold X can be given by an equation
\[w^3x + w^2q_2(x, y, z, t) + wq_3(x, y, z, t) + q_4(x, y, z, t) = 0 \subset \text{Proj}\left(\mathbb{C}[x, y, z, t, w] \right) \cong \mathbb{P}^4, \]
where q_i is a homogeneous polynomial of degree $i \geq 2$.

Remark 4.3. The lines $L_1, \ldots, L_r \subset \mathbb{P}^4$ are given by the equations
\[x = q_2(x, y, z, t) = q_3(x, y, z, t) = q_4(x, y, z, t) = 0, \]
the surface T is cut out on X by $x = 0$, and $\mult_P(T) = 2 \iff q_2(0, y, z, t) \neq 0$.

Let $\pi: V \to X$ be the blow up of the point P, let E be the π-exceptional divisor. Then
\[B \equiv \pi^*\left(-nK_X \right) - 2nE \equiv -nK_V, \]
where B is the proper transform of the pencil \mathcal{M} on the threefold V.

Remark 4.4. The pencil B has no base curves in E, because
\[\mult_P(M_1 \cdot M_2) = \mult_P(M_1)\mult_P(M_2). \]

Let \tilde{L}_i be the proper transform of the line L_i on the threefold V for $i = 1, \ldots, r$. Then
\[B_1 \cdot B_2 = \sum_{i=1}^{r} \mult_{\tilde{L}_i}(B_1 \cdot B_2)\tilde{L}_i, \]
where B_1 and B_2 are proper transforms of M_1 and M_2 on the threefold V, respectively.

Lemma 4.5. Let Z be an irreducible curve on X such that $Z \notin \{L_1, \ldots, Z_r\}$. Then
\[\deg(Z) \geq 2\mult_P(Z), \]
and the equality $\deg(Z) = 2\mult_P(Z)$ implies that
\[\tilde{Z} \cap \left(\bigcup_{i=1}^{r} \tilde{L}_i \right) = \emptyset, \]
where \tilde{Z} is a proper transform of the curve Z on the threefold V.

Proof. The curve \tilde{Z} is not contained in the base locus of the pencil \mathcal{B}. Then
\[0 \leq B_1 \cdot \tilde{Z} \leq n\left(\deg(Z) - 2\mult_P(Z) \right), \]
which implies the required assertions. \qed

To conclude the proof of Theorem 1.5, it is enough to show that
\[q_3(x, y, z, t) = xp_2(x, y, z, t) + q_2(x, y, z, t)p_1(x, y, z, t), \]
where p_1 and p_2 are some homogeneous polynomials of degree 1 and 2, respectively.
5. Good points

Let us use the assumptions and notation of Section 4. Suppose that the conic
\[q_2(0, y, z, t) = 0 \subset \text{Proj} \left(\mathbb{C}[y, z, t] \right) \cong \mathbb{P}^2 \]
is reduced and irreducible. In this section we prove the following result.

Proposition 5.1. The polynomial \(q_3(0, y, z, t) \) is divisible by \(q_2(0, y, z, t) \).

Let us prove Proposition 5.1. Suppose that \(q_3(0, y, z, t) \) is not divisible by \(q_2(0, y, z, t) \).

Let \(R \) be the linear system on the threefold \(X \) that is cut out by quadrics
\[xh_1(x, y, z, t) + \lambda (wx + q_2(x, y, z, t)) = 0, \]
where \(h_1 \) is an arbitrary linear form and \(\lambda \in \mathbb{C} \). Then \(R \) does not have fixed components.

Lemma 5.2. Let \(R_1 \) and \(R_2 \) be general surfaces in the linear system \(R \). Then
\[\sum_{i=1}^{r} \text{mult}_{L_i}(R_1 \cdot R_2) \leq 6. \]

Proof. We may assume that \(R_1 \) is cut out by the equation
\[wx + q_2(x, y, z, t) = 0, \]
and \(R_2 \) is cut out by \(xh_1(x, y, z, t) = 0 \), where \(h_1 \) is sufficiently general. Then
\[\text{mult}_{L_i}(R_1 \cdot R_2) = \text{mult}_{L_i}(R_1 \cdot T). \]

Put \(m_i = \text{mult}_{L_i}(R_1 \cdot T). \) Then
\[R_1 \cdot T = \sum_{i=1}^{r} m_i L_i + \Delta, \]
where \(m_i \in \mathbb{N} \), and \(\Delta \) is a cycle, whose support contains no lines passing through \(P \).

Let \(\tilde{R}_1 \) and \(\tilde{T} \) be the proper transforms of \(R_1 \) and \(T \) on \(V \), respectively. Then
\[\tilde{R}_1 \cdot \tilde{T} = \sum_{i=1}^{r} m_i \tilde{L}_i + \Omega, \]
where \(\Omega \) is an effective cycle, whose support contains no lines passing through \(P \).

The support of the cycle \(\Omega \) does not contain curves that are contained in the exceptional divisor \(E \), because \(q_3(0, y, z, t) \) is not divisible by \(q_2(0, y, z, t) \) by our assumption. Then
\[6 = E \cdot \tilde{R}_1 \cdot \tilde{T} = \sum_{i=1}^{r} m_i (E \cdot \tilde{L}_i) + E \cdot \Omega \geq \sum_{i=1}^{r} m_i (E \cdot \tilde{L}_i) = \sum_{i=1}^{r} m_i, \]
which is exactly what we want. \(\square \)

Let \(M \) and \(R \) be general surfaces in \(M \) and \(R \), respectively. Put
\[M \cdot R = \sum_{i=1}^{r} m_i L_i + \Delta, \]
where \(m_i \in \mathbb{N} \), and \(\Delta \) is a cycle, whose support contains no lines passing through \(P \).

