From images to shape models for object detection

Vittorio Ferrari · Frederic Jurie · Cordelia Schmid

Abstract We present an object class detection approach which fully integrates the complementary strengths offered by shape matchers. Like an object detector, it can learn class models directly from images, and can localize novel instances in the presence of intra-class variations, clutter, and scale changes. Like a shape matcher, it finds the boundaries of objects, rather than just their bounding-boxes. This is achieved by a novel technique for learning a shape model of an object class given images of example instances. Furthermore, we also integrate Hough-style voting with a non-rigid point matching algorithm to localize the model in cluttered images. As demonstrated by an extensive evaluation, our method can localize object boundaries accurately and does not need segmented examples for training (only bounding-boxes).

1 Introduction

In the last few years, the problem of learning object class models and localizing previously unseen instances in novel images has received a lot of attention. While many methods use local image patches as basic features [18, 27, 40, 44], recently several approaches based on contour features have been proposed [2, 14, 16, 25, 28, 32, 39]. These are better suited to represent objects defined by their shape, such as mugs and horses. Most of the methods that train without annotated object segmentations can localize objects in test images only up to a bounding-box, rather than delineating their outlines. We believe the main reason lies in the nature of the proposed models, and in the difficulty of learning them from real images, as opposed to hand-segmented shapes [8, 12, 21, 37]. The models are typically composed of rather sparse collections of contour fragments with a loose layer of spatial organization on top [16, 25, 32, 39]. A few authors even go to the extreme end of using individual edgels as modeling units [2, 28]. In contrast, an explicit shape model formed by continuous connected curves completely covering the object outlines is more desirable, as it would naturally support boundary-level localization in test images.

In order to achieve this goal, we propose an approach which bridges the gap between shape matching and object detection. Classic non-rigid shape matchers [3, 6, 8, 37] produce point-to-point correspondences, but need clean pre-segmented shapes as models. In contrast, we propose a method that can learn complete shape models directly from images. Moreover, it can automatically match the learned model to cluttered test images.

Fig. 1 Example object detections returned by our approach (see also figure 13).
images, thereby localizing novel class instances up to their boundaries (as opposed to a bounding-box).

The main contribution of this paper is a technique for learning the prototypical shape of an object class as well as a statistical model of intra-class deformations, given image windows containing training instances (figure 3a; no pre-segmented shapes are needed). The challenge is to determine which contour points belong to the class boundaries, while discarding background and details specific to individual instances (e.g. mug labels). Note how these typically form the majority of points, yielding a poor signal-to-noise ratio. The task is further complicated by intra-class variability: the shape of the object boundary varies across instances.

As additional contributions, we extend the non-rigid shape matcher of Chui and Rangarajan [6] in two ways. First, we extend it to operate in cluttered test images, by deriving an automatic initialization for the location and scale of the object from a Hough-style voting scheme [27,32,39] (instead of the manual initialization that would otherwise be necessary). This enables to match the learned shape model even to severely cluttered images, where the object boundaries cover only a small fraction of the contour points (figures 1, 13). As a second extension, we constrain the shape matcher [6] to only search over transformations compatible with the learned, class-specific deformation model. This ensures output shapes similar to class members, improves accuracy, and helps avoiding local minima.

These contributions result in a powerful system, capable of detecting novel class instances and localizing their boundaries in cluttered images, while training from objects annotated only with bounding-boxes.

After reviewing related work (section 2) and the local contour features used in our approach (section 3), we present our shape learning method in section 4, and the scheme for localizing objects in test images in section 5. Section 6 reports extensive experiments. We evaluate the quality of the learned models and quantify localization performance at test time in terms of accuracy of the detected object boundaries. We also compare to previous works for object localization with training on real images [16] and hand-drawings [14]. A preliminary version of this work was published at CVPR 2007 [15].

2 Related works

As there exists a large body of work on shape representations for recognition [1,3,8,17,16,23,24,28,37], we briefly review in the following only the most important works relevant to this paper, i.e. on shape description and matching for modeling, recognition, and localization of object classes.

Several earlier works for shape description are based on silhouettes [31,41]. Yet, silhouettes are limited because they ignore internal contours and are difficult to extract from cluttered images as noted by [3]. Therefore, more recent works represent shapes as loose collections of 2D points [8,22] or other 2D features [12,16]. Other works propose more informative structures than individual points as features, in order to simplify matching. Belongie et al. [3] propose the Shape Context, which captures for each point the spatial distribution of all other points relative to it on the shape. This semi-local representation allows to establish point-to-point correspondences between shapes even under non-rigid deformations. Leordeanu et al. [28] propose another way to go beyond individual edgels, by encoding relations between all pairs of edgels. Similarly, Elidan et al. [12] use pairwise spatial relations between landmark points. Ferrari et al. [16] present a family of scale-invariant local shape features formed by short chains of connected contour segments, capable of cleanly encoding pure fragments of an object boundary. They offer an attractive compromise between information content and repeatability, and encompass a wide variety of local shape structures.

While generic features can be directly used to model any object, an alternative is to learn features adapted to a particular object class. Shotton et al. [39] and Opelt et al. [32] learn class-specific boundary fragments (local groups of edgels), and their spatial arrangement as a star configuration. In addition to their own local shape, such fragments store a pointer to the object center, enabling object localization in novel images using voting. Other methods [11,16] achieve this functionality by encoding spatial organization by tiling object windows, and learning which features/tile combinations discriminate objects from background.

The overall shape model of the above approaches is either (a) a global geometric organization of edge fragments [3,16,32,39]; or (b) an ensemble of pairwise constraints between point features [12,28]. Global geometric shape models are appealing because of their ability to handle deformations, which can be represented in several ways. The authors of [3] use regularized Thin Plate Splines which is a generic deformation model that can quantify dissimilarity between any two shapes, but cannot model shape variations within a specific class. In contrast, Pentland et al. [33] learn the intra-class deformation modes of an elastic material from clean training shapes. The most famous work in this spirit is Active Shape Models [8], where the shape model in novel images is constrained to vary only in ways seen during training. A few principal deformation modes, accounting for most of the total variability over the training
set, are learnt using PCA. More generally, non-linear statistics can be used to gain robustness to noise and outliers [10].

A shortcoming of the above methods is the need for clean training shapes, which requires a substantial manual segmentation effort. Recently, a few authors have tried to develop semi-supervised algorithms not requiring segmented training examples. The key idea is to find combinations of features repeatedly recurring over many training images. Berg et al. [2] suggest to build the model from pairs of training images, and retaining parts matching across several image pairs. A related strategy is used by [28], which initializes the model using all line segments from a single image and then use many other images to iteratively remove spurious features and add new good features. Finally, the LOCUS [43] model can also be learned in a semi-supervised way, but needs the training objects to be roughly aligned and to occupy most of the image surface.

A limitation common to these approaches is the lack of modeling of intra-class shape deformations, assuming a single shape is explaining all training images. Moreover, as pointed out by [7, 44], LOCUS is not suited for localizing objects in extensively cluttered test images. Finally, the models learned by [28] are sparse collections of features, rather than explicit shapes formed by continuous connected curves. As a consequence, [28] cannot localize objects up to their (complete) boundaries in test images.

