On the Complexity of Annotation Propagation and View Update Analyses

Gao Cong Wenfei Fan Floris Geerts Jianzhong Li Jizhou Luo

Abstract—This paper investigates three problems identified in [1] for annotation propagation, namely, the view side-effect, source side-effect and annotation placement problems. Given annotations entered for a tuple or an attribute in a view, these problems ask what tuples or attributes in the source have to be annotated to produce the view annotations. As observed in [1], these problems are fundamental not only for data provenance but also for the management of view updates. For an annotation attached to a single existing tuple in a view, it has been shown that these problems are often intractable even for views defined in terms of simple SPJU queries [1]. We revisit these problems by considering several dichotomies: (a) views defined in various subclasses of SPJU, versus SPJU views under a practical key preserving condition; (b) annotations attached to existing tuples in a view versus annotations on tuples to be inserted into the view; and (c) a single-tuple annotation versus a group of annotations. We provide a complete picture of intractability and tractability for the three problems in all these settings. We show that key preserving views often simplify the propagation analysis. Indeed, some problems become tractable for certain key preserving views, as opposed to the intractability of their counterparts that are not key preserving. However, group annotations often make the analysis harder. In addition, the problems have quite diverse complexity when annotations are attached to existing tuples in a view and when they are entered for tuples to be inserted into the view.

Index Terms—Annotation, View updates, View maintenance, SPJU queries.

1 INTRODUCTION

Database annotations have been recognized by scientists as an essential feature for new generation database management systems [2], [3], [4]. Annotations are additional information attached to tuples or attributes, either entered manually or generated by programs, to explain or correct the data [2]. This information is essential to the quality and semantics of the data, and should be carried over along with the regular data when the data is migrated, transformed or integrated. With this comes the need for studying annotation propagation. The analysis of annotation propagation is important in tracing the origin of the data [2], [1], [5], [6], [7], [8], [9] (a.k.a. lineage [10], [11]), data cleaning [12], access control [13], semantic Web [14], and in digital libraries [15], among other things. Several systems and tools have been developed to support annotation propagation analysis, e.g., DBNotes [16], MONDRIAN [17] and InfoVis [18].

Annotation propagation analysis. In many applications data transformations are expressed as views defined as SPJU queries in terms of the selection (S), projection (P), join (J), union (U) and renaming operators of the relational algebra. Annotations attached to some tuples in a database are carried forward to the views: the selection and projection operators preserve the annotations placed at selected tuples and the projected attributes, respectively; join merges annotations of the tuples joined together, while union simply copies the annotation of each tuple. In addition, annotating a view of some data, the annotations are carried backward to the source data as well as forward to other views [2]. As observed by [1], annotation propagation analysis is closely related to classical view update problem (see, e.g., [19] for a detailed discussion about the view update problem).

Three problems fundamental to the propagation analysis have been identified in [1], stated as follows. Consider a source database D, an SPJU query Q, the view $Q(D)$ and a tuple ΔV in the view, given as input.

- The view side-effect problem is to find a smallest set ΔD of tuples in D such that $Q(D) \setminus \Delta V = Q(D \setminus \Delta D)$, i.e., with zero side effect, if such ΔD exists.
- The source side-effect problem is to find a smallest set ΔD of tuples in D such that ΔV is in $Q(D) \setminus Q(D \setminus \Delta D)$.
- The annotation placement problem is to find, given a field in the tuple ΔV, a single tuple ΔD in D such that an annotation in a field of ΔD propagates to the minimum number of fields in the view including ΔV.

Intuitively, when an annotation is entered for ΔV in the view, the view side-effect problem is to identify a smallest set ΔD of tuples in the source such that annotations in those places produce the view annotation, without spreading to other view tuples. Alternatively, it means that the deletion of ΔD from the source leads to the removal of ΔV from the view without side effect, i.e., ΔD indicates how the tuple ΔV gets into the view.

We should remark that our statement of the view side-effect problem is referred as the “side-effect free” view
side-effect problem in [1]. Here we enforce $|Q(D) \setminus Q(D \setminus \Delta D)| = 0$. In contrast, [1] aims to minimize $|Q(D) \setminus Q(D \setminus \Delta D)|$, although all the complexity results of [1] for the view side-effect problem are established for the “side-effect free” version, i.e., the problem studied here.

As opposed to the view side-effect problem, the source side-effect problem is to find a smallest set of tuples in the source such that the desired annotation in the view can be obtained by annotating those places in the source, although it may have side effects on the view. Note that the source side-effect problem does not require $|\nabla V| = 0$.

When some annotation is attached to a location in ΔV, the annotation placement problem is to find the corresponding location in the source D to concretely annotate such that the view annotation propagates backward to the source with minimum side effects.

Example 1.1: Consider a database D with two relations: $\text{Author}(\text{AuName}, \text{Journal})$, $\text{Journal}(\text{Journal}, \text{Topic}, \#\text{Papers})$ (with keys underlined), and an SPJ query (view definition) $Q_1 = \pi_{\text{AuName}, \text{Topic}}(\text{Author } \bowtie \text{ Journal})$. Instances of both relations and the view $Q_1(D)$ are shown in Figures 1(a)–(c) (ignore Fig.1(d) for now).

Suppose that John is not a researcher on XML and thus the tuple (John, XML) in the view $Q_1(D)$ is an error. Let $\Delta V = \{(\text{John, XML})\}$. We want to find tuples ΔD in the base relations of D to annotate the error such that the annotations propagate to the fields in the view tuple ΔV via Q_1; or alternatively we want to delete ΔD such that their removal leads to the deletion of the erroneous ΔV. The three problems stated above impose different conditions on how to achieve this.

1. **View side-effect problem:** There are multiple ways to remove tuples in D in order to delete ΔV from the view. The tuples in D related to ΔV, i.e., those with matching values in ΔV, are $(\text{John, TKDE}), (\text{John, TODS}), (\text{TKDE, XML, 30})$ and (TODS, XML, 30). We want to find a smallest set ΔD of tuples such that deleting ΔD from D leads to the removal of ΔV from $Q_1(D)$ but incurs no side effects, i.e., it deletes ΔV but no other tuples from $Q_1(D)$. To delete ΔV one can remove $\{(\text{John, TKDE}), (\text{John, TODS})\}$ from the Author table (denoted by $\Delta_1 D$), or delete (John, TKDE) from Author and (TODS, XML, 30) from Journal ($\Delta_2 D$). However, none of these is side-effect free: the first option, for example, also results in the deletion of (John, CUBE) from the view. Hence there exists no solution to the view side-effect problem.

2. **Source side-effect problem:** It differs from (1) in that we do not care about the view side effect when we search for a smallest set ΔD of tuples in D to delete. Thus in this case, both $\Delta_1 D$ and $\Delta_2 D$ are solutions. In addition, removing $\{(\text{TODS, XML, 30}), (\text{TKDE, XML, 30})\}$ from Journal is also a solution although it incurs more severe view side effects than $\Delta_1 D$ and $\Delta_2 D$.

3. **Annotation placement problem:** Suppose that the information “John is not an XML researcher” is attached to the AuName field of ΔV. We want to find a single tuple ΔD in the database D to annotate such that the annotation propagates to the AuName field of ΔV and a least number of other fields in the view $Q_1(D)$. Here the solution is $\Delta D = (\text{John, TODS})$: by annotating the AuName field of ΔD we get the desired annotation in the view with zero side effect.

View updates and data provenance. The need for investigating these problems is evident in view update management and data provenance. As observed by [2], the view and source side-effect problems are the classical view deletion problems. Moreover, these two problems are important to why-provenance, while the annotation placement problem is related to where-provenance [5].

- **The connection with why-provenance.** Given an annotation attached to some field (location) l of a tuple in the view, the annotation placement problem is to find which tuples in the input should be annotated such that the annotations in the input are propagated forward to the view. To answer these questions, we need to identify a (smallest) set of the input tuples that suffices to make t appear in the view. This is what why-provenance concerns, which aims to find a “proof” or “witness” for t to appear in the output, i.e., a minimum set of source tuples that suffices to produce t in the output.

- **The connection with where-provenance.** When an annotation a is attached to some field (location) l of a tuple in the view, the annotation placement problem is to find a single field (location) in the input to place the annotation a, such that a propagates to a minimum number of output locations including l. That is, we want to propagate annotations backwards from the output of a query to the source database [3]. In other words, we want to identify where the value in the output location l is copied from. This is the focus of where-provenance, which is to find where a value in the output comes from.