Lemma 5.3. The cycle \(\Delta \) is not trivial.
Proof. Suppose that $\Delta = 0$. Then $\mathcal{M} = \mathcal{R}$ by [2, Theorem 2.2]. But \mathcal{R} is not a pencil. □

We have $\deg(\Delta) = 8n - \sum_{i=1}^{r} m_i$. On the other hand, the inequality

$$\text{mult}_P(\Delta) \geq 6n - \sum_{i=1}^{r} m_i$$

holds, because $\text{mult}_P(M) = 2n$ and $\text{mult}_P(R) \geq 3$. It follows from Lemma 4.5 that

$$\deg(\Delta) = 8n - \sum_{i=1}^{r} m_i \geq 2\text{mult}_P(\Delta) \geq 2\left(6n - \sum_{i=1}^{r} m_i\right),$$

which implies that $\sum_{i=1}^{r} m_i \geq 4n$. But it follows from Lemmas 2.1 and 3.3 that

$$m_i \leq \text{mult}_{L_i}(R_1 \cdot R_2) \text{mult}_{L_i}(M) \leq \text{mult}_{L_i}(R_1 \cdot R_2)n/2$$

for every $i = 1, \ldots, r$, where R_1 and R_2 are general surfaces in \mathcal{R}. Then

$$\sum_{i=1}^{r} m_i \leq \sum_{i=1}^{r} \text{mult}_{L_i}(R_1 \cdot R_2)n/2 \leq 3n$$

by Lemma 5.2, which is a contradiction.

The assertion of Proposition 5.1 is proved.

6. Bad points

Let us use the assumptions and notation of Section 4. Suppose that the conic

$$q_2(0, y, z, t) = 0 \subset \text{Proj}(\mathbb{C}[y, z, t]) \cong \mathbb{P}^2$$

is reduced and reducible. Therefore, we have

$$q_2(x, y, z, t) = (\alpha_1 y + \beta_1 z + \gamma_1 t)(\alpha_2 y + \beta_2 z + \gamma_2 t) + xp_1(x, y, z, t)$$

where $p_1(x, y, z, t)$ is a linear form, and $(\alpha_1 : \beta_1 : \gamma_1) \in \mathbb{P}^2 \ni (\alpha_2 : \beta_2 : \gamma_2)$.

Proposition 6.1. The polynomial $q_3(0, y, z, t)$ is divisible by $q_2(0, y, z, t)$.

Suppose that $q_3(0, y, z, t)$ is not divisible by $q_2(0, y, z, t)$. Then without loss of generality, we may assume that $q_3(0, y, z, t)$ is not divisible by $\alpha_1 y + \beta_1 z + \gamma_1 t$.

Let Z be the curve in X that is cut out by the equations

$$x = \alpha_1 y + \beta_1 z + \gamma_1 t = 0.$$

Remark 6.2. The equality $\text{mult}_P(Z) = 3$ holds, but Z is not necessary reduced.

Hence, it follows from Lemma 4.5 that $\text{Supp}(Z)$ contains a line among L_1, \ldots, L_r.

Lemma 6.3. The support of the curve Z does not contain an irreducible conic.

Proof. Suppose that $\text{Supp}(Z)$ contains an irreducible conic C. Then

$$Z = C + L_i + L_j$$

for some $i \in \{1, \ldots, r\} \ni j$. Then $i = j$, because otherwise the set

$$\left(C \cap L_i\right) \cup \left(C \cap L_j\right)$$

contains a point that is different from P, which is impossible by Lemma 4.5. We see that

$$Z = C + 2L_i,$$
and it follows from Lemma 4.5 that $C \cap L_i = P$. Then C is tangent to L_i at the point P.

Let \bar{C} be a proper transform of the curve C on the threefold V. Then

$$\bar{C} \cap \bar{L}_i \neq \emptyset,$$

which is impossible by Lemma 4.5. The assertion is proved. □

Lemma 6.4. The support of the curve Z consists of lines.

Proof. Suppose that $\text{Supp}(Z)$ does not consist of lines. It follows from Lemma 6.3 that

$$Z = L_i + C,$$

where C is an irreducible cubic curve. But $\text{mult}_P(Z) = 3$. Then

$$\text{mult}_P(C) = 2,$$

which is impossible by Lemma 4.5 □

We may assume that there is a line $L \subset X$ such that $P \notin P$ and

$$Z = a_1L_1 + \cdots + a_kL_k + L,$$

where $a_1, a_2, a_3 \in \mathbb{N}$ such that $a_1 \geq a_2 \geq a_3$ and $\sum_{i=1}^k a_i = 3$.

Remark 6.5. We have $L_i \neq L_j$ whenever $i \neq j$.

Let H be a sufficiently general surface of X that is cut out by the equation

$$\lambda x + \mu (\alpha_1 y + \beta_1 z + \gamma_1 t) = 0,$$

where $(\lambda : \mu) \in \mathbb{P}^1$. Then H has at most isolated singularities.