Object recognition using shape can be casted as finding correspondences between model and image features. The resulting combinatorics can be made tractable by accepting sub-optimal matching solutions. When the shape is not deformable or we are not interested in recovering the deformation but only in localizing the object up to translation and scale, simple strategies can be applied, such as Geometric Hashing [26], Hough Transform [32], or exhaustive search (typically combined with Chamfer Matching [22] or classifiers [16, 39]). In case of non-rigid deformations, the parameter space becomes too large for these strategies. Gold and Rangarajan [24] propose an iterative method to simultaneously find correspondences and the model deformation. The sum of distances between model points and image points is minimized by alternating a step where the correspondences are estimated while keeping the transformation fixed, and a step where the transformation is computed while fixing the correspondences. Chui and Rangarajan [6] put this idea in a deterministic annealing framework and adopts Thin Plate Splines as deformation model (TPS). The deterministic annealing formulation elegantly supports a coarse-to-fine search in the TPS transformation space, while maintaining a continuous soft-correspondence matrix. The disadvantage is the need for initialization near the object, as it cannot operate automatically in a very cluttered image.

A related framework is adopted by Belongie et al. [3], where matching is supported by shape contexts. Depending on the model structure, optimization scheme can be based on Integer Quadratic Programming [2], spectral matching [28] or graph cuts [43].

Our approach in context In this paper, we present an approach for learning and matching shapes which has several attractive properties. First of all, we build explicit shape models formed by continuous connected curves, which represent the prototype shapes of object classes. The training objects need only be annotated by a bounding-box, i.e. no segmentation is necessary. Our learning method avoids the pairwise image matching used in previous approaches, and is therefore computationally cheaper and more robust to clutter edgels due to the ‘global view’ gained by considering all training images at once. Moreover, we model intra-class deformations and enforce them at test time, when matching the model to novel images. Finally, we extend the algorithm [6] to a two-stage technique enabling the deformable matching of the learned shape models to extensively cluttered test images. This enables to accurately localize the complete boundaries of previously unseen object instances.

3 Local contour features

In this section, we briefly present the local contour features used in our approach: the scale-invariant PAS features of [16].

PAS features. The first step is to extract edgels with the excellent Berkeley edge detector [29] and to chain them. The resulting edgel-chains are linked at their discontinuities, and approximately straight segments are fit to them, using the technique of [14]. Segments are
fit both over individual edgel-chains, and bridged between two linked chains. This brings robustness to the unavoidable broken edgel-chains [14].

The local features we use are pairs of connected segments (figure 2a). Informally, two segments are considered connected if they are adjacent on the same edgel-chain, or if one is at the end of an edgel-chain directed towards the other (i.e. if the first segment were extended a bit, it would meet the second one). As two segments in a pair are not limited to come from a single edgel-chain, but may come from adjacent edgel-chains, the extraction of pairs is robust to the typical mistakes of the underlying edge detector.

Each pair of connected segments forms one feature, called a PAS, for Pair of Adjacent Segments. A PAS feature \(P = (x,y,s,e,d) \) has a location \((x,y)\) (mean over the two segment centers), a scale \(s\) (distance between the segment centers), a strength \(e\) (average edge detector confidence over the edgels with values in \([0,1]\)) and a descriptor \(d = (\theta_1, \theta_2, l_1, l_2, r)\) invariant to translation and scale changes. The descriptor encodes the shape of the PAS, by the segments’ orientations \(\theta_1, \theta_2\) and lengths \(l_1, l_2\), and the relative location vector \(r\), going from the center of the first segment to the center of the second (a stable way to derive the order of the segments in a PAS is given in [16]). Both lengths and relative location are normalized by the scale of the PAS. Notice that PAS can overlap, i.e. two different PAS can share a common segment.

PAS features are particularly suited to our needs. First, they are robustly detected because they connect segments even across gaps between edgel-chains. Second, as both PAS and their descriptors cover solely the two segments, they can cover pure portion of an object boundary, without including clutter edges which often lie in the vicinity (as opposed to patch descriptors). Hence, PAS descriptors respect the nature of boundary fragments, to be one-dimensional elements embedded in a 2D image, as opposed to local appearance features, whose extent is a 2D patch. Fourth, PAS have intermediate complexity. As demonstrated in [16], they are complex enough to be informative, yet simple enough to be detectable repeatably across different images and object instances. Finally, since a correspondence between two PAS induces a translation and scale change, they can be readily used within a Hough-style voting scheme for object detection [27, 32, 39].

PAS dissimilarity measure. The dissimilarity \(D(P, Q)\) between the descriptors \(d^P, d^Q\) of two PAS \(P, Q\) defined in [16] is

\[
D(d^P, d^Q) = w_r \| \mathbf{r}^P - \mathbf{r}^Q \| + w_q \sum_{i=1}^{2} D_\theta (\theta_i^P, \theta_i^Q) + \sum_{i=1}^{2} \log \left(\frac{l_i^P}{l_i^Q} \right)
\]

(1)

where the first term is the difference in the relative locations of the segments, \(D_\theta \in [0, \pi/2]\) measures the difference between segment orientations, and the last term accounts for the difference in lengths. In all our experiments, the weights \(w_r, w_q\) are fixed to the same values used in [16] \((w_r = 4, w_q = 2)\).

PAS codebook. We construct a codebook by clustering the PAS inside all training bounding-boxes according to their descriptors (see [16] for more details about the clustering algorithm). For each cluster, we retain the centremost PAS, minimizing the sum of dissimilarities to all the others. The codebook \(\mathcal{C} = \{t_i\}\) is the collection of the descriptors of these centremost PAS, the PAS types \(\{t_i\}\) (figure 2b). A codebook is useful for efficient matching, since all features similar to a type are considered in correspondence. The codebook is class-specific and built from the same images used later to learn the shape model.

4 Learning the shape model

In this section we present the new technique for learning a prototype shape for an object class and its principal intra-class deformation modes, given image windows \(W\) with example instances (figure 3a). To achieve this, we propose a procedure for discovering which contour points belong to the common class boundaries, and for putting them in full point-to-point correspondence across the training examples. For example, we want the shape model to include the outline of a mug, which
is characteristic for the class, and not the mug labels, which vary across instances. The technique is composed of four stages (figure 3b-e):

1. Determine model parts as PAS frequently reoccurring with similar locations, scales, and shapes (subsection 4.1).

2. Assemble an initial shape by selecting a particular PAS for each model part from the training examples (subsection 4.2).

3. Refine the initial shape by iteratively matching it back onto the training images (subsection 4.3).

4. Learn a statistical model of intra-class deformations from the corresponded shape instances produced by stage 3 (subsection 4.4).

The shape model output at the end of this procedure is composed of a prototype shape S, which is a set of points in the image plane, and a small number of n intra-class deformation modes $E_{1:n}$, so that new class members can be written as $S + E_{1:n}$.

4.1 Finding model parts

The first stage towards learning the model shape is to determine which PAS lie on boundaries common across the object class, as opposed to those on the background clutter and those on details specific to individual training instances. The basic idea is that a PAS belonging to the class boundaries will recur consistently across several training instances with a similar location, size, and shape. Although they are numerous, PAS not belonging to the class boundaries are not correlated across different examples. In the following we refer to any PAS or edgel not lying on the class boundaries as clutter.