As will be discussed shortly, there has been a host of work on annotation processing [1], [2], [4], [5], [6], [7],
Contributions. In this paper, we extend [1], [13] in several aspects. First, we identify a practical condition under which the analysis of annotation propagation becomes feasible. The condition, referred to as the key preservation condition, requires that an SPJU view \(Q \) retains a key of every base relation involved in the definition of \(Q \). In other words, a view \(Q \) is key preserving if the primary keys of all the base relations involved in \(Q \) are included as distinct attributes in the projection fields of \(Q \). This is less restrictive than other proposals for restricting view definitions [28], [29]. Furthermore, many views for data transformation or integration found in practice can be naturally modified to be key preserving by extending the projection-attribute list to include the primary keys.

Second, we investigate the impact of group updates on the analysis of annotation propagation. That is, we generalize the problem statements given earlier by allowing the given view update \(\Delta V \) to include multiple tuples. The need for studying this is evident: in practice annotations are often entered for multiple view tuples at the same time, rather than for a single tuple.

Third, in addition to annotations attached to existing tuples in a view, we study the view and source side-effect problems when the given \(\Delta V \) is a set of tuples to be inserted. These are the classical view insertion problems. The motivation for studying this is that one often wants to know, when new tuples along with annotations are inserted into the view, how the annotations should be propagated back to the source (a.k.a. feedback loop [12]). We study these problems both in the presence and in the absence of the key preservation condition.

We give a full treatment of the three problems for annotation propagation w.r.t. the following dichotomies:

- general views vs. key preserving views,
- singleton \(\Delta V \) vs. a set \(\Delta V \) of view tuples, and
- \(\Delta V \) to be deleted vs. \(\Delta V \) to be inserted.

We examine the impact of different combinations of these factors on the complexity of these problems.

We provide a comprehensive picture of the combined complexity on these problems for views defined in various fragments of SPJU queries, identifying all those cases that are intractable. The results tell us the following.

1. Key preserving views often simplify the analysis of annotation propagation. For instance, the annotation placement problem is NP-hard for general PJ (with projection and join) views [13], but it is in polynomial time (PTIME) for key preserving SPJU views. When \(\Delta V \) consists of a single existing tuple in the view, the source side-effect problem is NP-hard for general PJ views [1], but it is in PTIME for key preserving SPJ views. This tells us that key preserving views make it feasible to efficiently conduct certain propagation analysis.

2. Group updates complicate the propagation analysis. For instance, the view side-effect and source side-effect problems become NP-hard for key preserving SPJ views when group deletions are considered, whereas they are in PTIME for single-tuple deletions.

3. The presence of selections in the views does not complicate the analysis. More specifically, the complexity of all problems is independent of the presence of selection predicates in the view definition.

4. These problems have quite diverse complexity for view insertions and view deletions. On one hand, the view side-effect problem is in PTIME for key preserving SPU and SPJ views and single-tuple deletions, whereas it is intractable for single-tuple insertions and views defined with join only. On the other hand, the source side-effect problem is in PTIME for key preserving SPU and single-tuple insertions, but it becomes NP-hard for SPU views and single-tuple deletions.

Taken together, these tell us what cases of the annotation propagation analysis are intractable or in PTIME, for all subclasses of SPJU views, from general views to key-preserving views, and from single-tuple update to group view updates. To our knowledge, no previous work has established complexity results for these problems for key preserving views, group view updates, or for view insertions. These results are useful in both the analysis of data provenance and the study of view update management.

Related work. This paper extends an earlier version [21] as follows: (1) we investigate the annotation analysis for key preserving views that also support the union operator, and (2) we revise the statement of the view side-effect problem used in [21] to align with its counterpart of [1], and redeveloped the results accordingly. Several new intractability and PTIME results are established. In particular, we show that the view side-effect problem for insertions and views defined with join alone is already NP-hard, and that the annotation placement problem is tractable for key-preserving SPJU views.

Recent research on querying annotated databases can be classified into two categories: annotation querying [6], [16], [17], [20], [22], [23] and annotation propagation [1], [7], [9], [21], [24], [25], [26]. In the former, queries access annotations as well as the regular data directly. In the latter, queries are directed primarily at the regular data, while annotations are merely carried to the query results.

Annotation querying has focused on (a) propagation schemes for processing annotations explicitly or implicitly [9], [16], (b) the expressive power of various propagation schemes [22], [24], and (c) their extensions to deal
with complex queries [6], [7], [23], [30]. The problems studied there are entirely different from the problems considered in this work.

For annotation propagation, the only previous complexity results were established in [1], [13]. Key preservation, group updates and propagation of view insertions were not considered in [1], [13].

There has also been work on modeling and managing provenance information [8], [10], [27], [31], [32], [33], [34], [35], [36], in which only [10] gave a complexity result. In [10], a key-preserving condition was also considered. It was shown there that the condition simplifies the computation of lineage. However, [10] studied generic mapping functions, which are quite different from SPJU views. Hence their complexity results do not apply to the problems considered in this paper and vice versa. The problems considered in this paper and vice versa. The problems considered in this paper.

An algorithm was given in [11] for translating view deletions to base relations without side effects, based on data lineage. It performs an exhaustive search over all candidate solutions, which takes exponential time. In contrast, with our key-preservation condition, the computation of lineage is simplified and the view side-effect deletion problem is PTIME resolvable.

There has also been work on modeling and managing provenance information [8], [10], [27], [31], [32], [33], [34], [35], [36], in which only [10] gave a complexity result. In [10], a key-preserving condition was also considered. It was shown there that the condition simplifies the computation of lineage. However, [10] studied generic mapping functions, which are quite different from SPJU views. Hence their complexity results do not apply to the problems considered in this paper and vice versa. The problems considered in this paper.

In this section we define the notion of key preservation.

SPJU queries. Let \(\mathcal{R} = \{R_1, \ldots, R_n\} \) be a relational schema. An SPJ query (a.k.a. conjunctive query) on databases of \(\mathcal{R} \) is a query defined in terms of the selection \((\sigma) \), projection \((\pi) \), join \((\bowtie) \) and renaming \((\rho) \) operators in the relational algebra. It can be expressed in the normal form as follows [19]:

\[
\pi_Y(R_c \times E_s), \quad \text{where} \quad E_s = \sigma_f(E_c), \quad E_c = S_1 \bowtie \cdots \bowtie S_n,
\]

where (a) \(Y \) is a list of attributes in relations of \(\mathcal{R} \); (b) \(R_c = \{(A_1 : a_1, \ldots, A_m : a_m)\} \) is a constant relation, such that for each \(i \in [1, m] \), \(A_i \) is in \(Y \), \(A_i \)'s are distinct, and \(a_i \) is a constant in the domain of \(A_i \); (c) for each \(j \in [1, n] \), \(S_j \) is \(\rho_j(R_i) \) for some \(R_i \in \mathcal{R} \), and \(\rho_j \) is a renaming operator, such that \(A_i \) does not appear in any \(S_j \); and (d) \(F \) is a conjunction of equality atoms such as \(A = B \) and \(A = \text{`a'} \) for a constant \(a \) in the domain of \(A \).

An SPJU query (a.k.a. union of conjunctive queries) defined on \(\mathcal{R} \) is a query of the form \(Q_1 \cup \cdots \cup Q_n \), where \(Q_i \)'s are union-compatible SPJ queries on \(\mathcal{R} \) [19].

We study various subclasses of SPJU, denoted by listing the operators supported. The renaming operator is included in all subclasses by default without listing it explicitly. For instance, \(PJ \) is the class of queries defined with the projection, join and renaming operators.

For example, the view given in Fig. 1(c) is a \(PJ \) view.

Key preserving views. Consider an SPJ query \(Q = \pi_Y(R_c \times E_s) \) defined above. We say that \(Q \) is key preserving if all the primary key attributes (with possible renaming) of each occurrence of the base relations in \(E_s \) are included in the projection fields \(Y \) of \(Q \).

An SPJU query \(Q_1 \cup \cdots \cup Q_n \) is said to be key preserving if for each \(i \in [1, n] \), \(Q_i \) is key preserving.

Example 2.1: The query \(Q_1 \) given in Example 1.1 (and corresponding view shown in Fig. 1(c)) can be extended such that it is key preserving. Indeed, let \(Q_2 = \pi_{\text{AuthorName,Journal,Topic}}(\text{Author} \bowtie \text{Journal}) \). Then \(Q_2 \) is key preserving. The view \(Q_2(D) \) is shown in Fig. 1(d).

The analysis of Example 1.1 becomes simpler for the key preserving view of Example 2.1. Consider the deletion of \(\Delta V = \{(\text{John, TKDE, XML})\} \) from \(Q_2(D) \). (1) View side-effect problem. Since \(Q_2 \) is key preserving, it is obvious that the deletion can be performed by deleting either (John, TKDE) from Author or (TKDE, XML, 30) from Journal. Leveraging key preservation we can easily check the view side effect by finding the occurrences of key values of deleted relation tuples in the view. This tells us that there is no solution to the problem that has zero view side effect. (2) Source side-effect problem. Similar to (1), we can easily determine
that the solution is either \{(John, TKDE)\} or \{(TKDE, XML, 30)\}. (3) Annotation placement problem. Similarly we can see that the solution is \{(John, TKDE)\}.