Remark 6.6. The surface H is smooth at the points P and $L \cap L_i$, where $i = 1, \ldots, k$.

Let \bar{H} and \bar{L} be the proper transforms of H and L on the threefold V, respectively.

Lemma 6.7. The inequality $k \neq 3$ holds.

Proof. Suppose that the equality $k = 3$ holds. Then H is smooth. Put

$$B \bigg|_{\bar{H}} = m_1\bar{L}_1 + m_2\bar{L}_2 + m_3\bar{L}_3 + \Omega,$$

where B is a general surface in \mathcal{B}, and Ω is an effective divisor on \bar{H} whose support does not contain any of the curves \bar{L}_1, \bar{L}_2 and \bar{L}_3. Then

$$\bar{L} \notin \text{Supp}(\Omega) \nsubseteq \bar{H} \cap E,$$

because the base locus of the pencil \mathcal{B} consists of the curves $\bar{L}_1, \ldots, \bar{L}_r$. Then

$$n = L \cdot \left(m_1L_1 + m_2L_2 + m_3L_3 + \Omega \right) = \sum_{i=1}^3 m_i + L \cdot \Omega \geq \sum_{i=1}^3 m_i,$$

which implies that $\sum_{i=1}^3 m_i \leq n$. On the other hand, we have

$$-n = \bar{L}_i \cdot \left(m_1\bar{L}_1 + m_2\bar{L}_2 + m_3\bar{L}_3 + \Omega \right) = -3m_i + \bar{L}_i \cdot \Omega \geq -3m_i,$$

which implies that $m_i \geq n/3$. Thus, we have $m_1 = m_2 = m_3 = n/3$ and

$$\Omega \cdot \bar{L} = \Omega \cdot \bar{L}_1 = \Omega \cdot \bar{L}_2 = \Omega \cdot \bar{L}_3 = 0,$$

which implies that $\text{Supp}(\Omega) \cap \bar{L}_1 = \text{Supp}(\Omega) \cap \bar{L}_2 = \text{Supp}(\Omega) \cap \bar{L}_3 = \emptyset$.

Lemma 6.8. The inequality \(k \neq 2 \) holds.

Proof. Suppose that the equality \(k = 2 \) holds. Then \(Z = 2L_1 + L_2 + L \). Put

\[
B' \bigg|_\bar{H} = m_1\bar{L}_1 + m_2\bar{L}_2 + \bar{\Omega},
\]

where \(B \) is a general surface in \(\mathcal{B} \), and \(\Omega \) is an effective divisor on \(\bar{H} \) whose support does not contain the curves \(\bar{L}_1 \) and \(\bar{L}_2 \). Then \(\bar{L} \notin \text{Supp}(\Omega) \not\supset H \cap E \) and

\[
n = L \cdot \left(m_1L_1 + m_2L_2 + \Omega \right) = m_1 + m_2 + L \cdot \Omega \geq m_1 + m_2,
\]

which implies that \(m_1 + m_2 \leq n \). On the other hand, we have

\[
\bar{T} \big|_\bar{H} = 2\bar{L}_1 + \bar{L}_2 + \bar{L} + E \bigg|_{\bar{H}} \equiv \left(\pi^* \left(-K_X \right) - 2E \right) \bigg|_{\bar{H}},
\]

where \(T \) is the proper transform of the surface \(T \) on the threefold \(V \). Then

\[
-1 = \bar{L}_1 \cdot \left(2\bar{L}_1 + \bar{L}_2 + \bar{L} + E \big|_{\bar{H}} \right) = 2 \left(\bar{L}_1 \cdot \bar{L}_1 \right) + 2,
\]

which implies that \(\bar{L}_1 \cdot \bar{L}_1 = -3/2 \) on the surface \(\bar{H} \). Then

\[
-n = \bar{L}_1 \cdot \left(m_1L_1 + m_2L_2 + \Omega \right) = -3m_1/2 + L_1 \cdot \Omega \geq -3m_1/2,
\]

which gives \(m_1 \geq 2n/3 \). Similarly, we see that \(\bar{L}_2 \cdot \bar{L}_2 = -3 \) on the surface \(\bar{H} \). Then

\[
-n = \bar{L}_2 \cdot \left(m_1\bar{L}_1 + m_2\bar{L}_2 + \Omega \right) = -3m_2 + L_2 \cdot \Omega \geq -3m_2,
\]

which implies that \(m_2 \leq n/3 \). Thus, we have \(m_1 = 2m_2 = 2n/3 \) and

\[
\Omega \cdot L = \Omega \cdot L_1 = \Omega \cdot L_2 = 0,
\]

which implies that \(\text{Supp}(\Omega) \cap \bar{L}_1 = \text{Supp}(\Omega) \cap \bar{L}_2 = \emptyset \).
Let B' be another general surface in \mathcal{B}. Arguing as above, we see that
\[
B'|_H = \frac{2n}{3}L_1 + \frac{n}{3}L_2 + \Omega',
\]
where Ω' is an effective divisor on H whose support does not contain L_1 and L_2 such that
\[
\text{Supp}(\Omega') \cap \bar{L}_1 = \text{Supp}(\Omega') \cap \bar{L}_2 = \emptyset,
\]
which implies that $\Omega \cdot \Omega' = n^2$. In particular, we see that
\[
\text{Supp}(\Omega) \cap \text{Supp}(\Omega') \neq \emptyset,
\]
and arguing as in the proof of Lemma 6.7 we obtain a contradiction. \square