4.1.1 Algorithm

The algorithm consists of three steps:

1. **Align windows.** Let a be the geometric mean of the aspect-ratios of the training windows W (width over height). Each window is transformed to a canonical zero-centered rectangle of height 1 and width a. This removes translation and scale differences, and cancels out shape variations due to different aspect-ratios (e.g. tall Starbucks mugs versus coffee cups). This facilitates the learning task, because PAS on the class boundaries are now better aligned.

2. **Vote for parts.** Let V_i be a voting space associated with PAS type t_i. There are $|C|$ such voting spaces, all initially empty. Each voting space has three dimensions: two for location (x, y) and one for size s. Every PAS $P = (x, y, s, e, d)$ from every training window casts votes as follows:

 1. P is soft-assigned to all types T within a dissimilarity threshold γ: $T = \{t_j | D(d, t_j) < \gamma\}$, where d is the shape descriptor of P (see equation (1)).
 2. For each assigned type $t_j \in T$, a vote is casted in V_j at (x, y, s), i.e. at the location and size of P. The vote is weighted by $e \cdot (1 - D(d, t_j)/\gamma)$, where e is the edge strength of P.

 Assigning P to multiple types T, and weighting votes according to the similarity $1 - D(d, t_j)/\gamma$ reduce the sensitivity to the exact shape of P and the exact codebook types. Weighting by edge strength allows to take into account the relevance of the PAS. It leads to better results over treating edgels as binary features (as also noticed by [11,14]).

 Essentially, each PAS votes for the existence of a part of the class boundary with shape, location, and size like its own (figure 4). This is the best it can do from its limited local perspective.

3. **Find local maxima.** All voting spaces are searched for local maxima. Each local maximum yields a model part $M = (x, y, s, v, d)$, with a specific location (x, y), size s, and shape $d = t_i$ (the PAS type corresponding
to the voting space where M was found). The value v of the local maximum measures the confidence that the part belongs to the class boundaries. The (x, y, s) coordinates are relative to the canonical window.

4.1.2 Discussion

The success of this procedure is due in part to adopting PAS as basic shape elements. A simpler alternative would be to use individual edgels. In that case, there would be just one voting space, with two location dimensions and one orientation dimension. In contrast, PAS bring two additional degrees of separation: the shape of the PAS, expressed as the assignments to codebook types, and its size (relative to the window). Individual edgels have no size, and the shape of a PAS is more distinctive than the orientation of an edgel. As a consequence, it is very unlikely that a significant number of clutter PAS will accidentally have similar locations, sizes and shapes at the same time. Hence, recurring PAS stemming from the desired class boundaries tend to form peaks in the voting spaces, whereas clutter PAS don’t.

Intra-class shape variability is addressed partly by the soft-assign of PAS to types, and partly by applying a substantial spatial smoothing to the voting spaces before detecting local maxima. This creates wide basins of attraction for PAS from different training examples to accumulate evidence for the same part. We can afford this flexibility while keeping a low risk of accumulating clutter because of the high separability discussed above, especially due to separate voting spaces for different codebook types. This yields the discriminativity necessary to overcome the poor signal-to-noise ratio, while allowing the flexibility necessary to accommodate for intra-class shape variations.

The voting procedure is similar in spirit to recent works on finding frequently recurring spatial configurations of local appearance features in unannotated images [19,34], but it is specialized for the case when bounding-box annotation is available.

The proposed algorithm sees all training data at once, and therefore reliably selects parts and robustly estimates their locations/size/shapes. In our experiments this was more stable and more robust to clutter than matching pairs of training instances and combining their output a posteriori. As another advantage, the algorithm has complexity linear in the total number of PAS in the training windows, so it can learn from large training sets efficiently.

4.2 Assembling the initial model shape

The collection of parts learned in the previous section captures class boundaries well, and conveys a sense of the shape of the object class (figure 3b). The outer boundary of the mug and the handle hole are included, whereas the label and background clutter are largely excluded. Based on this ‘collection of parts’ model (COP) one could already attempt to detect objects in a test image, by matching parts based on their descriptor and enforcing their spatial relationship. This could be achieved in a way similar to what earlier approaches do based on appearance features [18,27], and also done recently with contour features by [32,39], and it would localize objects up to a bounding-box.

However, the COP model has no notion of shape at the global scale. It is a loose collection of fragments learnt rather independently, each focusing on its own local scale. In order to support localizing object boundaries accurately and completely on novel test images, a more globally consistent shape is preferable. Ideally, its parts would be connected into a whole shape featuring smooth, continuous lines.

In this subsection we describe a procedure for constructing a first version of such a shape, and in the next subsection we refine it. We start with some intuition behind the method. A model part occurs several times on different images (figure 5a-b). These occurrences offer slightly different alternatives for the part’s location, size, and shape. We can assemble variants of the model shape by selecting different occurrences for each part. The key idea for obtaining a globally consistent shape is to select one occurrence for each part so as to form larger aggregates of connected occurrences (figure 3c). We cast the shape assembly task as the search for the assignment of parts to occurrences leading to the best connected shape. In the following, we explain the algorithm in more detail.

4.2.1 Algorithm

The algorithm consists of three steps:

1. Compute occurrences. A PAS $P = (x^p, y^p, s^p, e^p, d^p)$ is an occurrence of model part $M = (x^m, y^m, s^m, v^m, d^m)$ if they have similar location, scale, and shape (figure 5a). The following function measures the confidence that P is an occurrence of M (denoted $M \rightarrow P$):

$$\text{conf}(M \rightarrow P) = e^p \cdot D(d^m, d^p) \cdot \min \left(\frac{s^m}{s^p}, \frac{s^p}{s^m} \right) \cdot \exp \left(-\frac{1}{2\sigma^2} ((x^p-x^m)^2 + (y^p-y^m)^2) \right)$$

It takes into account P’s edge strength (first factor) and how close it is to M in terms of shape, scale,
and location (second to last factors). The confidence ranges in \([0, 1]\), and \(P\) is deemed an occurrence of \(M\) if \(\text{conf}(M \rightarrow P) > \delta\), with \(\delta\) a threshold. By analogy \(M_i \rightarrow P_i\) denotes the occurrence of model segment \(M_i\) on image segment \(P_i\) (with \(i \in \{1, 2\}\)).

2. Compute connectedness.

As a PAS \(P\) is formed by two segments \(P_1, P_2\), two occurrences \(P, Q\) of different model parts \(M, N\) might share a segment (figure 5c). This suggests that \(M, N\) explain connected portions of the class boundaries and should be connected in the model. As model parts occur in several images, we estimate how likely it is for two parts to be connected in the model, by how frequently their occurrences share segments. Let the equivalence of segments \(M_i, N_j\) be

\[
\text{eq}(M_i, N_j) = \sum_{(P, Q) \in P \times Q} (\text{conf}(M \rightarrow P) + \text{conf}(N \rightarrow Q))
\]

The summation runs over all pairs of PAS \(P, Q\) sharing a segment \(s\), where \(s\) is an occurrence of both \(M_i\) and \(N_j\) (figure 5c). Let the connectedness of \(M, N\) be the combined equivalence of their segments \(^1\):

\[
\text{conn}(M, N) = \max(\text{eq}(M_1, N_1) + \text{eq}(M_2, N_2), \\
\text{eq}(M_1, N_2) + \text{eq}(M_2, N_1))
\]

Two parts have high connectedness if their occurrences frequently share a segment. Two parts sharing both segments have even higher connectedness, suggesting they explain the same portion of the class boundaries.

