Draft Genome Sequence of a Serratia marcescens Strain Isolated from a Preterm Neonatal Blood Sepsis Patient at the Royal Infirmary, Edinburgh, Scotland, United Kingdom

Citation for published version:

Digital Object Identifier (DOI):
10.1128/genomeA.00908-14

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Genome announcements

Publisher Rights Statement:
Copyright © 2014 Kropp et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Draft Genome Sequence of a *Serratia marcescens* Strain Isolated from a Preterm Neonatal Blood Sepsis Patient at the Royal Infirmary, Edinburgh, Scotland, United Kingdom


Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; NSilico Lifescience Ltd., Bishopstown, Cork, Ireland; Department of Computing, Cork Institute of Technology, Bishopstown, Cork, Ireland; Division of Pathway Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom; Microbiological Diagnostic Unit, Royal Infirmary, University of Edinburgh, Edinburgh, Scotland, United Kingdom

Herein, we report the draft genome sequence for isolate ED-NGS-1015 of *Serratia marcescens*, cultivated from a blood sample obtained from a neonatal sepsis patient at the Royal Infirmary in Edinburgh, Scotland, United Kingdom.

*Serratia marcescens* is a Gram-negative, rare, but clinically important nosocomial pathogen that causes meningitis and blood sepsis (1–3). Preterm neonates are a highly susceptible patient group for bacterial infections (4–6) and rapid detection of blood sepsis and the causative agent are critical first steps to enable proper treatment (7–9). The ClouDx-i project aims to extend our knowledge of currently circulating pathogenic strains linked with blood sepsis in neonates to inform the development of new molecular diagnostic assays. Herein, we present the draft genome of a *Serratia marcescens* strain isolated from a preterm neonate in Edinburgh in 2013. Positivity for blood sepsis and species identification were confirmed by classical microbiological techniques.

The isolate was grown overnight at 37°C on Luria broth (LB) agar, and genomic DNA was isolated using Qiagen genomic tips (Venlo, Limburg, Netherlands). Genomic DNA was fragmented (fragments 2 to 10 kb) using sonication and a non-size-selected genome library was produced using the Nextera mate pair kit (Illumina, San Diego, CA). This library was then sequenced on an Illumina MiSeq using MiSeq Reagent kit version 3. Genomic sequence assembly, analysis, and automated reporting were carried out using Simplicity (10). This approach produced 1,969,069 total reads, resulting in an average 117-fold coverage. The average G+C content was 59.91%. For sequence assembly, we used a *de novo* assembly pipeline based on the SPAdes version 3.10 assembly tool with k-mer sizes from K21, K33, K55, K77, K99 to K127, resulting in 166 contigs, of which 7 were dominated by R. D. Sleator. This work was supported by the ClouDx-i IAPP EU FP7 project, coordinated by R. D. Sleator.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number JPWM00000000. The version described in this paper is version JPWM01000000.

ACKNOWLEDGMENT

This work was supported by the ClouDx-i IAPP EU FP7 project, coordinated by R. D. Sleator.

REFERENCES