It follows from Lemmas 6.7 and 6.8 that $Z = 3L_1 + L$. Put
\[
B'|_H = m_1 \bar{L}_1 + \Omega,
\]
where B is a general surface in \mathcal{B}, and Ω is a curve such that $\bar{L}_1 \not\subseteq \text{Supp}(\Omega)$. Then
\[
\bar{L} \not\subseteq \text{Supp}(\Omega) \not\supseteq \bar{H} \cap E,
\]
because the base locus of \mathcal{B} consists of the curves $\bar{L}_1, \ldots, \bar{L}_r$. Then
\[
n = \bar{L} \cdot (m_1 \bar{L}_1 + \Omega) = m_1 + \bar{L} \cdot \Omega \geq m_1,
\]
which implies that $m_1 \leq n$. On the other hand, we have

\[
T|_H = 3L_1 + L + E|_H \equiv \left(\pi^*\left(-K_X\right) - 2E\right)|_H,
\]
where \bar{T} is the proper transform of the surface T on the threefold V. Then
\[
-1 = \bar{L}_1 \cdot (3\bar{L}_1 + \bar{L} + E|_H) = 3\bar{L}_1 \cdot \bar{L}_1 + 2,
\]
which implies that $\bar{L}_1 \cdot \bar{L}_1 = -1$ on the surface \bar{H}. Then
\[
-n = \bar{L}_1 \cdot (m_1 \bar{L}_1 + \Omega) = -m_1 + L_1 \cdot \Omega \geq -m_1,
\]
which gives $m_1 \geq n$. Thus, we have $m_1 = n$ and $\Omega \cdot \bar{L} = \Omega \cdot \bar{L}_1 = 0$. Then $\text{Supp}(\Omega) \cap \bar{L}_1 = \emptyset$.

Let B' be another general surface in \mathcal{B}. Arguing as above, we see that
\[
B'|_H = n\bar{L}_1 + \Omega',
\]
where Ω' is an effective divisor on H whose support does not contain \bar{L}_1 such that
\[
\text{Supp}(\Omega') \cap \bar{L}_1 = \emptyset,
\]
which implies that $\Omega \cdot \Omega' = n^2$. In particular, we see that $\text{Supp}(\Omega) \cap \text{Supp}(\Omega') \neq \emptyset$.

The base locus of the pencil \mathcal{B} consists of the curves $\bar{L}_1, \ldots, \bar{L}_r$. Hence, we have
\[
\text{Supp}(\Omega') \cap \bar{L}_1 = \emptyset,
\]
but $\bar{L}_1 \cap H = \emptyset$ whenever $\bar{L}_1 \neq \bar{L}_1$. Then $\text{Supp}(\Omega) \cap \bar{L}_1 \neq \emptyset$, because
\[
\bar{L}_1 \cup \left(\text{Supp}(\Omega) \cap \text{Supp}(\Omega')\right) = \text{Supp}(\Omega') \cap \bar{L}_1 = \bar{L}_1,
\]
which is a contradiction. The assertion of Proposition 6.1 is proved.
7. Very bad points

Let us use the assumptions and notation of Section 4. Suppose that \(q_2 = y^2 \).

The proof of Proposition 6.1 implies that \(q_3(0, y, z, t) \) is divisible by \(y \). Then
\[
q_3 = yf_2(z, t) + xh_2(z, t) + x^2a_1(x, y, z, t) + xyb_1(x, y, z, t) + y^2c_1(y, z, t)
\]
where \(a_1, b_1, c_1 \) are linear forms, \(f_2 \) and \(h_2 \) are are homogeneous polynomials of degree two.

Proposition 7.1. The equality \(f_2(z, t) = 0 \) holds.

Let us prove Proposition 7.1 by reductio ad absurdum. Suppose that \(f_2(z, t) \neq 0 \).

Remark 7.2. By choosing suitable coordinates, we may assume that \(f_2 = zt \) or \(f_2 = z^2 \).

We must use smoothness of the threefold \(X \) by analyzing the shape of \(q_4 \). We have
\[
q_4 = f_4(z, t) + xu_3(z, t) + yv_3(z, t) + x^2a_2(x, y, z, t) + xyb_2(x, y, z, t) + y^2c_2(y, z, t),
\]
where \(a_2, b_2, c_2 \) are homogeneous polynomials of degree two, \(u_3 \) and \(v_3 \) are homogeneous polynomials of degree three, and \(f_4 \) is a homogeneous polynomial of degree four.

Lemma 7.3. Suppose that \(f_2(z, t) = zt \) and
\[
f_4(z, t) = t^2g_2(z, t)
\]
for some \(g_2(z, t) \in \mathbb{C}[z, t] \). Then \(v_3(z, 0) \neq 0 \).

Proof. Suppose that \(v_3(z, 0) = 0 \). The surface \(T \) is given by the equation
\[
w^2y^2 + yzt + y^2c_1(x, y, z, t) + t^2g_2(z, t) + yv_3(z, t) + y^2c_2(x, y, z, t) = 0 \subset \text{Proj}(\mathbb{C}[y, z, t, w]) \cong \mathbb{P}^3
\]
because \(T \) is cut out on \(X \) by the equation \(x = 0 \). Then \(T \) has non-isolated singularity along the line \(x = y = t = 0 \), which is impossible because \(X \) is smooth.