3. Assign parts to occurrences.

Let \(A(M) = P\) be a function assigning a PAS \(P\) to each model part \(M\). Find the mapping \(A\) that maximizes

\[
\sum_M \text{conf}(M \rightarrow A(M)) + \alpha \sum_{M, N} \text{conn}(M, N) \cdot \mathbf{1}(A(M), A(N)) - \beta K
\]

where \(\mathbf{1}(a, b) = 1\) if occurrences \(a, b\) come from the same image, and 0 otherwise; \(K\) is the number of images contributing occurrences to \(A\); \(\alpha, \beta\) are predefined weights. The first term prefers high confidence occurrences. The second favors assigning connected parts to connected occurrences, because occurrences of parts with high connectedness are likely to be connected when they come from the same image (by construction of function (5)). The last term encourages selecting occurrences from a few images, as occurrences from the same image fit together naturally. Overall, function (5) encourages the formation of aggregates of good confidence and properly connected occurrences.

Optimizing (5) exactly is expensive, as the space of all assignments is huge. In practice, the following approximation algorithm brings satisfactory results. We start by assigning the part with the single most confident occurrence. Next, we iteratively consider the part most connected to those assigned so far, and assign it to the occurrence maximizing (5). The algorithm iterates until all parts are assigned to an occurrence.

Figure 3c shows the selected occurrences for our running example. These form a rather well connected shape, where most segments fit together and form continuous lines. The remaining discontinuities are smoothed out by the refinement procedure in the next subsection.

4.3 Model shape refinement

In this subsection we refine the initial model shape. The key idea is match it back onto the training image windows \(W\), by applying a deformable matching algorithm [6] (figure 6b). This results in a backmatched shape for each window (figure 6c-left). An improved model shape is obtained by averaging them (figure 6c-right). The process is then iterated by alternating back-

\(^1\) for the best of the two possible segment matchings
Fig. 6 Model shape refinement. (a) sampled points from the initial model shape. (b) after initializing backmatching by aligning the model with the image bounding-box (left), it deforms it so as to match the image edgels (right). (c) the first iteration of shape refinement. (d) the second iteration.

3. **Averaging.** (1) Align the backmatched shapes $B = \{B_i\}_{i=1:|W|}$ using Cootes’ variant of Procrustes analysis [9], by translating, scaling, and rotating each shape so that the total sum of distances to the mean shape \bar{B} is minimized: $\sum_{B \in B} |B_i - \bar{B}|^2$ (see appendix A of [9]).

(2) Update S by setting it to the mean shape: $S \leftarrow \bar{B}$ (figure 6c-right).

The algorithm now iterates to Step 2, using the updated model shape S. In our experiments, Steps 2 and 3 are repeated two to three times.

4.3.2 Discussion

Step 3 is possible because the backmatched shapes B are in point-to-point correspondence, as they are different TPS transformations of the same S (figure 6c-left). This enables to define \bar{B} as the coordinates of corresponding points averaged over all $B_i \in B$. It also enables to analyze the variations in the point locations. The differences remaining after alignment are due to non-rigid shape variations, which we will learn in the next subsection.

The alternation of backmatching and averaging results in a succession of better models and better matches to the data, as the point correspondence cover more and
more of the class boundaries of the training objects (figure 6d). Segments of the model shape are moved, bent, and stretched so as to form smooth, connected lines, thus recovering the shape of the class well on a global scale (e.g., topmost and leftmost segments in figure 6c-right). This because backmatching deforms the initial shape onto the class boundaries of the training images, delivering natural, well formed shapes. The averaging step then integrates them into a generic-looking shape, and smoothes out occasional inaccuracies of the individual backmatches.

The proposed technique can be seen as searching for the model shape that best explains the training data, under the general assumption that TPS deformations account for the difference between the model shape and the class boundaries of the training objects.

As shown in figure 6d-right, the running example improves further during the second (and final) iteration (e.g., the handle arcs become more continuous). The final shape is smooth and well connected, includes no background clutter and little interior clutter, and, as desired, represents an average class member (a prototype shape). Both large scale (the external frame) and fine scale structures (the double handle arc) are correctly recovered. The backmatched shapes also improve in the second iteration, because matching is easier given a better model. In turn, the better backmatches yield a better average shape. The mutual help between backmatching and updating the model is key for the success of the procedure.

Figure 7 shows examples of other models evolving over the three stages (sections 4.1 to 4.3). Notice the large positive impact of model shape refinement. Furthermore, to demonstrate that the proposed techniques consistently produce good quality models, we show many of them in the result section (figure 10).

Our idea for shape refinement is related to a general design principle visible in different areas of vision. It involves going back to the image after building some intermediate representation from initial low-level features, to refine and extend it. This differs from the conventional way of building layers of increasing abstraction, involving representations of higher and higher level, progressively departing from the original image data. The traditional strategy suffers from two problems: errors accumulate from a layer to the next, and relevant information missed by the low-level features is never recovered. Going back to the image enables to correct both problems, and it has good chances to succeed since a rough model has already been built. Different algorithms are instances of this strategy and have led to excellent results in various areas: human pose estimation [35], top-down segmentation [27, 4], and recognition of specific objects [13].

4.4 Learning shape deformations

The previous subsection matches the model shape to each training image, and thus provides examples of the variations within the object class we want to learn. Since these examples are in full point-to-point correspondence, we can learn a compact model of the intra-class variations using the statistical shape analysis technique by Cootes [8].

The idea is to consider each example shape as a point in a 2p-D space (with p the number of points on each shape), and model their distribution with Principal Component Analysis (PCA). The eigenvectors returned by PCA represent modes of variation, and the associated eigenvalues λ_i their importance (how much the example shapes deform along them, figure 3e). By keeping only the n largest eigenvectors $E_{1:n}$ representing 95% of the total variance, we can approximate the region in which the training examples live by $S + E_{1:n}b$, where S is the mean shape, b is a vector representing shapes in the subspace spanned by $E_{1:n}$, and b’s i^{th} component is bound by $\pm 3\sqrt{\lambda_i}$. This defines the valid region of the shape space, containing shapes similar to the example ones. Typically, $n < 15$ eigenvectors are sufficient (compared to $2p \approx 200$).

Figure 3e shows the first two deformation modes for our running example. The first mode spans the spectrum between little coffee cups and tall Starbucks-style mugs, while the handle can vary from pointed down to pointed up within the second mode. In subsection 5.3, we exploit this deformation model to constrain the matching of the model to novel test images. We should point out that by deformation we mean the geometric transformation from the shape of an instance of the object.
class to another instance. Although a single mug is not a rigid object, we need a non-rigid transformation to map the shape of a mug to that of another mug.

Notice that previous works on these deformation models require at least the example shapes as input [21], and many also need the point-to-point correspondences [8]. In contrast, we automatically learn shapes, correspondences, and deformations given just images.

5 Object detection

In this section we describe how to localize the boundaries of previously unseen object instances in a test image. To this end, we match the shape model learnt in the previous section to the test image edges. This task is very challenging, because 1) the image can be extensively cluttered, with the object covering only a small proportion of its edges (figure 8a-b); and 2) to handle intra-class variability, the shape model must be deformed into the shape of the particular instance shown in the test image.