3 The View Side-Effect Problem

In this section we investigate the view side-effect problem. We first study the problem for single-tuple and group deletions in Section 3.1. We then investigate the problem for insertions in Section 3.2, for key preserving SPJU views and general SPJU views.

3.1 Deletion Propagation

Given a view deletion \(\Delta V\), a source database \(D\), an SPJU query \(Q\) and the view \(Q(D)\), the view side-effect problem for deletion propagation is to find a smallest set of source tuples \(\Delta D\) to delete such that tuples in \(\Delta V\) are deleted, without side effects.

The view side-effect problem has been studied in [1] for general SPJU views and single-tuple deletions (when \(\Delta V\) is a singleton set). We investigate this problem for key preserving SPJU views and single-tuple deletions, and for SPJU views (key preserving or not) and group deletions (when \(\Delta V\) consists of multiple tuples).

We present in Table 1 the complexity of the view side-effect problem for various subclasses of SPJU, for single-tuple deletions and for group deletions. In Table 1 and all other tables in the paper, we omit the selection predicate \(S\) since it does not affect our complexity results.

Single-tuple deletions. It is known that without the key preservation condition the view side-effect problem for single deletions on a PJ view is NP-hard [1]. In contrast, the problem becomes tractable for key preserving SPJ views. This shows that key preservation may indeed simplify the analysis of annotation propagation.

Proposition 1. The view side-effect problem is in PTIME for key preserving SPJ views and single tuple deletions.

Proof: Let \(R = \{R_1, \ldots, R_n\}\) be a relational schema, \(Q\) a key preserving SPJ query, \(D\) an instance of \(R\), and \(\Delta V\) consist of a single tuple \(t\) to be deleted from the view \(Q(D)\). Given \(D, Q, Q(D)\) and \(\Delta V\), we show that it is in PTIME to find \(\Delta D\) with zero side effects, if it exists.

Since \(Q\) is key preserving, we can associate with \(t\) (necessarily unique) tuples \(s_i\) in the base relations \(R_i\) appearing in \(Q\) such that \(s_i\) and \(t\) have the same key for this relation. In order to delete \(t\) from \(Q(D)\), it suffices to delete a single such \(s_i\) from its base relation \(R_i\). Any such deletion obviously results in an update \(\Delta D\) of minimum size since \(\Delta D\) consists of a single tuple only, as illustrated in Example 2.1.

For \(\Delta D\) to be a solution for the view side-effect problem, we need to find tuple \(s_i\) without any side effects. Let \(S_i\) be the set of tuples in \(Q(D)\) \(\setminus \{t\}\) carrying the key of \(s_i\) (in \(R_i\)). Note that computing \(S_i\) requires only a linear scan over the view \(Q(D)\). Clearly, the size of \(S_i\) determines the number of side effects obtained when choosing \(\Delta D\) to be \(\{s_i\}\). Let \(s\) be the tuple \(s_i\) such that its corresponding \(S_i\) is of minimum size. Clearly, \(s\) can be found in PTIME. Moreover, if \(|S_i| = 0\) then \(\Delta D = \{s\}\) is a solution to the view side-effect problem.

However, key preservation does not make our lives easier for JU views. From the proof of [1] for JU views it follows that the problem remains NP-hard for key preserving JU views.

Corollary 2. The view side-effect problem is NP-hard for key preserving JU views and single tuple deletions.

Proof: The proof of Theorem 2.2 in [1] is applicable here. The proof shows that the view side-effect problem is NP-hard for single tuple deletions and JU views by reduction from the 3SAT problem. The reduction, however, uses JU views that are key preserving.

Group deletions. Our first result for group deletions is a PTIME algorithm for the view side-effect problem for SPU views, which extends the algorithm given in the proof of Proposition 1. It should be remarked that the complexity of group view deletions is considered in neither [1] nor [13].

Corollary 3. The view side-effect problem is in PTIME for SPU views and for group deletions.

Proof: Let \(R\) be a schema and \(D\) database as described in Proposition 1, \(Q = \bigcup_{j=1}^{k} Q_j\), a union of SP queries, and \(\Delta V = \{t_1, \ldots, t_m\}\) be a group deletion. We give a PTIME algorithm for computing \(\Delta D\) that is side-effect free, if it exists. The algorithm is an extension of the algorithm for single deletions developed in [1].

The algorithm first scans \(D\) and returns for each \(R_i \in R\) the set of tuples satisfying at least one of the selection conditions in one of the SP queries \(Q_j\). We denote the resulting database by \(D'_0\). Next, the algorithm considers the tuples in \(\Delta V\) and removes them from \(\Delta V\) if a side-effect free update has been found for the tuples considered so far. That is, at each step a set \(\Delta D'\) is computed, if it exists, such that \(Q(D) \setminus \Delta D' = Q(D) \setminus \Delta V'\), where \(\Delta V'\) denotes the tuples in \(\Delta V\) removed so far. It is important to remark that for SPU views the set \(\Delta D'\), if it exists, is uniquely determined.

Initially, \(D' = D'_0\), \(\Delta V' = \emptyset\) and \(\Delta D = \emptyset\). As long as \(\Delta V \setminus \Delta V' \neq \emptyset\), let \(t\) be the first tuple (based on some arbitrary ordering) in \(\Delta V \setminus \Delta V'\). The algorithm then computes \(\Delta D'\) as the set of all tuples from \(D'\) that project on \(t\). Observe that this set is indeed uniquely determined. We distinguish between the following two cases: (a) there exists a tuple \(s \in \Delta D'\) such that \(Q(s) \not\subseteq \Delta V\). In this case, the algorithm halts and no side-effect-free solution exists. (b) \(Q(\Delta D') \subseteq \Delta V\). In this case, the deletion of \(\Delta D'\) in \(D'\) causes side effects that all belong to \(\Delta V\). Clearly, these view tuples do not have to be further processed by the algorithm. Hence, we set \(\Delta D = \Delta D \cup \Delta D'\) and call the algorithm with \(D' = D' \setminus \Delta D'\) and \(\Delta V' = \Delta V' \cup (\Delta V \cap Q(\Delta D'))\). If the algorithm successfully terminates, i.e., when \(\Delta V' = \Delta V\),
the side-effect free update \(\triangle \mathcal{D} \) is returned. The solution \(\mathcal{D} \) is minimum because of the uniqueness of each update computed during the execution of the algorithm, and in addition, the need to remove all tuples in these updates that is necessary in any solution. The algorithm clearly runs in polynomial time.

Group updates may complicate the annotation propagation analysis. In contrast to Proposition 1, the view side-effect problem becomes NP-hard for group deletions and key preserving views defined with join only.

Theorem 4. The view side-effect problem is NP-hard for key preserving \(J \) views and group deletions.

Proof: We show that the problem is NP-hard by reduction from the minimum set cover problem. An instance of the minimum set cover problem consists of a collection \(C \) of subsets of a finite set \(S \). It is to find a subset \(C' \subseteq C \) such that every element in \(S \) belongs to at least one member of \(C' \) and moreover, \(|C'| \) is minimum. This problem is NP-complete (cf. [44]).

Given \(S \) and \(C \), we define an instance of the view side-effect problem such that there exists a minimum side-effect free update for the view side-effect problem if and only if there exists a minimum cover of the set \(S \).

Let \(S = \{x_i \mid i \in [1,n]\} \) and \(C = \{c_j \mid j \in [1,k]\} \). We construct two base tables \(R \) and \(R_S \), a join view \(Q \) and a group view deletion \(\triangle V \), as follows.

Base relations. We define two base relations \(R \) and \(R_S \).

- \(R(A) \), where \(A \) is the key and is to hold a number in \([1,k]\). Initially, \(R(A) \) contains \(k = |C'| \) tuples \(\{(1),(2),\ldots,(k)\} \) that represent the index of \(k \) subsets.
- \(R_S(j,A_1,\ldots,A_k) \), where the key consists of all the columns. We encode each element in \(S \) with tuples in \(R_S \) as follows. For each \(x_i \) in \(S \), let \(T_i \) be the collection of all the subsets in \(C \) that contain \(x_i \). We assume w.l.o.g. that \(T_i \neq \emptyset \) (otherwise there is no solution for the minimum set cover problem). Enumerate the elements of \(T_i \) as \((c_{i_1},\ldots,c_{i_m}) \). We generate a list of size \(k \) from \(T_i \), \(L_i = (i_1,\ldots,i_{m_1},\ldots,i_{m_n}) \), by replacing \(c_{i_j} \) with its index \(i_j \) and appending \((k - |T_i|)i_{m_n}'s \) at the end of the list (to make the size of the list to be \(k \)).