Arguing as in the proof of Lemma 7.3, we obtain the following corollary.

Corollary 7.4. Suppose that \(f_2(z, t) = zt \) and
\[
f_4(z, t) = z^2g_2(z, t)
\]
for some \(g_2(z, t) \in \mathbb{C}[z, t] \). Then \(v_3(0, t) \neq 0 \).

Lemma 7.5. Suppose that \(f_2(z, t) = zt \). Then \(f_4(0, t) = f_4(z, 0) = 0 \).

Proof. We may assume that \(f_4(0, 0) \neq 0 \). Let \(\mathcal{H} \) be the linear system on \(X \) that is cut out by
\[
\lambda x + \mu y + \nu t = 0,
\]
where \((\lambda : \mu : \nu) \in \mathbb{P}^2\). Then the base locus of \(\mathcal{H} \) consists of the point \(P \).

Let \(\mathcal{R} \) be a proper transform of \(\mathcal{H} \) on the threefold \(V \). Then the base locus of \(\mathcal{R} \) consists of a single point that is not contained in any of the curves \(L_1, \ldots, L_r \).

The linear system \(\mathcal{R}|_B \) has not base points, where \(B \) is a general surface in \(\mathcal{B} \). But
\[
R \cdot R \cdot B = 2n > 0,
\]
where \(R \) is a general surface in \(\mathcal{R} \). Then \(\mathcal{R}|_B \) is not composed from a pencil, which implies that the curve \(R \cdot B \) is irreducible and reduced by the Bertini theorem.

Let \(H \) and \(M \) be general surfaces in \(\mathcal{H} \) and \(\mathcal{M} \), respectively. Then \(M \cdot H \) is irreducible and reduced. Thus, the linear system \(\mathcal{M}|_H \) is a pencil.
The surface H contains no lines passing through P, and H can be given by
\[w^3 x + w^2 y^2 + w \left(y^2 l_1(x, y, z) + x l_2(x, y, z) \right) + l_4(x, y, z) = 0 \subset \text{Proj} \left(\mathbb{C}[x, y, z, w] \right) \cong \mathbb{P}^3, \]
where $l_i(x, y, z)$ is a homogeneous polynomials of degree i.

Arguing as in Example 1.4, we see that there is a pencil Q on the surface H such that
\[Q \sim O_{\mathbb{P}^3}(2) \bigg|_H, \]
general curve in Q is irreducible, and $\text{mult}_P(Q) = 4$. Arguing as in the proof of Lemma 3.1, we see that $\mathcal{M}|_H = Q$ by [2, Theorem 2.2]. Let M be a general surface in \mathcal{M}. Then
\[M \equiv -2K_X, \]
and $\text{mult}_P(M) = 4$. The surface M is cut out on X by an equation
\[\lambda x^2 + x \left(A_0 + A_1(y, z, t) \right) + B_2(y, z, t) + B_1(y, z, t) + B_0 = 0, \]
where A_i and B_i are homogeneous polynomials of degree i, and $\lambda \in \mathbb{C}$.

It follows from $\text{mult}_P(M) = 4$ that $B_1(y, z, t) = B_0 = 0$.

The coordinated (y, z, t) are also local coordinates on X near the point P. Then
\[x = -y^2 - y \left(z t + yp_1(y, z, t) \right) + \text{higher order terms}, \]
which is a Taylor power series for $x = x(y, z, t)$, where $p_1(y, z, t)$ is a linear form.

The surface M is locally given by the analytic equation
\[\lambda y^4 + \left(-y^2 - yzt - y^2 p_1(y, z, t) \right) \left(A_0 + A_1(y, z, t) \right) + B_2(y, z, t) + \text{higher order terms} = 0, \]
and $\text{mult}_P(M) = 4$. Hence, we see that $B_2(y, z, t) = A_0 y^2$ and
\[A_1(y, z, t) y^2 + A_0 y \left(z t + yp_1(y, z, t) \right) = 0, \]
which implies that $A_0 = A_1(y, z, t) = B_2(y, z, t) = 0$. Hence, we see that a general surface in the pencil \mathcal{M} is cut out on X by the equation $x^2 = 0$, which is an absurd. □

Arguing as in the proof of Lemma 7.3, we obtain the following corollary.

Corollary 7.6. Suppose that $f_2(z, t) = z^2$. Then $f_4(0, t) = 0$.

Let \mathcal{R} be the linear system on the threefold X that is cut out by cubics
\[x h_2(x, y, z, t) + \lambda \left(w^2 x + wy^2 + q_3(x, y, z, t) \right) = 0, \]
where h_2 is a form of degree 2, and $\lambda \in \mathbb{C}$. Then \mathcal{R} has no fixed components.

Let M and R be general surfaces in \mathcal{M} and \mathcal{R}, respectively. Put
\[M \cdot R = \sum_{i=1}^r m_i L_i + \Delta, \]
where $m_i \in \mathbb{N}$, and Δ is a cycle, whose support contains no lines among L_1, \ldots, L_r.

Lemma 7.7. The cycle Δ is not trivial.

