Concerted bioinformatic analysis of the genome-scale blood transcription factor compendium reveals new control mechanisms

Citation for published version:

Digital Object Identifier (DOI):
10.1039/c4mb00354c

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Molecular Biosystems

Publisher Rights Statement:
This Open Access Article is licensed under a Creative Commons Attribution 3.0 Unported Licence

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Concerted bioinformatic analysis of the genome-scale blood transcription factor compendium reveals new control mechanisms†

Anagha Joshi* and Berthold Gottgens†

Transcription factors play a key role in the development of a disease. ChIP-sequencing has become a preferred technique to investigate genome-wide binding patterns of transcription factors in vivo. Although this technology has led to many important discoveries, the rapidly increasing number of publicly available ChIP-seq datasets still remains a largely unexplored resource. Using a compendium of 144 publicly available murine ChIP-sequencing datasets in blood, we show that systematic bioinformatic analysis can unravel diverse aspects of transcription regulation, from genome-wide binding preferences, finding regulatory partners and assembling regulatory complexes, to identifying novel functions of transcription factors and investigating transcription dynamics during development.

Introduction

The control of cell-type specific gene expression underlies development of all multicellular organisms, and is thought to be achieved through combinatorial interactions of transcription factors with gene regulatory sequences. Moreover, dysregulation of transcription has been widely proven to be a major contributor to human pathologies, with the recent development of small molecule drugs targeting protein interactions between transcriptional regulators generating much excitement.1,2

With the interaction between cis-regulatory DNA elements and trans-acting transcription factors (TFs) representing the fundamental basis of transcriptional control, the delineation of comprehensive collection of regulatory sequences together with knowledge of the TFs bound to them will be essential to gain global insights into transcriptional control mechanisms. Over the past 10 years, chromatin immunoprecipitation (ChIP) followed by microarray (ChIP-chip) or sequencing (ChIP-Seq) have become the most widely used approaches for genome wide identification and characterization of in vivo protein–DNA interactions. Due to the rapid drop in the cost of high throughput sequencing, ChIP sequencing has become the method of choice for the generation of high resolution maps of genome-wide protein–DNA interactions in mammalian systems.3

To gain a holistic view of transcriptional control during development, it is essential to generate genome scale maps of key transcription factors across multiple cell types. However, generating such genome-scale maps in many different cell types remains a daunting task for individual research groups due to limited human and financial resources. Moreover, each individual TF requires careful validation of antibody reagents, which limits the potential throughput of large-scale initiatives. Indeed, bespoke protocols are often developed by individual groups with specialist expertise, so that published ChIP-Seq studies commonly report binding maps for less than a handful of TFs4–10 and only a few larger studies reporting 10 or more factors11,12 or a single factor across multiple cell types.13 We have previously shown14 that unlike gene expression data, ChIP-Seq datasets produced by different laboratories can be readily integrated. This analysis revealed that genome wide transcription factor binding profiles are largely governed by cellular context. We recently reported a TF ChIP-Seq compendium containing 144 publicly available studies pertaining to the mouse blood system.15 Using this dataset, here we show how concerted bioinformatic analysis of such a high quality hand-curated compendium can reveal previously unknown aspects of transcriptional control. This includes identification of those TF-bound sites most likely to be functional, prediction of TF interactions and multicomponent complexes, specific functionality of individual TFs and the dynamics of transcriptional regulation during differentiation and development.