If \(|S| > k \), then we generate \(|S| \) tuples by adding index \(i \in [1,|S|] \) at the beginning of each list \(L_i \). Otherwise, we generate \(k+1 \) tuples by adding index \(i \) in \([1,|S|]\) at the beginning of each list \(L_i \) and generate \(k+1 - |S| \) tuples by adding numbers \(|S| + 1, k+1\) to \(L_i \) and \(L_n \). Thus \(R_S \) initially contains \(l = \max(|S|, k+1) \) tuples.

View. We define a query \(Q = R_S \bowtie \delta_{f_1}(R) \bowtie \cdots \bowtie \delta_{f_k}(R) \), where \(\delta_{f_i} \) renames \(A \) in \(R \) to \(A_i \). Initially, \(Q(D) \) consists of \(l \) view tuples, which are the same as those in the relation \(R_S \). Obviously, the view defined as above is key preserving since it contains no projections.

View deletion. The group deletion \(\triangle V \) is to remove all tuples in the view \(Q(D) \).

The view side-effect problem is to find a smallest set of the tuples from \(R \) and \(R_S \) so that \(\triangle V \) is deleted without side-effect. We include an example toward the end of the proof to illustrate the intuition behind the reduction.

We now verify that the construction above is indeed a reduction from the minimum set cover problem. First suppose that \(C' \) is a minimum cover of \(S \). We define \(\mathcal{D} \) such that it consists of the tuples \(\{(i_1),\ldots,(i_k)\} \) from \(R \) where \(i_j \) is the index of subset \(c_j \in C' \). In order to delete a tuple \(t \) in \(\triangle V \), we delete either \(t[R_S] \) (i.e., its component in \(R_S \)) or one of its components in \(R \). Since \(C' \) is a cover of \(S \), at least one component of \(t \) in \(R \) is in \(\mathcal{D} \). Hence, it is clear that \(Q(D \setminus \mathcal{D}) = Q(D \setminus \triangle V) = \emptyset \). Furthermore, \(\mathcal{D} \) is minimum since (1) although deleting all the \(C' \)-tuples from table \(R_S \) suffices to delete \(\triangle V \), it is not a minimum solution since \(|C'| \leq k \) (and by construction, \(l > k \)), and (2) \(C' \) is a minimum cover of \(S \).

Conversely, suppose that \(\mathcal{D} \) is a solution to the view side-effect problem. Then as discussed above \(\mathcal{D} \) will be only composed of tuples in \(R \). Let \(C' \) be the subset of \(C \) such that an element \(c_j \) of \(C' \) is to cover the set \(\{j\} \) if and only if \(\mathcal{D} \) involves deletion of the tuple \((j) \) from relation \(R \). To see that \(C' \) is a cover of \(S \), note that \(Q(D \setminus \mathcal{D}) = Q(D \setminus \triangle V) = \emptyset \), and for each \(x_i \) in \(S \), some set \(c_{i_j} \) is in \(C' \). Moreover, \(C' \) is minimum since \(\mathcal{D} \) is minimum.

Before we conclude the proof, we present an example for the reader who may be interested in the details of the reduction. The database \(D \) is the set of all tuples as defined above. The construction is illustrated in Fig. 2 for \(S = \{a,b,c,d\} \) and \(C = \{c_1 = \{a,b\}, c_2 = \{a,d\}, c_3 = \{b,c\}, c_4 = \{b,c,d\}\} \). Suppose that we want to delete all tuples in the view \(V \) shown in Fig. 2. For each view tuple \(t \), we indicate with colors which tuples (or \(c_i \)'s) in \(R \) should be deleted in order to remove \(t \) from \(V \). When all tuples are to be removed from \(V \), i.e., \(\triangle V = V \), clearly deleting (1) and (4) from \(R \) achieves this goal (each tuple in \(V \) contains either (1) or (4)). Hence, \(\Delta R = \{1,4\} \) and \(C' = \{c_1, c_4\} \) is a minimum cover of \(S \).

3.2 Insertion propagation

Given a source database \(D \), a query \(Q \), the view \(V = Q(D) \) and a set \(\Delta V \) of tuples, the view side-effect problem for insertion propagation is to find a minimum set \(\Delta D \) of tuples such that \(Q(D \cup \Delta D) = Q(D) \cup \Delta V \), i.e.,
the insertion of $\triangle D$ into D produces $\triangle V$ and does not incur any side effect. For single-tuple and group insertions, the complexity bounds of the view side-effect problem are summarized in Table 2 for various fragments of SPJU views, key preserving or not. Compared with Table 1, one can see that view insertions complicate the view side-effect analysis. In particular, the problem becomes coNP-hard for key preserving views defined with join only, even for single-tuple insertions.

To see the complication introduced by view insertions, consider the differences between insertions and deletions for key preserving views. To insert a tuple t into V, one can identify the key k_t of the tuple t_t that needs to be inserted into each occurrence of each R_i relation involved in V. As will be seen shortly, based on k_t one can either identify an existing tuple t_t in the R_i relation with k_t, or otherwise, construct a tuple t_t carrying k_t as its key and insert it into the R_i relation. Observe that while view tuple deletions can always be carried out when side effects are allowed, it is not always doable to insert a tuple into views in the presence of the key preservation condition, even if side effects are allowed.

Example 3.1: Consider the key preserving query $Q_3 = (\text{Author} \bowtie \text{Journal})$ in the setting of Example 1.1, and the insertion of tuple (Kate, TODS, XML, 35) into the view $Q_3(D)$. At first glance, it seems that this insertion can be carried out by inserting (Kate, TODS) into table Author and (TODS, XML, 35) into Journal. However, this insertion is not possible: the insertion of (TODS, XML, 35) into $Q_3(D)$, where q is obtained from p by replacing each occurrence of R_1 by R_1'. Then, suppose that C contains p selection conditions of the form “$A_i = B_i$” for some attributes A_i and B_i, for $i = 1, p$. We incorporate these equality conditions into the view, one by one. Initially $Q_0 = Q^i$. Suppose that Q_0 has already encoded the first $j - 1$ conditions as Q_{j-1}. Let $\sigma_{A_i = B_i}$ be the next selection condition. We then define $Q_j = Q_{j-1} \land \delta_{A_i/B_i}(q^i)$, where δ_{A_i/B_i} renames A_i by B_i, while keeping the other attributes unchanged. Finally, we define $Q = Q_p$. Note that the size of Q is quadratic in the size of q. Initially, $Q(D) = \emptyset$.

View insertions. We define $\triangle V$ as a single tuple (x, x, \ldots, x) to be inserted into $Q(D)$, where x is a distinct value.

See Fig. 3 for an illustration of the reduction.

One can readily verify that $q(I) = \emptyset$ iff there exists a (minimum) $\triangle D$ such that $Q(D \cup \triangle D) = V \cup \triangle V$.

As opposed to Corollary 3, the problem also becomes harder for key preserving PU views and insertions. The intractability remains intact on general PU views.

Theorem 6. The view side-effect problem is NP-hard for key preserving PU views and single-tuple insertions.

Proof: We prove the NP-hardness by reduction from the complement of the Boolean conjunctive query problem. An instance of that problem is an SJ query $q = \sigma_C(\delta_{f_1}(R_1) \land \cdots \land \delta_{f_k}(R_k)) \land I$ of relational schema $R = \{R_1, \ldots, R_m\}$. It is to decide whether $q(I) \neq \emptyset$. This problem is NP-complete (cf. [44]).

Given q and I, we define a source database D, a J query Q, and a single tuple $\triangle V$ to be inserted into the view $V = Q(D)$, such that $q(I) = \emptyset$ iff there exists a side-effect free solution $\triangle D$.

Base relations. Database D consists of $1 + m + w$ relations, where w is the number of the selection conditions in C of the form “$A = c$”, for some attribute A and constant c. More specifically, the database includes (a) $R_0(A)$, initially empty, where A is a distinct attribute; (b) R_i', and R_i for $i = 2, m$ to code the input instance I, where R_i' is R_i extended with the attribute A; and

(c) a new relation S_i with one attribute A_i for each selection condition “$\sigma_{A_i = c}$” in C, to encode constants in the selection condition C. Initially, $S_i = \{(c)\}$.

View. We first define a J query $Q' = R_0 \bowtie q' \bowtie S_1 \bowtie \cdots \bowtie S_w$, where q is obtained from p by replacing each occurrence of R_1 by R_1'. Then, suppose that C contains p selection conditions of the form “$A_i = B_i$” for some attributes A_i and B_i, for $i = 1, p$. We incorporate these equality conditions into the view, one by one. Initially $Q_0 = Q^i$. Suppose that we have already encoded the first $j - 1$ conditions as Q_{j-1}. Let $\sigma_{A_i = B_i}$ be the next selection condition. We then define $Q_j = Q_{j-1} \land \delta_{A_i/B_i}(q^i)$, where δ_{A_i/B_i} renames A_i by B_i, while keeping the other attributes unchanged. Finally, we define $Q = Q_p$. Note that the size of Q is quadratic in the size of q. Initially, $Q(D) = \emptyset$.