We decompose the problem into two stages. We first obtain rough estimates for location and scale of the object based on a Hough-style voting scheme (subsection 5.1). This greatly simplifies the subsequent shape matching, as it approximately lifts three degrees of freedom (translation and scale). The estimates are then used to initialize the non-rigid shape matcher [6] (subsection 5.2). This combination enables [6] to operate in cluttered images, and hence allows to localize object boundaries. Furthermore, in subsection 5.3, we constrain the matcher to explore only the region of shape space spanned by the training examples, thereby ensuring that output shapes are similar to class members.

5.1 Initialization by Hough voting

In subsection 4.1 we have represented the shape of a class as a set of PAS parts, each with a specific shape, location, size, and confidence. Here we match these parts to PAS from the test image, based on their shape descriptors. More precisely, a model part is deemed matched to an image PAS if their dissimilarity (1) is below a threshold γ (this is the same as used in section 4.1). Since a pair of matched PAS induces a translation and scale transformation, each match votes for the presence of an object instance at a particular location (object center) and scale (in the same spirit as [27,32,39]). Votes are weighed by the shape similarity between the model part and test PAS, the edge strength of the PAS, and the confidence of the part. Local maxima in the voting space define rough estimates of the location and scale of candidate object instances (figure 8c).

5.2 Shape Matching by TPS-RPM

For each initial location l and scale s found by Hough voting, we obtain a point set V by centering the model shape on l and rescaling it to s, and a set X which contains all image edge points within a larger rectangle of scale $1.8s$ (figure 8c). This larger rectangle is designed to contain the whole object, even when s is under-estimated. Any point outside this rectangle is ignored by the shape matcher.

Given the initialization, we want to put V in correspondence with the subset of X lying on the object boundary. We estimate the associated non-rigid transformation, and reject image points not corresponding to any model point with the Thin-Plate Spline Robust
Point Matching algorithm (TPS-RPM [6]). In this subsection we give a brief summary of TPS-RPM, and we refer to [6] for details.

TPS-RPM matches the two point sets \(V = \{ v_k \}_{k=1}^K \) and \(X = \{ x_i \}_{i=1}^N \) by applying a non-rigid TPS mapping \(\{ d, w \} \) to \(V \) (\(d \) is the affine component, and \(w \) the non-rigid warp). It estimates both the correspondence matrix \(M = \{ m_{ai} \} \) between \(V \) and \(X \), and the mapping \(\{ d, w \} \) that minimize an objective function including 1) the distance between points of \(X \) and their corresponding points of \(V \) after mapping them by the TPS, and 2) the regularization terms for the affine and warp components of the TPS. In addition to the inner \(K \times N \) part, \(M \) has an extra row and an extra column which allow to reject points as unmatched.

Since neither the correspondence \(M \) nor the TPS mapping \(\{ d, w \} \) are known beforehand, TPS-RPM iteratively alternates between updating \(M \), while keeping \(\{ d, w \} \) fixed, and updating the mapping with \(M \) fixed. \(M \) is a continuous-valued soft-assign matrix, allowing the algorithm to evolve through a continuous correspondence space, rather than jumping around in the space of binary matrices (hard correspondence). It is updated by setting \(m_{ai} \) as a function of the distance between \(x_i \) and \(v_k \) after mapping by the TPS (details below). The update of the mapping fits a TPS between \(V \) and the current estimate \(\hat{Y} = \{ y_k \}_{k=1}^K \) of the corresponding points. Each point \(y_k \) in \(y \) is a linear combination of all image points \(\{ x_i \}_{i=1}^N \) weighted by the soft-assign values \(M(a, i) \):

\[
y_k = \sum_{i=1}^N m_{ai} x_i \tag{6}
\]

The TPS fitting maximizes the proximity between the points \(Y \) and the model points \(V \) after TPS mapping, under the influence of the regularization terms, which penalize local warpings \(w \) and deviations of \(d \) from the identity. Fitting the TPS to \(V \leftrightarrow Y \) rather than to \(V \leftrightarrow X \), allows to harvest the benefits of maintaining a full soft-correspondence matrix \(M \).

The optimization procedure of TPS-RPM is embedded in a deterministic annealing framework by introducing a temperature parameter \(T \), which decreases at each iteration. The entries of \(M \) are updated by the following equation:

\[
m_{ai} = \frac{1}{T} \exp \left(\frac{\langle x_i - f(v_k, d, w) \rangle^2}{2T} \frac{\langle x_i - f(v_k, d, w) \rangle}{2T} \right) \tag{7}
\]

where \(f(v_k, d, w) \) is the mapping of point \(v_k \) by the TPS \(\{ d, w \} \). The entries of \(M \) are then iteratively normalized to ensure the rows and columns sum to 1 [6]. Since \(T \) is the bandwidth of the Gaussian kernel in equation (7), as it decreases \(M \) becomes less fuzzy, progressively approaching a hard correspondence matrix. At the same time, the regularization terms of the TPS is given less weight. Hence, the TPS is rigid in the beginning, and gets more and more deformable as the iterations continue. These two phenomena enable TPS-RPM to find a good solution even when given a rather poor initialization. At first, when the correspondence uncertainty is high, each \(y_k \) essentially averages over a wide area of \(X \) around the TPS-mapped point and the TPS is constrained to near-rigid transformations. This can be seen as a large \(T \) in equation (7) generates similar-valued \(m_{ai} \), which are then averaged by equation (6). As the iterations continue and the temperature decreases, \(M \) looks less and less far, and pays increasing attention to the differences between matching options from \(X \). Since the uncertainty diminishes, it is safe to let the TPS looser, freer to fit the details of \(X \) more accurately. Figure 9 illustrates TPS-RPM on our running example.

We have extended TPS-RPM by adding two terms to the objective function: the orientation difference between corresponding points (minimize), and the edge strength of matched image points (maximize). In our experiments, these extra terms made TPS-RPM more accurate and stable, i.e. it succeeds even when initialized farther away from the best location and scale.
<table>
<thead>
<tr>
<th></th>
<th>apple</th>
<th>bottle</th>
<th>giraffe</th>
<th>mug</th>
<th>swan</th>
<th>horse</th>
</tr>
</thead>
<tbody>
<tr>
<td>train</td>
<td>20</td>
<td>24</td>
<td>44</td>
<td>24</td>
<td>16</td>
<td>50</td>
</tr>
<tr>
<td>test pos</td>
<td>20</td>
<td>24</td>
<td>43</td>
<td>24</td>
<td>16</td>
<td>120</td>
</tr>
<tr>
<td>test neg</td>
<td>215</td>
<td>207</td>
<td>167</td>
<td>207</td>
<td>223</td>
<td>170</td>
</tr>
</tbody>
</table>

Table 1 Number of training images and of positive/negative test images for all datasets.

5.3 Constrained shape matching

TPS-RPM treats all shapes according to the same generic TPS deformation model, simply preferring smoother transformations (in particular, low 2D curvature w, and low affine skew d). Two shapes with the same deformation energy are considered equivalent. This might result in output shapes unlike any of the training examples. In this section, we extend TPS-RPM with the class-specific deformation model learned in subsection 4.4. We constrain the optimization to explore only the valid region of the shape space, containing shapes plausible for the class (defined by S, $E_{1:n}$, λ, from subsection 4.4).