Results and discussion

Enhancers, unlike promoters, cluster according to the cell type

We collected genome-wide binding patterns (peaks) of 144 publicly available murine ChIP-sequencing datasets for 53 transcription
factors in 15 major blood lineages and leukemia15 to obtain 270 261 regulatory regions with at least one factor binding. We classified peaks into two groups: promoter and enhancer peaks by defining the peaks within 1 kb of TSS as promoter peaks. 7.5\% of the total peaks belonged to promoters and all non-promoter peaks were classified as putative enhancers. The hierarchical clustering of enhancers clustered them according to the cell type (Fig. 1B and Fig. S2, ESI†) irrespective of the factors such as FlI1 in hematopoietic progenitor cells (HPC) clustered with other samples in HPCs and FlI1 in T cells clustered with T cell samples. There was an exception of one transcription factor, Pu.1. Pu.1 samples across multiple cell types clustered with other samples in HPCs and FlI1 in T cells while Pu.1 in hematopoietic progenitor cells (HPC) clustered with T cell samples. This shows that Pu.1 also agrees with the model where tissue-specific expression is largely mediated by distal elements to the promoter, which might explain the lack of a consensus binding motif in many ChIP-seq peak regions.17 We calculated the number of enhancer peaks for each factor with the presence of a promoter peak. Enhancer peaks with the presence of a promoter peak were enriched for functional categories 'transcription regulation' (\(p\)-value: 6.6 \times 10-18), 'hematopoiesis' (\(p\)-value: 1.9 \times 10-11) and 'blood vessel development' (\(p\)-value: 8.2 \times 10-8) demonstrating that hematopoietic regulatory genes have more binding sites in their gene loci. In an individual ChIP-seq experiment, most gene loci are associated with only one peak with an average of 1.8 peaks per gene. Genes with more than 5 peaks in their gene locus were enriched for hematopoietic functions. Transcription factor gene loci have an average of 2.5 peaks per gene, in agreement with previously reported suggestions that TF gene loci have a higher number of regulatory elements than average. This difference is statistically significant even after correcting for the gene length (\(p\)-value: 2.2 \times 10-6).

It has been suggested that multiple peaks of a TF in a gene locus arise due to cross linking of multiple distant regulatory elements to the promoter, which might explain the lack of a consensus binding motif in many ChIP-seq peak regions.17 We calculated the number of enhancer peaks for each factor with and without the presence of a peak at the promoter of a gene and did not observe any bias towards the presence of an enhancer peak with the presence of a promoter peak.

Candidate regulatory regions bound by multiple factors might be functionally more relevant

A typical ChIP-seq experiment generates millions of reads and hundreds to thousands of peaks. It is widely assumed that not all binding events are of equal functional significance.
However, dissecting out functionally important binding events from potentially opportunistic binding events still remains an unsolved problem. Approximately 60% of the 270 thousand peaks of TFs across multiple cell types in blood are bound by more than one factor. We investigated whether the binding of multiple TFs provides any clues towards the functional implications of a binding event. As sequence conservation of a DNA fragment across species is predictive of functionality, we calculated human-mouse sequence conservation scores for all peaks. The sequences underlying peaks bound by multiple factors were more conserved across mammals than those bound by a single factor (Fig. 2A). Moreover, peaks bound by multiple factors were enriched in the VISTA enhancer database (Fig. 2B), a collection of over 700 enhancer regions functionally validated in transgenic mouse assays.18 Taken together, these observations suggest that peaks bound by multiple factors might be more likely to be functional. Studies in mammalian cell types indeed have shown that the densely occupied regions tend to lie in the vicinity of genes characteristic of that particular cell type.11,19 In addition to the functionality of peaks bound by multiple TFs, it has also been shown that gene loci with multiple binding events are more likely to be functionally significant targets.20 Genes bound at multiple locations in most samples are over-represented for developmental processes including ‘muscle tissue development’ and ‘cell fate commitment’, as well as for ‘transcription factor activity’.

Prediction of new candidate regulatory partners using enriched cis-regulatory motifs