View insertions. We define $\triangle V$ as a single tuple (x, x, \ldots, x) to be inserted into $Q(D)$, where x is a distinct value.

See Fig. 3 for an illustration of the reduction.

One can readily verify that $q(I) = \emptyset$ iff there exists a (minimum) $\triangle D$ such that $Q(D \cup \triangle D) = V \cup \triangle V$.

As opposed to Corollary 3, the problem also becomes harder for key preserving PU views and insertions. The intractability remains intact on general PU views.

Theorem 6. The view side-effect problem is NP-hard for key preserving PU views and single-tuple insertions.

Proof: We prove the NP-hardness by reduction from the 1-in-3 3SAT problem. An instance of the latter is $\phi = (C_1 \land \cdots \land C_n)$, where all variables in ϕ are x_1, \ldots, x_k, and each clause C_i is of the form $\ell_{i_1} \lor \ell_{i_2} \lor \ell_{i_3}$, and ℓ_{i_j} is either x_s or $\neg x_s$, $s = 1, k$. The problem is to determine whether there is a truth assignment that makes ϕ true and for which exactly one literal in each clause is assigned true. This problem is NP-complete (cf. [44]).

Given ϕ, we define a source database D, a J preserving PU query Q, and a single tuple $\triangle V$ to be inserted into the view $V = Q(D)$, such that ϕ has a 1-in-3 truth assignment iff there exists a minimum $\triangle D$ that is side-effect free, i.e., $Q(D \cup \triangle D) = V \cup \triangle V$.

Base relations. The database D consists of two relations $R(K, X_1, X_2, Y_1, \ldots, Y_k, C)$ and $R_v(K, A_1, A_2, A_3, B_1, B_2, B_3)$. Here, K is the key attribute of R and
is to enforce that zero-side effect solutions consist of a single tuple insertion in R only. The attributes X_i and Y_i are to encode truth values $\{T,F\}$, and C is an auxiliary attribute needed to check that tuples in R are truth assignments of $X = \{x_1,\ldots, x_k\}$. Initially, R is empty. As will be seen shortly, the view will extract all permutations of the truth values of the literals occurring in each clause. Clearly, when dealing with a 1-in-3 truth assignments, this set of permutations is necessarily limited to $\{(T,F,F), (F,T,F), (F,F,T)\}$. However, since our view is initially empty and we are considering single-tuple insertions only, we use the relation R_v to populate the initial view with two fixed tuples, corresponding to the permutations $\{(T,F,F), (F,F,T)\}$. For this, R_v consists of a single tuple $(0,T,F,F,T,F)$. As before, the key attribute K of R_v is to avoid the insertion of additional tuples in R_v.

View. We define a key preserving PU query $Q = V_0 \cup V_1 \cup V_2$ as follows.

- $V_0 = \pi_{K,X,Y,Z}(\delta_{f_1}(R_v)) \cup \pi_{K,X,Y,Z}(\delta_{f_2}(R_v))$, where δ_{f_1} renames A_1, A_2, A_3 as X, Y, Z, and δ_{f_2} renames B_1, B_2, B_3 as X, Y, Z. This query yields two tuples corresponding to two of the three valid 1-in-3 truth assignments of clauses. Initially, $V_0(D) = \{(0,T,F,F), (0,F,F,T)\}$.

- $V_1 = \bigcup_{i=1}^k \{ (x,s), (\ell_{j_1} \cup \ell_{j_2} \cup \ell_{j_3}, s) \} = \bigcup_{i=1}^k \{ (x,s), (\ell_{j_1} \cup \ell_{j_2} \cup \ell_{j_3}, s) \}$, where each such renaming corresponds to a permutation of X_i, Y_i, C. Since C will be enforced to equal to F (false), the view V_1 is used to verify whether tuples in R define a truth assignment. Indeed, μ defines a truth assignment if the permutations of $(\mu(x), \mu(\bar{x}))$ correspond to $\{(T,F,F), (F,T,F), (F,F,T)\}$, i.e., the tuples in the view. Initially, $V_1(D) = \emptyset$.

- $V_2 = \bigcup_{i=1}^n V_{2,i}$, where each $V_{2,i}$ is to encode the clause C_i of ϕ. Suppose that $C_i = \ell_{j_1} \lor \ell_{j_2} \lor \ell_{j_3}$. If $\ell_{j_i} = x_s$ for some $s \in [1,k]$ then let $A_i = X_s$; if $\ell_{j_i} = \bar{x}_s$ then $A_i = Y_s$. We then define $V_{2,i} = \bigcup_{\ell_{j_1} \lor \ell_{j_2} \lor \ell_{j_3}} \pi_{K,X,Y,Z}(\delta(R))$, where as before, $\lambda(A_{j_1}, A_{j_2}, A_{j_3})$ is the set of all (bijective) renaming of $A_{j_1}, A_{j_2}, A_{j_3}$ into X,Y,Z. Initially, $V_2(D) = \emptyset$.

This view simply checks whether all permutations of literals in all clauses conform the 1-in-3 condition. Note that Q is a key preserving PU query.

View insertions. We define V_0 to consist of a single tuple $(0,F,F,T)$ to be inserted into $V = Q(D)$.

The reduction is illustrated in Fig. 4 for $\phi = (\bar{x}_1 \lor \bar{x}_2 \lor x_3) \land (x_2 \lor \bar{x}_4 \lor x_5) \land (x_1 \lor x_2 \lor x_4)$. The tuple inserted into the view V and the tuple to be inserted into D are indicated by the bold rectangles.

We next verify that there is a 1-in-3 truth assignment for ϕ iff there exists a minimum side-effect free ΔD.

First, assume that μ is a 1-in-3 truth assignment for ϕ. Let ΔD be the single tuple $(0, \mu(x_1), \mu(x_2), \ldots, \mu(x_n), \mu(\bar{x}_1), \mu(\bar{x}_2), \ldots, \mu(\bar{x}_n), F)$ to be inserted in R. Note that $V_0(D \cup \Delta D)$ remains unchanged. Since μ is a truth assignment, $\mu(x_i)$ and $\mu(\bar{x}_i)$ are complements for each $i \in [1,k]$. In other words, for each possible renaming δ of (X_i, Y_i, C) into X,Y,Z, $\pi_{K,X,Y,Z}(\delta(R))$ consists of tuples t of the form $(0, t[X,Y,Z])$ with $t[X,Y,Z]$ having a single T and two F-values. In other words, $V_1(D \cup \Delta D) = V \cup \Delta V$. In addition, there is exactly one T among the three literals of each clause C_j, and $Q_{2,j}$ takes all the permutations of the values of these three literals. Thus, again $V_2(D \cup \Delta D) = V \cup \Delta V$ and hence ΔD is side-effect free. Furthermore, since no tuples could have been added to R_v (due to the key constraints) and ΔD consists of a single tuple, ΔD is necessarily minimum.

Conversely, let ΔD be a minimum side-effect free solution such that $Q(D \cup \Delta D) = V \cup \Delta V$. Since $(0,F,F,T)$ is in $Q(D \cup \Delta D)$ and ΔD is side-effect free, we know that ΔD consists of a single tuple of the form $(0, a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n, F)$. Furthermore, from the definition of V_1 and the fact that $Q(D \cup \Delta D) = V \cup \Delta V$ we have that the mapping $\mu(x_i) = a_i$ and $\mu(\bar{x}_i) = b_i$ is a truth assignment for ϕ. Finally, since $Q(D \cup \Delta D)$ is equal to $\{(0,T,F,F), (0,F,T,F), (0, F,F,T)\}$, by the definition of V_2, we have that μ is indeed a 1-in-3 truth assignment for ϕ. Indeed, otherwise side effects would occur in $Q(D \cup \Delta D)$.

Remark. From Proposition 5 and Theorem 6 it follows that any fragment of SPJU that contains both PU and J is both coNP-hard and NP-hard (lower bound), and is intractable. Hence such a fragment is in a complexity class that subsumes NP and coNP (see, e.g., [45] for details about complexity hierarchies).

Tractability results. The good news is that the problem is tractable for SP and SU views and for group insertions, no matter whether these views are key preserving or not.

Theorem 7. The view side-effect problem is in PTIME for (a) SP views and (b) SU views, both for group insertions.

Proof: The proof is constructive. For each of the cases we provide a PTIME algorithm which either halts (indicating that no solution exists) or outputs a solution for the view side-effect problem. Note that some view insertions may not be doable, as shown in Example 3.1.

Key preserving SP views. Let D be a source database, Q a key preserving SP query, and ΔV a group update.