Proof. Suppose that $\Delta = 0$. Then $\mathcal{M} = \mathcal{R}$ by [2, Theorem 2.2]. But \mathcal{R} is not a pencil. □
We have \(\text{mult}_P(\Delta) \geq 8n - \sum_{i=1}^{r} m_i \), because \(\text{mult}_P(M) = 2n \) and \(\text{mult}_P(R) \geq 4 \). Then
\[
 \deg(\Delta) = 12n - \sum_{i=1}^{r} m_i \geq 2\text{mult}_P(\Delta) \geq 2\left(8n - \sum_{i=1}^{r} m_i\right)
\]
by Lemma 4.3, because \(\text{Supp}(\Delta) \) does not contain any of the lines \(L_1, \ldots, L_r \).

Corollary 7.8. The inequality \(\sum_{i=1}^{r} m_i \geq 4n \) holds.

Let \(R_1 \) and \(R_2 \) be general surfaces in the linear system \(R \). Then
\[
 m_i \leq \text{mult}_{L_i}(R_1 \cdot R_2)\text{mult}_{L_i}(M) \leq \text{mult}_{L_i}(R_1 \cdot R_2)n/2
\]
for every \(1 \leq i \leq 4 \) by Lemmas 2.1 and 3.3. Then
\[
 4n \leq \sum_{i=1}^{r} m_i \leq \sum_{i=1}^{r} \text{mult}_{L_i}(R_1 \cdot R_2)n/2.
\]

Corollary 7.9. The inequality \(\sum_{i=1}^{r} \text{mult}_{L_i}(R_1 \cdot R_2) \geq 8 \) holds.

Now we suppose that \(R_1 \) is cut out on the quartic \(X \) by the equation
\[
 w^2x + wy^2 + q_3(x, y, z, t) = 0,
\]
and \(R_2 \) is cut out by \(xh_2(x, y, z, t) = 0 \), where \(h_2 \) is sufficiently general. Then
\[
 \sum_{i=1}^{r} \text{mult}_{L_i}(R_1 \cdot T) = \sum_{i=1}^{r} \text{mult}_{L_i}(R_1 \cdot R_2) \geq 8,
\]
where \(T \) is the hyperplane section of the hypersurface \(X \) that is cut out by \(x = 0 \). But
\[
 R_1 \cdot T = Z_1 + Z_2,
\]
where \(Z_1 \) and \(Z_2 \) are cycles on \(X \) such that \(Z_1 \) is cut out by \(x = y = 0 \), and \(Z_2 \) is cut out by
\[
 x = wy + f_2(z, t) + yc_1(x, y, z, t) = 0.
\]

Lemma 7.10. The equality \(\sum_{i=1}^{r} \text{mult}_{L_i}(Z_1) = 4 \) holds.

Proof. The lines \(L_1, \ldots, L_r \subset \mathbb{P}^4 \) are given by the equations
\[
 x = y = q_4(x, y, z, t) = 0,
\]
which implies that \(\sum_{i=1}^{r} \text{mult}_{L_i}(Z_1) = 4 \). \(\square \)

Hence, we see that \(\sum_{i=1}^{r} \text{mult}_{L_i}(Z_2) \geq 4 \). But \(Z_2 \) can be considered as a cycle
\[
 wy + f_2(z, t) + yc_1(y, z, t) = f_4(z, t) + yv_3(z, t) + y^2c_2(y, z, t) = 0 \subset \text{Proj}\left(\mathbb{C}[y, z, t, w]\right) \cong \mathbb{P}^3,
\]
and, putting \(u = w + c_1(y, z, t) \), we see that \(Z_2 \) can be considered as a cycle
\[
 uy + f_2(z, t) = f_4(z, t) + yv_3(z, t) + y^2c_2(y, z, t) = 0 \subset \text{Proj}\left(\mathbb{C}[y, z, t, u]\right) \cong \mathbb{P}^3,
\]
and we can consider the set of lines \(L_1, \ldots, L_r \) as the set in \(\mathbb{P}^3 \) given by \(y = f_4(z, t) = 0 \).

Lemma 7.11. The inequality \(f_2(z, t) \neq zt \) holds.
Proof. Suppose that \(f_2(z, t) = zt \). Then it follows from Lemma \ref{lem:corollary7.3} that
\[
f_4(z, t) = zt(\alpha_1 z + \beta_1 t)(\alpha_2 z + \beta_2 t)
\]
for some \((\alpha_1 : \beta_1) \in \mathbb{P}^1 \ni (\alpha_2 : \beta_2)\). Then \(Z_2 \) can be given by
\[
uy + zt = yv_3(z, t) + y^2c_2(y, z, t) - uy(\alpha_1 z + \beta_1 t)(\alpha_2 z + \beta_2 t) = 0 \subset \text{Proj}(\mathbb{C}[y, z, t, u]) \cong \mathbb{P}^3,
\]
which implies \(Z_2 = Z_2^1 + Z_2^2 \), where \(Z_2^1 \) and \(Z_2^2 \) are cycles in \(\mathbb{P}^3 \) such that \(Z_2^1 \) is given by
\[
y = uy + zt = 0,
\]
and \(Z_2^2 \) is given by \(uy + zt = v_3(z, t) + yc_2(y, z, t) - u(\alpha_1 z + \beta_1 t)(\alpha_2 z + \beta_2 t) = 0 \).

We may assume that \(L_1 \) is given by \(y = z = 0 \), and \(L_2 \) is given by \(y = t = 0 \). Then
\[
Z_2^1 = L_1 + L_2,
\]
which implies that \(\sum_{i=1}^r \text{mult}_{L_i}(Z_2^2) \geq 2 \).