Combinatorial transcriptional control is a key aspect of eukaryotic transcription as it provides cell type specificity as well as an ability to integrate multiple signals at a transcriptional level. In order to find over-represented cis-regulatory sequence motifs in each ChIP sequencing sample, we used a list of approximately 1300 sequence motifs with known or unknown associated TFs from the JASPAR data-base.26 Fig. 2C shows all significantly enriched motifs (x axis) for all samples (y axis) highlighted in yellow. The enriched motifs are useful in three ways. Firstly, they validate the chipped TF e.g. the Cebp motif is enriched in the two samples CebpA and CebpB (Fig. 2C (1)). Secondly, they indicate important binding motifs for a particular cell type, such as enrichment of the GATA motif in HPC7 and erythroid cells (Fig. 2C (2)). Important regulators such as Runx1 and Tal1 are thought to be recruited indirectly to many regulatory regions with the help of GATA factors.11 Thirdly and most importantly, new candidate regulatory partners can be predicted, for example a homeodomain box motif is overrepresented only in the binding sites of all factors chipped in hematopoietic progenitor cells (Fig. 2C (3)). Hox proteins, known to play key roles in governing proliferation and differentiation of hematopoietic progenitor cells, can therefore be nominated as new candidate interacting partners with the other blood stem cell factors present in the compendium.

Transcription factors show preference to a particular genomic location

In order to investigate whether TFs have a preference for specific genomic contexts, we used HOMER8 to calculate enrichment with respect to 9 categories defining the gene structure such as 3′ UTR, 5′ UTR, Exon, Intron, Inter-genic, and Promoter regions as well as repeat elements such as LINE, SINE and LTR. All transcription factors were enriched for promoter binding as expected. The components of the Ldb1 complex in erythroid cells were specifically enriched for intronic regions while Chd2 and Smc3 in MEL and Notch1 in T-ALL samples were enriched for 3′ UTR regions (Fig. S4, ESI†). All Pu.1 samples were enriched for LTR repeat elements whereas CebpA and CebpB in macro-phages were enriched for SINE repeat elements (Fig. S5, ESI†). Bourque et al.21 showed that binding sites of five transcription factors ESR1, TP53, POU5F1, SOX2, and CTCF are embedded in distinctive families of transposable elements which facilitate dynamics in the transcriptional network during evolution such as new locations of CTCF binding generated by SINE repeat element expansion in mammals.22 The repeat region enrichment analysis thus provides clues towards how these transcription factors might have gained new regulatory sites during evolution.

Another genomic feature thought to be important for transcription control are CpG islands which facilitate the promoter function by destabilising nucleosomes and attracting proteins that create a chromatin state suitable for transcription.23 Rozenberg et al.24 observed that the frequency of six TFBS...
CTG or GTC, had a 9 bp gap mapping to GATA and a half Ebox

Gata factors binding as homo-dimers validated by the crystal

first pattern, GATA and GAT, had a 3/4 bp gap consistent with
calculated distances between each sample and all possible 3 mers

with respect to TF binding sites from our compendium, we

factors (Pu.1 and Fli1).

cell type specific transcription programs. We also find an

between such factors may potentially be involved in stabilizing

however provide tantalizing clues as to how interactions

more architectural transcription factor such as CTCF does

between the motifs for CTCF and Pu.1. The functional signifi-

pair-wise spacing could be recovered such as 20 bp spacing

multiprotein complexes.25 Of interest, additional preferred

recovered previously known spacing of 8–10 bps between GATA

in independent ChIP-seq experiments. Importantly, this analysis

pairs displaying a specific distance preference in at least two

mapped the sequence motifs to peaks bound by both TFs and

may be subject to spatial constraints. For each TF pair, we

T and B cells specific functional categories such as

Taken together, we found binding biases of transcription

factors with respect to genomic locations, repeats and CpG

islands. The functional relevance of these observations remains
to be investigated.

TF complexes can be predicted using ChIP sequencing datasets

Physical interaction of TFs is an important aspect in determining
tissue specific gene expression, and cooperative binding to DNA
may be subject to spatial constraints. For each TF pair, we
mapped the sequence motifs to peaks bound by both TFs and
calculated the distance between two motifs. We selected motif
pairs displaying a specific distance preference in at least two
independent ChIP-seq experiments. Importantly, this analysis
recovered previously known spacing of 8–10 bps between GATA
and E-box motifs involved in binding of Gata1/Scl/E2A/Lmo2
multiprotein complexes.23 Of interest, additional preferred
pair-wise spacing could be recovered such as 20 bp spacing
between the motifs for CTCF and Pu.1. The functional signifi-
cance of this remains to be explored. The co-ordinate binding
between a major fate determining factor such as Pu.1 with a
more architectural transcription factor such as CTCF does
however provide tantalizing clues as to how interactions
between such factors may potentially be involved in stabilizing
cell type specific transcription programs. We also find an
overlapping joint motif – CANNTGGGAW between Scl and ETS
factors (Pu.1 and Fli1).