![Fig. 4. Illustration of the proof of Theorem 6.](image-url)
consisting of insertions only. We may assume that Q is of the form $\pi_{B_1,\ldots,B_n}(\sigma_C(\delta_f(R)))$ where R is one of the relations in the schema \mathcal{R}. If we denote by A_1,\ldots,A_k the primary key attributes of R, then by key preservation, $\{A_1,\ldots,A_k\} \subseteq \{B_1,\ldots,B_n\}$.

For each tuple $t \in \Delta V$, we define its tuple template $\hat{t} = (\vec{a}, \vec{b}, \vec{z})$, where $\vec{a} = t[A_1,\ldots,A_k]$, \vec{b} consists of the constants in the remaining attributes in t, and \vec{z} consists of distinct variables for each remaining attribute in R.

The PTIME algorithm for the view side-effect problem performs the following steps. We illustrate some of them in Fig. 5 for the base relation R (with A as its key), SP view $Q = \pi_{AB}(\sigma_{C \trianglelefteq\triangleright}(R))$ and for different group updates ΔV_1, ΔV_2 and ΔV_3.

The algorithm first checks whether ΔV contains different tuples with the same key attributes. If so, then clearly no solution to the problem exists, and the algorithm halts. This happens, e.g., for ΔV_2 in Fig. 5 (the gray color indicates the conflict; it is impossible to insert two distinct tuples with the same key e).

Otherwise the algorithm continues to test for each tuple $t \in \Delta V$ whether there already exists a tuple s in R with the same key, i.e., whether $s[A_1,\ldots,A_k] = \vec{a}$. If so then \hat{t} should be equal to s. If one of the \vec{b} attributes of t differs from those in s, then no solution exists and the algorithms halts. This happens, e.g., for ΔV_1 in Fig. 5 (the gray color indicates the conflict).

Moreover, in order to get t inserted into the view, a necessary condition is that $\sigma_C(s)$ holds. If not, then no solution for the group update can be found and, again, the algorithm halts. Otherwise, we can safely remove all t from ΔV whose key already appears in R.

Finally, for each remaining tuple t in ΔV we need to instantiate the variables in its template \hat{t}. More specifically, we need to instantiate these variables such that the resulting tuple (a tuple to be added to R) satisfies the selection condition C in Q. Because Q does not contain joins, we can treat each tuple in ΔV independently.

We recall that C is a conjunction of equalities of the form $x = y$, where x, y are either attributes or constants. By plugging in C the constants available in \hat{t}, i.e., those in \vec{a} and \vec{b}, we obtain a new conjunction C' (with possibly less variables). By constructing a dependency graph G between the constants and variables in C' and computing its transitive closure G', one can then easily check whether a desired instantiation of the variables exists. Indeed, if there exists an edge $(a, b) \in G'$ with a, b two different constants, then no instantiation exists. We say that C' is conflicting. Consequently, in this case no solution to the view side-effect problem exists and the algorithm halts. Otherwise, one assigns to all the variables in the same connected component in G' the same constant value (i.e., the value of the unique constant in this component, or an arbitrary one if the connected component consists of variables only). Variables not appearing in C can be instantiated arbitrarily. The resulting tuple is then added to ΔD.

The algorithm successfully computes a solution to the view side-effect problem if for each tuple in ΔV (modulo the ones whose key already appeared in R) a tuple is added to ΔD. In all other cases, no solution exists. For example, in Fig. 5 a solution for ΔV_3 exists. First, the tuple in ΔV_3 is expanded to a template (introducing the variable z), then this variable is instantiated using the condition $C = "c"$ of the selection predicate of Q.

We remark that when a solution exists, ΔD computed by the above algorithm is of minimum size. Indeed, for each new key in ΔV, a single tuple with this key is added to ΔD. Since Q is key preserving, this is the minimum number of tuples required for any solution. Moreover, it is easy to see that this solution is side-effect free.

The algorithm clearly runs in polynomial time.

Arbitrary SP views. Let us now drop the key preservation condition on the view Q. We use the same approach as in the key preserving case, except that we do not have to check for conflicting keys. However, even in the absence of key preservation, the update to the view cannot always be performed successfully. As we will see below, a necessary condition is that the tuples to be inserted in the view can be extended to tuples in the base relation satisfying the selection condition C.

Indeed, for each tuple t in ΔV to be inserted into the SP view $Q(D)$, we create a tuple template $\hat{t} = (t, \vec{z})$ where \vec{z} consists of variables for the attributes in $R \setminus \{B_1,\ldots,B_m\}$.

We then proceed by checking for each template \hat{t} whether there exists already tuples s in R such that (i) \hat{t} and s agree on the output schema of Q; and (ii) $\sigma_C(s)$ holds. If there exists such a tuple s, then \hat{t} is set to s, and we can safely remove t from ΔV (it will be in the view). Otherwise, if $\sigma_C(s)$ does not hold or no such s exists, then we need to instantiate the variables \vec{z} in \hat{t} in such a way that for the resulting tuple t_0, $\sigma_C(t_0)$ holds. The tuples t_0 will make up the update ΔD to the database.

Testing whether such an instantiation exists can be done similarly as in the key preserving case above. If this can be done successfully for each template, then ΔD will be a solution to the view side-effect problem. In fact, this solution does not introduce any side effects. Also, ΔD is minimum, because only the necessary tuples are inserted in D (we use existing tuples where possible).
The algorithm clearly runs in polynomial time.

Key preserving SU-views. Consider a key preserving SU query $Q = \bigcup_{i=1}^{L} Q_i$, an instance D of the schema R, and a group insertion ΔV. We assume that each S query Q_i is of form $Q_i = \sigma_{C_i}(\delta_{f_i}(R_i))$. Observe that if there exists a source insertion ΔD that produces ΔV, then there exists a side-effect free solution. Indeed, since Q does not involve joins one can always trim irrelevant tuples from the query result by adjusting values in ΔD.

The PTIME algorithm first models the view side-effect problem as a flow network with integer capacity on each edge, and then computes the maximum flow of the network in polynomial time. If the value of the maximum flow equals to $|\Delta V|$, then we can get a solution to the view side-effect problem. Otherwise, there exists no solution for group insertions ΔV.

We first model R, Q and ΔV as a flow network. The initial vertex set of the flow network is $N = \{S, T\} \cup \{t_1 \mid t_i \in \Delta V\} \cup \{r_i \mid R_i \in \mathcal{R}\}$, where S is the source node, T is the sink node, T_i represents a tuple node for each $t_i \in \Delta V$, and r_i represents a relation node for each relation R_i involved in V. The initial edge set consists of $E = \{(S, T_i) \mid i \in [1, k]\} \cup \{(r_i, T) \mid i \in [1, n]\}$, where k is the size of ΔV, n is the size of \mathcal{R}, the capacity of edges (S, T_i) is 1 and that of edge (r_i, T) is ∞.

We next encode ΔV. For each tuple t in ΔV, we check for each Q_i whether 1) t satisfies the selection condition C_i in Q_i; and 2) whether there exists no tuple in $Q_i(D)$ having conflicting key with t. If both conditions are satisfied for Q_i, the relation R_{ij} in Q_i is called a candidate host for tuple t. If there exists no such a candidate host for t, the algorithm halts and no solution to the view side-effect problem exists. If all tuples in group update have at least one candidate host, then the algorithm continues.

Note, however, that t will not necessarily be inserted in a candidate host. Indeed, whether or not t will be inserted into one of its candidate hosts, say R_{ij}, also depends on whether the possible other insertions (from ΔV) into R_{ij} cause a key violation together with the insertion incurred by t. The information regarding key information amongst tuples in their candidate hosts is modeled in the flow network as follows. For each candidate host R_{ij} and each $t_i \in \Delta V$, we update the flow network N. Let \vec{a}_{ij} be the tuple consisting of key attributes of t_i in R_{ij}. We distinguish between the following two cases.

- **Case 1**: There is no edge of the form $(v(\vec{a}_{ij}), r_{ij})$, where v is a vertex with \vec{a}_{ij} as its label. We add a new vertex v_{new} with label \vec{a}_{ij}, as well as new edges (T_i, v_{new}) and (v_{new}, r_{ij}). The capacity of each new edge is 1, representing that at most one tuple with this key can be inserted into the host R_{ij}.

- **Case 2**: There is already an edge of the form $(v(\vec{a}_{ij}), r_{ij})$, where v is a vertex with \vec{a}_{ij} as its label. This indicates that some other tuples (conflicting with t_i on R_{ij}) with the same key attributes \vec{a}_{ij} exist. Note that together with t_i, only one such tuple can be inserted into R_{ij}. Thus, we add an edge (T_i, v) with capacity 1.