At each iteration of TPS-RPM we project the current shape estimate Y (equation (6)) inside the valid region, just before fitting the TPS. This amounts to:

1) align Y on S w.r.t. to translation/rotation/scale
2) project Y on the subspace spanned by $E_{1:n}$:
 $b = E^{-1} \cdot (Y - S)$, $\theta_{(n+1):2p} = 0$
3) bound the first n components of b by $\pm 3\sqrt{N}$
4) transform b back into the original space: $Y^c = S + E \cdot b$
5) apply to Y^c the inverse of the transformation used in 1)

The assignment $Y \leftarrow Y^c$ imposes hard constraints on the shape space. While this guarantees output shapes similar to class members, it might sometimes be too restrictive. To match a novel instance accurately, it could be necessary to move a little along some dimensions of the shape space not recorded in the deformation model. The training data cannot be assumed to present all possible intra-class variations.

To tackle this issue, we propose a soft-constrained variant, where Y is attracted by the valid region, with a force that diminishes with temperature: $Y \leftarrow Y + \frac{T}{1 + T} (Y^c - Y)$. This causes TPS-RPM to start fully constrained, and then, as temperature decreases and M looks for correspondences closer to the current estimates, later iterations are allowed to apply small deformations beyond the valid region (typically along dimensions not in $E_{1:n}$). As a result, output shapes fit the image data more accurately, while still resembling class members. Notice how this behavior is fully in the spirit of TPS-RPM, which also lets the TPS more and more free as T decreases.

The proposed extension to TPS-RPM has a deep impact, in that it alters the search through the transformation and correspondence spaces. Beside improving accuracy, it can help TPS-RPM to avoid local minima far from the correct solution, thus avoiding gross failures.

Figure 8e shows the improvement brought by the proposed constrained shape matching, compared to TPS-RPM with just the generic TPS model (figure 8d). On the running example, the two versions of TPS-RPM diverge after the eight iteration, as shown in figure 9.

5.4 Detections

Every local maximum in Hough space constitutes an initialization for the shape matching, and results in different shapes (detections) localized in the test image. In this section we score the detections, making it possible to reject detections and to evaluate the detection rate and false-positive rate of our system.

We score each detection by a weighted sum of four terms:

1) the number of matched model points, i.e. for which a corresponding image point has been found with good confidence. Following [6], these are all points v_a with $\max_{i=1..N} (m_{ai}) > 1/N$.
2) the sum of squared distances from the TPS-mapped model points to their corresponding image points. This measure is made scale-invariant by normalizing by the squared range r^2 of the image point coordinates (width or height, whichever is larger). Only matched model points are considered.
3) the deviation $\sum_{i,j \in [1,2]} \left(I(i,j) - d(i,j)/\sqrt{|d|} \right)^2$ of the affine component d of the TPS from the identity I. The normalization by the determinant of d factors out deviations due to scale changes.
4) the amount of non-rigid warp w of the TPS $\mathrm{trace}(w^T \Phi w)/r^2$, where $\Phi(a,b) \propto ||v_a - v_b||^2 \log ||v_a - v_b||$ is the TPS kernel matrix [6].

This score integrates the information a matched shape provides. It is high when the TPS fits many (term 1) points well (term 2), without having to distort much (terms 3 and 4). In our current implementation, the relative weights between these terms have been selected manually, they are the same for all classes, and remain fixed in all experiments.

As a final refinement, if two detections overlap substantially, we remove the lower scored one. Notice that the method can detect multiple instances of the same class in an image. Since they appear as different peaks
in the Hough voting space, they result in separate detections.

6 Experiments

We present an extensive evaluation involving six diverse object classes from two existing datasets [14, 25]. After introducing the datasets in the next subsection, we evaluate our approach for learning shape models in subsection 6.2. The ability to localize objects in novel images, both in terms of bounding-boxes and boundaries, is measured in subsection 6.3. All experiments are run with the same parameters (no class-specific nor dataset-specific tuning is applied).

6.1 Datasets and protocol

ETHZ shape classes [14]. This dataset features five diverse classes (bottles, swans, mugs, giraffes, apple-logos) and contains a total of 255 images collected from the web. It is highly challenging, as the objects appear in a wide range of scales, there is considerable intra-class shape variation, and many images are severely cluttered, with objects comprising only a fraction of the total image area (figures 13 and 18).

For each class, we learn 5 models, each from a different random sample containing half of the available images (there are 40 for apple-logos, 48 for bottles, 87 for giraffes, 48 for mugs and 32 for swans). Learning models from different training sets allows to evaluate the stability of the proposed learning technique (subsection 6.2). Notice that our method does not require negative training images i.e. images not containing any instance of the class.

The test set for a model consists of all other images in the dataset. Since this includes about 200 negative images, it allows to properly estimate false-positive rates. Table 1 gives an overview of the composition of all training and testing sets. We refer to learning and testing on a particular split of the images as a trial.

INRIA horses [25]. This challenging dataset consists of 170 images with one or more horses viewed from the side and 170 images without horses. Horses appear at several scales, and against cluttered backgrounds.

We train 5 models, each from a different random subset of 50 horse images. For each model, the remaining 120 horse images and all 170 negative images are used for testing, see table 1.

6.2 Learning shape models

Evaluation measures. We assess the performance of the learning procedure of section 4 in terms of how accurately it recovers the true class boundaries of the training instances. For this evaluation, we have manually annotated the boundaries of all object instances in the ETHZ shape classes dataset. We will present results for all of these five classes.

Let \(B_{gt} \) be the ground-truth boundaries, and \(B_{model} \) the backmatched shapes output by the model shape refinement algorithm of subsection 4.3. The accuracy of learning is quantified by two measures. Coverage is the percentage of points from \(B_{gt} \) closer than a threshold \(t \) from any point of \(B_{model} \). We set \(t \) to 4% of the diagonal of the bounding-box of \(B_{gt} \). Conversely, precision is the percentage of \(B_{model} \) points closer than \(t \) from any point of \(B_{gt} \). The measures are complementary. Coverage captures how much of the object boundary has been recovered by the algorithm, whereas precision reports how much of the algorithm’s output lies on the object boundaries.

Models from the full algorithm. Table 2 shows coverage and precision averaged over training instances and trials, for the complete learning procedure described in section 4. With the exception of giraffes, the proposed method achieves very high coverage (above 90%), demonstrating its ability to discover which contour points belong to the class boundaries. The precision of apple-logos and bottles is also excellent, thanks to the clean prototype shapes learned by our approach (figure 10). Interestingly, the precision of mugs is somewhat lower, because the learned shapes include a detail not present in the ground-truth annotations, although it is arguably part of the class boundaries: the inner half of the opening on top of the mug. A similar phenomenon penalizes the precision of swans, where our method sometimes includes a few water waves in the model. Although they are not part of the swan boundaries, waves accidentally occurring at a similar position over many training images are picked up by the algorithm. A larger training set might lead to the suppression of such artifacts, as waves have less chances of accumulating accidentally (we only used 16 images). The modeling performance for giraffes is lower, due to the extremely cluttered edgemaps arising from their natural environment, and to the camouflage texture which tends to break edges along the body outlines (figure 11).

Models without assembling the initial shape. We experiment with a simpler scheme for learning shape models by skipping the procedure for assembling the
Table 2: Accuracy of learned models. Each entry is the average coverage/precision over trials and training instances.