To investigate any new motifs showing distance specificity
with respect to TF binding sites from our compendium, we

calculated distances between each sample and all possible 3 mers
(43 = 64 patterns). We found 3 binding distance preferences; the
first pattern, GATA and GAT, had a 3/4 bp gap consistent with
Gata factors binding as homo-dimers validated by the crystal
structure (Bates et al., 2008).32 The second pattern, GATA and
CTG or GTC, had a 9 bp gap mapping to GATA and a half Ebox

binding as a part of the Ldb1 complex. The final pattern, Gfi1b
and (A/T)GC, had a 2 bp gap (Fig. 3).

Lineage priming in progenitor cells

TFs are major determinants of cell fate and lineage choice. However, most lineage determining TFs are expressed across
multiple lineages, suggesting that combinatorial interactions are critical in determining cell type specificity. By merging
datasets from different studies, the TF ChIP-seq compendium
serves as an excellent resource in the study of genome wide
binding patterns of the same TF in multiple cell types. Grouping
the genome wide binding patterns of Pu.1 in haematopoietic
progenitor cells (HPCs) along with two mature cell types (macro-
phages and B cells) highlights that cell type specific, as well as
ubiquitous binding events are present in both promoters and
enhancers with ubiquitous binding events being more common
in promoters. T and B cells specific functional categories such as
‘lymphocyte activation (p-value: 1.9 × 10⁻⁵), ‘immune system
development (p-value: 5.1 × 10⁻⁴), ‘B cell receptor signalling
pathway (p-value: 1.2 × 10⁻³) are enriched in genes near Pu.1
peaks in HPC7 and B cells and not in macrophages while
macrophage specific functional categories such as ‘endocytosis

<table>
<thead>
<tr>
<th>#</th>
<th>Sample</th>
<th>Prefer/avoid</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Erg_HPC7</td>
<td>Prefer</td>
<td><1 × 10⁻⁵⁶</td>
</tr>
<tr>
<td>2</td>
<td>Fli1_T-cells</td>
<td>Prefer</td>
<td><1 × 10⁻⁵⁶</td>
</tr>
<tr>
<td>3</td>
<td>Gfi1b_HPC7</td>
<td>Prefer</td>
<td><1 × 10⁻⁵⁶</td>
</tr>
<tr>
<td>4</td>
<td>Pu.1_B-cells</td>
<td>Prefer</td>
<td><1 × 10⁻⁵⁶</td>
</tr>
<tr>
<td>5</td>
<td>Rag2_thymocytes</td>
<td>Prefer</td>
<td><1 × 10⁻⁵⁶</td>
</tr>
<tr>
<td>6</td>
<td>Ldb1_Erythroid</td>
<td>Avoid</td>
<td>3.4 × 10⁻⁴</td>
</tr>
<tr>
<td>7</td>
<td>Gata1_Erythroid_progenitors</td>
<td>Avoid</td>
<td>8.9 × 10⁻⁸</td>
</tr>
<tr>
<td>8</td>
<td>Lmo2_HPC7</td>
<td>Avoid</td>
<td>9.5 × 10⁻⁵</td>
</tr>
<tr>
<td>9</td>
<td>Lyf1_HPC7</td>
<td>Avoid</td>
<td>5.2 × 10⁻⁸</td>
</tr>
<tr>
<td>10</td>
<td>Smad1_Erythroid_progenitors</td>
<td>Avoid</td>
<td><1 × 10⁻⁵⁶</td>
</tr>
</tbody>
</table>

ETS, NRF1, BoxA, SP1, CRE and E-box can accurately predict
the presence of CpG islands in promoters suggesting that they
are structural elements critical for CpG island function. In line
with this, transcription factors such as the three ETS factors
Erg, Fli1 and Pu.1 were enriched for CpG rich regions. Interestingly,
peaks of components of the Ldb1 complex (Gata1, Gata2, Ldb1,
Mtg1 and Scl) occurred significantly less often than expected by
chance in CpG rich regions (Table 1).