These steps complete the construction of flow network. The construction clearly runs in polynomial time. Below we illustrate the construction. Figure 6 shows the flow network for base relations $R_i(A_i, B_i, C_i, D_i)$, for $i = 1, 2, 3$, and SU view $V = \sigma_{C_1}(\delta_{f_1}(R_1)) \cup \sigma_{C_2}(\delta_{f_2}(R_2)) \cup \sigma_{C_3}(\delta_{f_3}(R_3))$, where δ_{f_i} renames A_1, B_1, C_1, D_1 as A, B, C, D for $i = 1, 2, 3$. The group update ΔV is indicated by the bold rectangle. The gray shadowed vertexes are added following the rules in case 1 and case 2 and each of them has only one outgoing edge. As formally shown below, there is a solution for the insertion of ΔV into V iff the value of the maximum flow of the constructed flow network is $|\Delta V|$. For this example, there is a solution ΔD that inserts t_1, t_2, t_3, t_4 into R_3, R_1, R_2, R_2, respectively.

More formally, we show that there is a solution to the view side-effect problem iff the value of the maximum flow of the constructed flow network is $|\Delta V|$. First, we assume that the maximum flow $\phi : E \rightarrow R^+$ equals $|\Delta V|$. By definition, this implies that $\sum_{(S,T_i)} \phi(S, T_i) = |\Delta V|$, or in other words, that ϕ assigns 1 to every edge starting from S. By the flow conservation law, i.e., for each $v \in N \setminus \{S, T\}$, $\sum_{(v,w) \in E} \phi(w, v) = \sum_{(w,v) \in E} \phi(v, w)$, and the fact that all other edges (except those adjacent to T) have weight 1 assigned to them, this in turn implies that ϕ defines a unique path from S to T, one for each tuple in ΔV. Since the in- and outgoing edges from the key-labeled vertexes have weight 1, these paths all form a unique path from S to T. Indeed, for $t_i \in \Delta V$, one can simply follow the path (as defined by ϕ) starting form T_i until the corresponding host relation is reached.

Conversely, if a side-effect free solution exists, then there is a ΔD such that $Q(D \cup \Delta D) = V \cup \Delta V$. Since the view is key preserving, for any two distinct tuples $t_1, t_2 \in \Delta V$, there are different $t_1', t_2' \in \Delta D$ inserted in relations R_1, R_2, which guarantee that t_1 and t_2 appear in the view. We distinguish between the following two cases: (a) R_1 and R_2 are different relations; and (b) R_1 and R_2 are the same relation R. For case (a), the construction of the flow network indicates that starting from S,
we can reach T_1 and T_2 through different edges, and then reach different labeled nodes through different edges; finally we reach different nodes r_1 and r_2. For case (b), the validity of the insertion guarantees that t_1 and t_2 have different keys on relation R. Thus, we can start from S and reach T_1 and T_2 through different edges, and then reaches different labeled nodes, and finally reach node r. Since t_1, t_2 were chosen arbitrarily, this implies the existence of S to T paths passing through each tuple node in N. Furthermore, all these paths share no labeled node and tuple node. This means that there is a feasible flow with value $|\Delta V|$.

Since for any flow ϕ, $\sum_{(S,T_i)} \phi(S,T_i) \leq |\Delta V|$, the maximum flow value is $|\Delta V|$. From this it follows that the algorithm is in PTIME.

Arbitrary SU views. Since SU views do not have projections, they are key preserving. Hence the PTIME algorithm above also works on arbitrary SU views.

4. The Source Side-Effect Problem

In this section we investigate the source side-effect problem. We study the problem for various key preserving SPJU views in Section 4.1 for both single-tuple and group deletions. Insertions are considered in Section 4.2.

4.1 Deletion propagation

Given a view deletion ΔV, the source side-effect problem for deletion propagation is to find a smallest set ΔD of source tuples to be deleted so that the tuples in ΔV are removed from the view.

Table 3 gives the complexity of determining the minimum ΔD for various subclasses of SPJU queries, for single-tuple and group deletions. Compared to Table 1, the results tell us that it is already hard to determine whether there exists ΔD to produce ΔV, even without checking whether ΔD is side-effect free.

It has been shown that the source side-effect problem is already NP-hard for single deletions and PJ views [1]. We show that the problem for single deletions becomes polynomial-time solvable when the key preservation condition is imposed. This again verifies our observation that key preservation simplifies the analysis.

Proposition 8. The source side-effect problem is in PTIME for key preserving SPJ views and single-tuple deletions.

Proof: The PTIME algorithm presented in the proof of Proposition 1 is already able to compute a minimum source update ΔD. We can therefore use the same algorithm for the source side-effect problem, except that we do not have to perform the steps for selecting the update that minimizes the number of view side effects.

However, the problem for group deletions remains hard. Similar to Theorem 4, we show that the source side-effect problem is intractable for views defined with join only and for group deletions. This problem has not been considered by previous work.

Corollary 9. The source side-effect problem is NP-hard for key preserving J views and group deletions.

Proof: The proof of Theorem 4 suffices to show this. Indeed, the reduction given in that proof assures the minimality of the size of the source updates, and it does not impose any constraints on the size of side effects.

For JU views, the problem is getting no easier, similar to its view side-effect counterpart (Corollary 2).

Corollary 10. The source side-effect problem is NP-hard for key preserving JU views and single-tuple deletions.

Proof: The proof of Corollary 2 is applicable here. Its reduction [1] concerns only the existence of a smallest source update that produces view updates.

In contrast, for SPU views the analysis is simpler, comparable to its view side-effect counterpart (Corollary 3).

Corollary 11. The source side-effect problem is in PTIME for SPU views and group deletions.

Proof: The PTIME algorithm given in the proof of Corollary 3 suffices to find smallest source updates.

4.2 Insertion Propagation

Given a source database D, a query Q, the view $V = Q(D)$ and a set ΔV of tuples, the source side-effect problem for insertion propagation is to find a smallest set ΔD of tuples such that $Q(D \cup \Delta D)$ contains ΔV, i.e., we want to find a smallest set of tuples to insert into the source database such that the insertion will get ΔV into the view, regardless of side effects on the view.

For single-tuple and group insertions, the complexity results for the source side-effect problem are summarized in the Table 4. Compared to its view side-effect counterpart (Table 2), the source side-effect problem is relatively easier for insertions since we no longer need to check whether source insertions are side-effect free.

Intractability results. We first show that like its view side-effect counterpart (Proposition 5), the source side-effect problem is intractable for general PJ (and thus SPJ) views and single-tuple insertions. This tells us that the source side-effect analysis for insertions is more intriguing than its deletion counterpart (Proposition 8).

Theorem 12. The source side-effect problem is NP-hard for PJ views and for single-tuple insertions.

Proof: We prove the NP-hardness by reduction from the minimum set cover problem (see the proof of Theorem 4 for the statement of this problem). It is known that this problem is NP-complete [44].

Given S and C, we define an instance of the source side-effect problem. Let $S = \{x_i \mid i \in [1,n]\}$ and $C = \{c_j \mid j \in [1,k]\}$. We construct a source database D, a PJ-query Q, the view $V = Q(D)$, and a single tuple ΔV to be inserted into V. We show that we can find a minimum cover C' of S iff there exists a smallest set ΔD of tuples such that $Q(D \cup \Delta D)$ contains ΔV.

Base relations. We define k + 2 relations, including \(R_S \) for \(i \in [1, k + 1] \) and a relation \(R_C \).

- \(R_S(i_S, I_C) \), for \(i \in [1, k + 1] \), where \(I_S \) and \(I_C \) range over \([1, n]\) and \([1, k]\), respectively. Initially, \((i, j)\) is in \(D \) iff \(x_i \in c_j \), i.e., \((i, j)\) indicates whether or not the element \(x_i \) of \(S \) is in the subset \(c_j \) in the collection \(C \). As will be seen shortly, we keep \(k + 1 \) copies of the \(R_S(i_S, I_C) \) relation to prevent insertions into any of these relations.
- \(R_C(I_C) \) is to hold the elements of \(C \) to be picked for covering \(S \). In other words, \(R_C(I_C) \) is to represent a cover \(C' \) (after it is picked) such that \((j)\) is in \(D \) iff \(c_j \in C' \), for \(j \in [1, k] \). Initially \(R_C \) in \(D \) is empty, i.e., no element of \(C \) is picked yet.

View. We define a \(P \)-view \(Q = \delta_{f_1}(Q') \cdots \delta_{f_n}(Q') \), where \(Q' = \pi_{i_S}(R_S^{i_S} \times R_S^{i_S} \times \cdots \times R_S^{i_S+1} \times R_C) \), and \(\delta_{f_i} \) renames \(I_S \) to a distinct name \(I_S' \) in order to conduct cross product (rather than natural join). A tuple in the view is a n-vector \((a_1, \ldots, a_n)\), where \(a_i \in [1, n] \). Initially, \(V = Q(D) \) is empty. Note that \(Q \) is not key preserving.