<table>
<thead>
<tr>
<th></th>
<th>apple</th>
<th>bottle</th>
<th>giraffe</th>
<th>mug</th>
<th>swan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full system</td>
<td>90.2 / 90.6</td>
<td>96.2 / 92.7</td>
<td>70.8 / 74.3</td>
<td>93.9 / 83.6</td>
<td>90.0 / 80.0</td>
</tr>
<tr>
<td>No assembly</td>
<td>91.2 / 92.7</td>
<td>96.8 / 88.1</td>
<td>70.0 / 72.6</td>
<td>92.6 / 82.9</td>
<td>89.4 / 79.2</td>
</tr>
</tbody>
</table>

Fig. 10: Learned shape models for ETHZ Shape Classes (three out of total five per class). **Top three rows:** models learnt using the full method presented in section 4. **Last row:** models learnt using the same training images used in row 3, but skipping the procedure for assembling the initial shape (subsection 4.2; done only for ETHZ shape classes).

initial shape (section 4.2). An alternative initial shape can be obtained directly from the COP model (section 4.1) by picking, for each part, the occurrence closest to the peak in the voting space corresponding to the part (as in section 4.1). This initial shape can then be passed on to the shape refinement stage as usual (section 4.3).

For each object class and trial we have rerun the learning algorithm without the assembly stage, but otherwise keeping identical conditions (including using exactly the same training images). Many of the resulting prototype shapes are moderately worse than those obtained using the full learning scheme (figure 10 bottom row). However, the lower model quality only results in slightly lower average coverage/accuracy values (table 2). These results suggest that while the initial assembly stage does help getting better models, it is not a crucial step, and that the shape refinement stage of section 4.3 is robust to large amounts of noise, and delivers good models even when starting from poor initial shapes.

Fig. 11: A typical edgemap for a Giraffe training window is very cluttered and edges are broken along the animal’s outline, making it difficult to learn clean models.

6.3 Object detection

Detection up to a bounding-box. We first evaluate the ability of the object detection procedure of section 5 to localize objects in cluttered test images up to a bounding-box (i.e. the traditional detection task commonly defined in the literature).

Figure 12 reports detection-rate against the number of false-positives averaged over all 255 test images (FPPI) and averaged over the 5 trials. As discussed above, this includes mostly negative images. We adopt the strict standards of the PASCAL Challenge criterion (dashed lines in the plots): a detection is counted as correct only if the intersection-over-union ratio (IoU) with the ground-truth bounding-box is greater than 50%. All other detections are counted as false-positives. In order to compare to [14, 16], we also report results under their somewhat softer criterion: a detection is counted as correct if its bounding-box overlaps more than 20% with the ground-truth one, and vice-versa (we refer to this criterion as 20%-IoU).

As the plots show, our method performs well on all classes but giraffes, with detection-rates around 80% at the moderate false-positive rate of 0.4 FPPI (this is the reference point for all comparisons). The lower performance on giraffes is mainly due to the difficulty of building shape models from their extremely noisy edge maps.

It is interesting to compare against the detection performance obtained by the Hough voting stage alone (subsection 5.1), without the shape matcher on top (subsections 5.2, 5.3). The full system performs substantially better: the difference under PASCAL criterion is about +30% averaged over all classes. This shows the benefit of treating object detection fully as a shape
matching task, rather than simply matching local features, which is one of the principal points of this paper. Moreover, the shape matching stage also makes it possible to localize complete object boundaries, rather than just bounding-boxes (figure 13).

The difference between the curves under the PASCAL criterion and the 20%-IoU criterion of [14, 16] is small for apple-logos, bottles, mugs and swans (0%, −1.6%, −3.6%, −4.9%), indicating that most detections have accurate bounding-boxes. For horses and giraffes the decrease is more significant (−18.1%, −14.1%), because the legs of the animals are harder to detect and cause the bounding-box to shift along the body. On average over all classes, our method achieves 78.1% detection-rate at 0.4 FPPI under 20%-IoU and 71.1% under PASCAL. The corresponding standard-deviation over trials, averaged over classes, is 8.1% under 20%-IoU and 8.0% under PASCAL (this variation is due to different trials having different training and test sets).

For reference, the plots also show the performance of [16] on the same datasets, using the same number of training and test images. An exact comparison is not possible, as [16] reports result based on only one training/testing split, whereas we average over 5 random splits. Under the rather permissive 20%-IoU criterion, [16] performs a little better than our method on average over all classes. Under the strict PASCAL criterion instead, our method performs substantially better than [16] on two classes (apple-logos, swans), moderately worse on two (bottles, horses), and about the same on two (mugs, giraffes), thanks to the higher accuracy of the detected bounding-boxes. Averaged over all classes, under PASCAL our method reaches 71.1% detection-rate at 0.4 FPPI, averaging well against the 68.5% of [16]. Note how our results are achieved without the beneficial discriminative learning of [16], where a SVM learns which PAS types at which relative location within the training bounding-box best discriminate between instances of the class and background image windows. Our method instead trains only from positive examples.

For clarity and reference for comparison by future works, we summarize here our results on the ETHZ Shape Classes alone (without INRIA horses). Under PASCAL, averaged over all 5 trials and 5 classes, our method achieves 72.0%/67.2% detection-rate at 0.4/0.3 FPPI respectively. Under 20%-IoU, it achieves 76.8%/71.5% detection-rate at 0.4/0.3 FPPI.

After our results were first published [15], Fritz and Schiele [20] presented an approach based on topic models and a dense gradient histogram representation of image windows (no explicit shapes). They report results on the ETHZ Shape Classes dataset (i.e. no horses), using the same protocol (5 random trials). Their method achieves 84.8% averaged over classes, improving over our 76.8% (both at 0.4 FPPI and under 20%-IoU).
Fig. 13 Example detections (models learnt from images). Notice the large scale variations (especially in apple-logos, swans), the intra-category shape variability (especially in swans, giraffes), and the extensive clutter (especially in giraffes, mugs). The method works for photographs as well as paintings (first swan, last bottle). Two bottle cases show also false-positives. In the first two horse images, the horizontal line below the horses’ legs is part of the model and represents the ground. Interestingly, the ground line systematically reoccurs over the training images for that model and gets learned along with the horse.
Localizing object boundaries. The most interesting feature of our approach is the ability to localize object boundaries in novel test images. This is shown by several examples in figure 13, where the method succeeds in spite of extensive clutter, a large range of scales, and intra-class variability (typical failure cases are discussed in figure 16). In the following we quantify how accurately the output shapes match the true object boundaries. We use the coverage and precision measures defined above. In the present context, coverage is the percentage of ground-truth boundary points recovered by the method and precision is the percentage of output points that lie on the ground-truth boundaries. All shape models used in these experiments have been learned from real images, as discussed before. Several models for each object class are shown in figures 10 and 15.

Table 3 shows coverage and precision averaged over trials and correct detections at 0.4 FPPI. Coverage ranges in 78 – 92% for all classes but giraffes, demonstrating that most of the true boundaries have been successfully detected. Moreover, precision values are similar, indicating that the method returns only a small proportion of points outside the true boundaries. Performance is lower for giraffes, due to the more noisy models and difficult edgemaps derived from the test images.