Table 1 Top 5 over-represented and 5 under-represented ChIP-seq
samples with peaks in CpG rich regions along with the corresponding
p-values
(p-value: 2.0 × 10⁻⁵) and ‘inflammatory response’ (p-value: 6.2 × 10⁻³) are over-represented in genes near Pu.1 peaks in HPC7 and macrophages and not in B cells. This is a strong indicator of lineage priming in the progenitor cells and therefore provides global confirmation for one of the most hotly debated topics in stem cell biology.

Methods

The Genome-wide binding patterns of 53 transcription factors in 15 major blood lineages and leukaemia were obtained from ref. 15. Peaks within a 1 kb region from a gene TSS, based on RefSeq gene annotation, were classified as promoter peaks. For each transcription factor pair, the significance of peak overlap was calculated using 1000 randomisations. Human-mouse orthologous regions were downloaded from the MGI database. The overlaps between peaks and human-mouse orthologous regions as well as experimentally validated enhancers in mouse were calculated using BEDTools. For the two groups, we calculated whether the pair-wise overlap of promoter and non-promoter peaks was significantly over-represented (red) or under-represented (blue) compared to 100 randomizations. Using HOMER and based on gene context or repeat elements, peaks were sorted into 9 categories: 3’ UTR, 5’ UTR, exons, introns, intergenic regions, promoters, LINE, SINE and LTR. CpG islands were downloaded from UCSC. A list of transcription factors in mouse was downloaded from RIKEN. To find distance preferences between pairs of TFs, the sequences for peaks bound by both transcription factors were obtained using UCSC Galaxy and the binding locations of each sequence motif were determined using TFSBsearch. Regulatory sequence motifs were downloaded from the JASPAR library and the motifs were searched in peaks using TFSBsearch; over-representation was calculated with respect to 100 random sequence sets of the same number and lengths of real peak sequences. Functional enrichment was calculated using DAVID. Most analysis was done using Perl, MATLAB and R scripts.

Conclusions

The advent of next generation sequencing technologies has led to a dramatic shift in modern biological research, where bioinformatic processing and interpretation of large-scale datasets are rapidly replacing data generation as the major bottleneck. Moreover, bioinformatic analysis of genome-scale datasets is often restricted to the particular context of the paper that first reported them, even though the raw data are made publicly available in online repositories. Consequently, a whole potential treasure trove of biological insights remains essentially unexplored.

To ameliorate this situation, progress on two fronts will be vital. Firstly, significant efforts need to be invested into the generation of data integration platforms that facilitate cross-referencing between the multiple independent studies. Secondly, bioinformatic analysis strategies need to be developed to facilitate extraction of novel biological hypotheses from integrated genome-scale resources.

In this paper, we have addressed the latter issue and provided seven examples of bioinformatic analysis that together have allowed us to develop a number of new hypotheses on transcriptional control mechanisms with the potential to transform our understanding of blood cell development. Importantly, both the procedures outlined as well as the take-home messages learned should be readily transferable to the exploitation of ChIP-Seq datasets in other cellular systems, and thus have the potential to significantly advance our understanding of a wide range of both normal and pathological cellular processes.

Acknowledgements

AJ is a Chancellor's fellow at the Roslin institute, University of Edinburgh. The Gottgens' laboratory is funded by grants from Leukaemia and Lymphoma Research, the Leukaemia and Lymphoma Society, Medical Research Council, BBSRC, CRUK and the National Institute for Health Research Cambridge Biomedical Research Centre. The author(s) declare that they have no competing interests.

Notes and references

29 M. Kanamori, H. Kono, N. Osato, J. Kawai, Y. Hayashizaki and H. Suzuki, A genome-wide and nonredundant mouse