Suppose that \(r = 4 \). Then \(\alpha_1 \neq 0, \beta_1 \neq 0, \alpha_2 \neq 0, \beta_2 \neq 0 \). Hence, we see that
\[
L_1 \not\subset \text{Supp}(Z_2^2) \not\supset L_2,
\]
because \(v_3(z, t) + yc_2(y, z, t) - u(\alpha_1 z + \beta_1 t)(\alpha_2 z + \beta_2 t) \) does not vanish on \(L_1 \) and \(L_2 \). But
\[
L_3 \not\subset \text{Supp}(Z_2^2) \not\supset L_4,
\]
because \(zt \) does not vanish on \(L_3 \) and \(L_4 \). Then \(\sum_{i=1}^r \text{mult}_{L_i}(Z_2^2) = 0 \), which is impossible.

Suppose that \(r = 3 \). We may assume that \((\alpha_1, \beta_1) = (1, 0) \), but \(\alpha_2 \neq 0 \neq \beta_2 \). Then
\[
L_2 \not\subset \text{Supp}(Z_2^2),
\]
because \(v_3(z, t) + yc_2(y, z, t) - uz(\alpha_2 z + \beta_2 t) \) does not vanish on \(L_2 \). We have
\[
f_4(z, t) = z^2t(\alpha_2 z + \beta_2 t),
\]
which implies that \(v_3(0, t) \neq 0 \) by Corollary \ref{cor:corollary7.4}. Hence, we see that
\[
L_1 \not\subset \text{Supp}(Z_2^2) \not\supset L_3,
\]
because \(v_3(z, t) + yc_2(y, z, t) - uz(\alpha_2 z + \beta_2 t) \) and \(zt \) do not vanish on \(L_1 \) and \(L_3 \), respectively, which implies that \(\sum_{i=1}^r \text{mult}_{L_i}(Z_2^2) = 0 \). The latter is a contradiction.

We see that \(r = 2 \). We may assume that \((\alpha_1, \beta_1) = (1, 0) \), and either \(\alpha_2 = 0 \) or \(\beta_2 = 0 \).

Suppose that \(\alpha_2 = 0 \). Then \(f_4(z, t) = \beta_2 z^2t^2 \). By Lemma \ref{lem:lemma7.3} and Corollary \ref{cor:corollary7.3} we get
\[
v_3(0, t) \neq 0 \neq v_3(z, 0),
\]
which implies that \(v_3(z, t) + yc_2(y, z, t) - \beta_2 z^2t \) does not vanish on neither \(L_1 \) nor \(L_2 \). Then
\[
L_1 \not\subset \text{Supp}(Z_2^2) \not\supset L_2,
\]
which implies that \(\sum_{i=1}^r \text{mult}_{L_i}(Z_2^2) = 0 \), which is a contradiction.

We see that \(\alpha_2 \neq 0 \) and \(\beta_2 = 0 \). We have \(f_4(z, t) = \alpha_2 z^3t \). Then
\[
v_3(0, t) \neq 0
\]
by Corollary \ref{cor:corollary7.4} Then \(L_1 \not\subset \text{Supp}(Z_2^2) \) because the polynomial
\[
v_3(z, t) + yc_2(y, z, t) - \alpha_2 z^2
\]
does not vanish on \(L_1 \).

The line \(L_2 \) is given by the equations \(y = t = 0 \). But \(Z_2 \) is given by the equations
\[
uy + zt = v_3(z, t) + yc_2(y, z, t) - \alpha_2 uz^2 = 0,
\]
which implies that $L_2 \not\subseteq \text{Supp}(Z_2^3)$. Then $\sum_{i=1}^r \text{mult}_{L_i}(Z_2^3) = 0$, which is a contradiction.

Therefore, we see that $f_2(z, t) = z^2$. It follows from Corollary 7.6 that

$$f_4(z, t) = zg_3(z, t)$$

for some $g_3(z, t) \in \mathbb{C}[z, t]$. We may assume that L_1 is given by $y = z = 0$.

Lemma 7.12. The equality $g_3(0, t) = 0$ holds.

Proof. Suppose that $g_3(0, t) \neq 0$. Then $\text{Supp}(Z_2) = L_1$, because Z_2 is given by

$$uy + z^2 = zg_3(z, t) + yv_3(z, t) + y^2c_2(y, z, t) = 0,$$

and the lines L_2, \ldots, L_r are given by the equations $y = g_3(z, t) = 0$.

The cycle $Z_2 + L_1$ is given by the equations

$$uy + z^2 = z^2g_3(z, t) + zyv_3(z, t) + zy^2c_2(y, z, t) = 0,$$

which implies that the cycle $Z_2 + L_1$ can be given by the equations

$$uy + z^2 = zyv_3(z, t) + zy^2c_2(y, z, t) - uyg_3(z, t) = 0.$$

We have $Z_2 + L_1 = C_1 + C_2$, where C_1 and C_2 are cycles in \mathbb{P}^3 such that C_1 is given by $y = uy + z^2 = 0$,

and the cycle C_2 is given by the equations

$$uy + z^2 = zv_3(z, t) + zyc_2(y, z, t) - uyg_3(z, t) = 0.$$

We have $C_1 = 2L_2$. But $L_1 \not\subseteq \text{Supp}(C_2)$ because the polynomial

$$zv_3(z, t) + zyc_2(y, z, t) - uyg_3(z, t)$$

does not vanish on L_1, because $g_3(0, t) \neq 0$. Then

$$Z_2 + L_1 = 2L_2,$$

which implies that $Z_2 = L_1$. Then $\sum_{i=1}^r \text{mult}_{L_i}(Z_2) = 1$, which is a contradiction.