Although it uses the same evaluation metric, the experiment carried out at training time in subsection 6.2 differs substantially from the present one, because at testing time the system is not given ground-truth bounding-boxes. In spite of the important additional challenge of having to determine the object’s location and scale in the image, the coverage/precision scores in table 3 are only moderately lower than those achieved during training (table 3; the average difference in coverage and precision is 7.1% and 2.1% respectively). This demonstrates that our detection approach is highly robust to clutter.

As a baseline, table 3 also reports coverage/precision results when using the ground-truth bounding-boxes as shapes. The purpose of this experiment is to compare the accuracy of our method to the maximal accuracy that can be achieved when localizing objects up to a bounding-box. As the table clearly shows, the shapes returned by our method are substantially more accurate than the best bounding-box, thereby proving one of the principal points of this paper. While the average difference is about 35%, it is interesting to observe how the difference is greater for less rectangular objects (swans, giraffes, apple-logos) than for bottles and mugs. Notice also how our method is much more accurate than the ground-truth bounding-box even for giraffes, a class where it performs the worst.

Finally, we investigate the impact of the constrained shape matching technique proposed in subsection 5.3, by re-running the experiment without it, simply relying on the deformation model implicit in the thin-plate spline formulation (table 3, second row). The coverage/precision values are very similar to those obtained through constrained shape matching. The reason is that most cases are either already solved accurately without learned deformation models, or they do not improve when using them because the low accuracy is due to particularly bad edgemaps. In practice, the difference made by constrained shape matching is visible in about one case every six, and it is localized to a relatively small region of the shape (figure 14). The combination of these two factors explains why constrained shape matching appears to make little quantitative difference, although in many cases the localized boundaries improve visibly.

Detection from hand-drawn models. A useful characteristic of the proposed approach is that, unlike most existing object detection methods, it can take either a hand-drawing as a model, or learn it from real images. When given a hand-drawing as a model, our approach does not perform the learning stage, and naturally falls back to the functionality of pure shape matchers which takes a clean shape as input (e.g. the recent works [14, 38], which support matching to cluttered test images). In this case, the modeling stage simply decomposes the hand-drawing into PAS. Object detection then uses these PAS for the Hough voting stage, and the hand-drawing itself for the shape matching stage. As no deformation model can be learnt from a single example, our method naturally switches to the standard deformation model implicit in the Thin-Plane Spline formulation.

Figure 17 compares our method to [14] using their exact setup, i.e. with a single hand-drawing per class as model and all 255 images of the ETHZ shape classes as
Fig. 14 (left) typical improvement brought by constrained shape matching over simply using the TPS deformation model. As the improvement is often a refinement of a local portion of the shape (the swan’s tail in this case), the numerical differences in the evaluation measures is only modest (in this case less than 1%). (right) an infrequent case, where constrained shape matching fixes the entirely wrong solution delivered by standard matching. The numerical difference in such cases is noticeable (about 6%).

<table>
<thead>
<tr>
<th></th>
<th>apple</th>
<th>bottle</th>
<th>giraffe</th>
<th>mug</th>
<th>swan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full system</td>
<td>91.6 / 93.9</td>
<td>83.6 / 84.5</td>
<td>68.5 / 77.3</td>
<td>84.4 / 77.6</td>
<td>77.7 / 77.2</td>
</tr>
<tr>
<td>No learned deform</td>
<td>91.3 / 93.6</td>
<td>82.7 / 84.2</td>
<td>68.4 / 77.7</td>
<td>83.2 / 75.7</td>
<td>78.4 / 77.0</td>
</tr>
<tr>
<td>Ground-truth BB</td>
<td>42.5 / 40.8</td>
<td>71.2 / 69.7</td>
<td>26.7 / 29.8</td>
<td>55.1 / 62.9</td>
<td>30.8 / 39.4</td>
</tr>
</tbody>
</table>

Table 3 Accuracy of localized object boundaries at test time. Each entry is the average coverage/precision over trials and correct detections at 0.4 FPPI.

Fig. 16 Example failed detections (models learnt from images). (a) A typical case. A good match to the image edges is found, but at the wrong scale. Our system has no bias for any particular scale. (b) Another typical case. Failure is due to an extremely cluttered edge-map. The neck is correctly matched, and gives rise to a peak in the Hough voting space (section 5.1). However, the subsequent deformable matching stage (section 5.2) is attracted by the high contrast waves in the background. (c) An infrequent case. Failure is due to a poor shape model (right, this the worst of the 30 models we have learned).

test set. Therefore, the test set for each class contains mostly images not containing any instance of the class, which supports the proper estimation of FPPI. Our method performs better than [14] on all 5 classes, especially in the low FPPI range, and substantially outperforms the oriented chamfer matching baseline (details in [14]). Averaged over classes, our method achieves 85.3%/82.4% detection-rate at 0.4/0.3 FPPI respectively, compared to 81.5%/70.5% of [14] (all results under 20%-IoU). As one reason for this improvement, our method is more robust because it does not need the test image to contain long chains of contour segments around the object.

After our results were first published [15], two works reported even better performance. Ravishankar et al. [36] achieve 95.2% at 0.4 FPPI. Zhu et al. [45] reports 0.21 FPPI at 85.3% detection-rate (ours). Note this is the opposite of the usual way, reporting detection-rate at a reference FPPI [14–16,20,36]). All results are under 20%-IoU and averaged over classes. As part of the reason for the high performance, Ravishankar et al. [36] propose a sophisticated scoring method which allows to reliably reject false-positives, while the method of Zhu et al. [45] relies on their algorithm [46] to find long salient contours, effectively removing many clutter edgels before the object detector runs. An interesting avenue for further research is incorporating these successful elements in our framework.

Beside this quantitative evaluation, the main advantage of our approach over [14,36,45] is that it can also train from real images (which is the main topic of this paper). Moreover, compared to [14], it supports branching and self-intersecting input shapes.

Interestingly, in our system hand-drawings lead to moderately better detection results than when learning models from images. This is less suprising when considering that hand-drawings are essentially the prototype shapes the system tries to learn.
Fig. 17 Object detection performance (hand-drawn models). To facilitate comparison, all curves have been computed using the 20%-IoU criterion of [14].

Fig. 18 Detection from hand-drawn models. Top: four of the five models from [14]. There is just one example per object class. Bottom: example detections delivered by our shape matching procedure, using these hand-drawings as models.

7 Conclusions and future work

We have proposed an approach for learning class-specific explicit shape models from images annotated by bounding-boxes, and localizing the boundaries of novel class instances in the presence of extensive clutter, scale changes, and intra-class variability. In addition, the approach operates effectively also when given hand-drawings as models. The ability to input both images and hand-drawings as training data is a consequence of the basic design of our approach, which attempts to bridge the gap between shape matching and object class detection.

The presented approach can be extended in several ways. First, the training stage models only positive examples. This could be extended by learning a classifier to distinguish between positive and negative examples, which might reduce false positives. One possibility could be to train both our shape models and the discriminative models of [16]. At detection time, we could then use the bounding-box delivered by [16] to initialize shape matching based on our models. Moreover, the discriminative power of the representation could be improved by using appearance features in addition to image contours. Finally, in this paper we have assumed that all observed differences in the shape of the training examples originate from intra-class variation, and not from viewpoint changes. It would be interesting to add
a stage to automatically group objects by viewpoint, and learn separate shape models.

References

2. A. Berg, T. Berg and J. Malik, Shape Matching and Object Recognition using Low Distortion Correspondence, CVPR, 2005.