Thus, we see that $r \leq 3$ and

$$f_4(z, t) = z^2(\alpha_1 z + \beta_1 t)(\alpha_2 z + \beta_2 t)$$

for some $(\alpha_1 : \beta_1) \in \mathbb{P}^1 \not\supseteq (\alpha_2 : \beta_2)$. Then

$$v_3(0, t) \neq 0$$

by Corollary 7.4. But Z_2 can be given by the equations

$$uy + z^2 = yv_3(z, t) + y^2c_2(y, z, t) - uy(\alpha_1 z + \beta_1 t)(\alpha_2 z + \beta_2 t) = 0 \subset \text{Proj}(\mathbb{C}[y, z, t, u]) \cong \mathbb{P}^3,$$

which implies $Z_2 = Z_2^1 + Z_2^2$, where Z_2^1 and Z_2^2 are cycles on \mathbb{P}^3 such that Z_2^1 is given by $y = uy + z^2 = 0$,

and the cycle Z_2^2 is given by the equations

$$uy + z^2 = v_3(z, t) + yc_2(y, z, t) - u(\alpha_1 z + \beta_1 t)(\alpha_2 z + \beta_2 t) = 0,$$

which implies that $Z_2^1 = 2L_1$. Thus, we see that $\sum_{i=1}^r \text{mult}_{L_i}(Z_2^1) \geq 2$.

Lemma 7.13. The inequality $r \neq 3$ holds.
Proof. Suppose that $r = 3$. Then $\beta_1 \neq 0 \neq \beta_2$, which implies that

$$L_1 \not\subseteq \text{Supp}(Z_2^2),$$

because $v_3(z, t) + yc_2(y, z, t) - u(\alpha_1 z + \beta_1 t)(\alpha_2 z + \beta_2 t)$ does not vanish on L_1. But

$$L_2 \not\subseteq \text{Supp}(Z_2^2) \not\supseteq L_3,$$

because $\beta_1 \neq 0 \neq \beta_2$. Then $\sum_{i=1}^{r} \text{mult}_{L_i}(Z_2^2) = 0$, which is a contradiction. \qed

Thus, we see that either $r = 1$ or $r = 2$.

Lemma 7.14. The inequality $r \neq 2$ holds.

Proof. Suppose that $r = 2$. We may assume that

- either $\beta_1 \neq 0 = \beta_2$,
- or $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2 \neq 0$.

Suppose that $\beta_2 = 0$. Then $f_4(z, t) = \alpha_2 z^3(\alpha_1 z + \beta_1 t)$ and

$$L_1 \not\subseteq \text{Supp}(Z_2^2),$$

because $v_3(z, t) + yc_2(y, z, t) - \alpha_2 uz(\alpha_1 z + \beta_2 t)$ does not vanish on L_1. But L_2 is given by

$$y = \alpha_1 z + \beta_1 t = 0,$$

which implies that z^2 does not vanish on L_2, because $\beta_1 \neq 0$. Then

$$L_2 \not\subseteq \text{Supp}(Z_2^2),$$

which implies that $\sum_{i=1}^{r} \text{mult}_{L_i}(Z_2^2) = 0$, which is a contradiction.

Hence, we see that $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2 \neq 0$. Then $L_1 \not\subseteq \text{Supp}(Z_2^2)$, because

$$v_3(z, t) + yc_2(y, z, t) - u(\alpha_1 z + \beta_1 t)^2$$

does not vanish on L_1. But $L_2 \not\subseteq \text{Supp}(Z_2^2)$, because z^2 does not vanish on L_2. Then

$$\sum_{i=1}^{r} \text{mult}_{L_i}(Z_2^2) = 0,$$

which is a contradiction. \qed

We see that $f_4(z, t) = z^2$ and $f_4(z, t) = \mu z^4$ for some $0 \neq \mu \in \mathbb{C}$. Then Z_2^2 is given by

$$uy + z^2 = v_3(z, t) + yc_2(y, z, t) - \mu z^2 = 0,$$

where $v_3(0, t) \neq 0$ by Corollary 7.4. Thus, we see that $L_1 \not\subseteq \text{Supp}(Z_2^2)$, because

$$v_3(z, t) + yc_2(y, z, t) - \mu z^2$$

does not vanish on L_1. Then $\sum_{i=1}^{r} \text{mult}_{L_i}(Z_2^2) = 0$, which is a contradiction.

The assertion of Proposition 7.1 is proved.

The assertion of Theorem 1.5 follows from Propositions 3.4, 5.1, 6.1, 7.1.
References

[1] I. Cheltsov, Log pairs on birationally rigid varieties
 Journal of Mathematical Sciences 102 (2000), 3843–3875

 Central European Journal of Mathematics 7 (2009), 1–45

[3] V. Iskovskikh, Birational rigidity of Fano hypersurfaces in the framework of Mori theory
 Russian Mathematical Surveys 56 (2001), 207-291

 Matematicheskii Sbornik 86 (1971), 140–166

 Inventiones Mathematicae 134 (1998), 401–426