View insertion. The tuple \(\Delta V \) is \((1, \ldots, n) \). It is to force a cover \(C' \) to be picked, i.e., every element \(x_i \) in \(S \) is to be covered by some subset \(c_j \) in \(C' \).

An example to illustrate the reduction can be found toward the end of the proof.

We show that this is indeed a reduction. First, assume that \(C' \) is a minimum cover of \(S \). Then we construct source tuples \(\Delta D \) such that \((j)\) is inserted into \(R_C(I_C) \) iff \(c_j \in C' \). Obviously, \(\Delta V \in Q(D \cup \Delta D) \) since \(C' \) is a cover, and moreover, \(\Delta D \) is minimum since \(C' \) is minimum. Note that, however, \(\Delta D \) is not side-effect free: \(Q(D \cup \Delta D) \) contains all permutations of \((1, \ldots, n) \). But side effects are not the concern of the source side-effect problem.

Conversely, suppose that there is a smallest \(\Delta D \) such that \(\Delta V \in Q(D \cup \Delta D) \). Note that \(\Delta D \) consists of insertions to \(R_C(I_C) \) only. Indeed, if one wants to insert tuples into \(R_S(i_S, I_C) \), for some \(i \in [1, k + 1] \), in order to add a tuple to the view, the same insertions always have to be performed to all \(k + 1 \) source relations \(R_S(i_S, I_C) \). The minimum solution consists of \(k + 1 \) updates.

Given the minimum update \(\Delta D \) to \(R_C(I_C) \), we define a set \(C' \) such that \(c_j \in C' \) iff \((j)\) is in \(R_C(I_C) \) in \(\Delta D \). Since \((1, \ldots, n) \) is in \(Q(D \cup \Delta D) \), from the definition of \(Q \) it follows that \(\Delta D \) consists of \((j)\)'s such that for any \(i \in [1, k] \), there exists \((i, j)\) in \(R_S(i_S, I_C) \). Thus \(C' \) is a cover of \(S \). In addition, \(C' \) is a minimum cover since \(\Delta D \) is minimum. That is, \(C' \) is a minimum cover of \(S \).

Finally, we present an example to illustrate the reduction. Consider \(S = \{a, b, c, d\} \) and \(C = \{c_1 = \{a, b\}, c_2 = \{a, d\}, c_3 = \{b, c\}, c_4 = \{b, c, d\}\} \). Figure 7 illustrates the reduction: the tuple inserted into the view and the tuples to be inserted into \(R_C \) are indicated by the bold rectangles. Tuples in \(R_C \) determine which sets in \(C \) are considered to be in (a minimum) cover of \(S \). The colors represent the two elements in \(C, c_1 = \{a, b\} \) and \(c_4 = \{b, c, d\} \), selected by the insertion of \((1)\) and \((4)\) in \(R_C \). It can be seen that the intermediate relation \(Q' \) contains all elements in \(S \), which implies that \(\{c_1, c_4\} \) form a cover of \(S \). The insertion of these two elements in \(R_C \) is forced by the insertion of \((1, 2, 3, 4)\) in the view. As explained below, \(k + 1 \) copies of \(R_S \) are needed to prevent an insertion in those base relations (as updates to one relation will cause an update in all \(k + 1 \)).

The problem is no easier for \(JU \) views and group insertions, even when the views are key preserving.

Theorem 13. The source side-effect problem is NP-hard for key preserving \(JU \) views and group insertions.

Proof: We show this by reduction from the hitting-set problem. An instance of that problem consists of a collection \(C \) of sets of a finite set \(S \); it is to find a minimum subset \(X \) of \(S \) such that \(X \cap c_i \neq \emptyset \) for all \(c_i \in C \). The problem is NP-complete (cf. [44]).

Given \(S \) and \(C \), we define an instance of the source side-effect problem. Let \(S = \{x_i \mid i \in [1, n]\} \) and \(C = \{c_j \mid j \in [1, k]\} \). We construct a source database \(D \), a key-preserving \(JU \) query \(Q \), the view \(V = Q(D) \), and a group insertion \(\Delta V \). We show that we can find a minimum hitting set \(X \) of \(S \) iff there exists a minimum set \(\Delta D \) such that \(Q(D \cup \Delta D) \supseteq V \cup \Delta V \).

Base relations. For each \(x_i \) in \(S \) \((i \in [1, n]\)), we define two relations \(R_{i(1)}(A_i, B_i) \) and \(R_{i(2)}(B_i, D_i) \) as follows.

- \(R_{i(1)}(A_i, B_i) \), where \(A_i \) is the key, and \(A_i, B_i \) range over \([1, k]\) and \((T, F)\), respectively. Intuitively, a tuple in \(R_{i(1)} \) indicates whether or not \(x_i \) belongs to a subset of \(C \). Initially, \((j, F)\) is in \(R_{i(1)} \) iff \(x_i \notin c_j \).
- \(R_{i(2)}(B_i, D_i) \), where \(D_i \) is the key, and \(B_i, D_i \) range over \((T, F)\) and \([0, k]\), respectively. Intuitively, a tuple in \(R_{i(2)} \) indicates whether or not \(x_i \) is included in the hitting-set. Initially, \(R_{i(2)} \) is empty.

View. We define a \(JU \) query \(Q = \delta_{f_1}(Q_1) \cdots \delta_{f_n}(Q_n) \) where \(Q_i = R_{i(1)}(A_i, B_i) \bowtie R_{i(2)}(B_i, D_i) \) and \(\delta_{f_i} \) renames \(A_i, B_i, D_i \) as \(A, B, D \) respectively. Initially, \(V = Q(D) = \emptyset \). Intuitively, a tuple in the view is a triple...
(j, b, x), indicating whether at least one element of \(c_j \) is covered by the hitting set.

View Insertions. The set \(\Delta V \) is \(\{(j, T, 0) \mid j \in [1, k]\} \).

The construction is illustrated in Fig. 8 for \(S = \{a, b, c, d\} \) and \(C = \{c_1 = \{a, b\}, c_2 = \{a, d\}, c_3 = \{b, c\}, c_4 = \{b, c, d\}\} \). The tuples inserted into the view and the tuples to be inserted into \(D \) are indicated by the bold rectangles. As will be seen shortly, \(\Delta D \) in this example corresponds to a hitting-set \(X = \{a, b\} \) of \(C \).

We next show the correctness of the reduction. We first make the following crucial observation: for any source insertion \(\Delta D \), if \(V \cup \Delta V \subseteq Q(D \cup \Delta D) \), then \(|\Delta D| \geq k + h \), where \(h \) is the size of minimum hitting-set of \(C \). To show this, consider an index set \(I = \{i \mid i \in [1, n]\} \). Any tuple \((T, 0)\) is inserted into \(R_{i(2)} \), \(R_{i(1)} \) accepts at least one tuple from \(\Delta D \). Tuples inserted into \(R_{i(1)} \) or \(R_{i(2)} \) \((j \not\in I)\) are redundant, because they never generate any tuple in the view. Moreover, since \(Q(D \cup \Delta D) \) contains \(\Delta V \), for each \(j \in [1, k] \), \((j, T)\) must be inserted into some \(R_{i(1)} \) with \(i \in I \). This means that each \(c_j \) must contain an element \(x_i \) with \(i \in I \), which results in a hitting-set \(\{x_i \mid i \in I\} \) of \(C \). Putting these together, \(|\Delta D| \geq k + |I| \geq k + h \).

We next continue with verifying the correctness of the reduction. First, assume that \(X \) is a minimum hitting-set of \(C \). We then construct a set of source tuples \(\Delta D \) such that \(Q(D \cup \Delta D) \supseteq V \cup \Delta V \) and \(|\Delta D| \) is minimum. Let \(c_j \in C \) and take one \(x_i \) from \(c_j \cap X \) that is not empty. Then we insert \((j, T)\) into relation \(R_{i(1)} \) and insert \((T, 0)\) into \(R_{i(2)} \). Note that by the keys, only one insertion can succeed. Hence the total number of successful insertions of \((T, 0)\) into \(D \) will never exceed \(|X| = h\). As a consequence, \((j, T, 0)\) belongs to \(Q(D \cup \Delta D) \). Thus, \(Q(D \cup \Delta D) \supseteq V \cup \Delta V \) and \(|\Delta D| \leq k + h \). Together with the observation above, we see that \(|\Delta D| \) is minimum.

Conversely, assume that \(\Delta D \) is a minimum set such that \(Q(D \cup \Delta D) \supseteq V \cup \Delta V \). We construct a minimum hitting-set \(X \) of \(C \). Let \(I = \{i \mid \text{some tuple in } \Delta D \text{ is inserted into relation } R_{i(1)}\} \). Since \(|\Delta D| \) is minimum, there are no redundant insertions and thus \((T, 0)\) must be inserted into \(R_{i(2)} \) for all \(i \in I \). Similarly, since \(Q(D \cup \Delta D) \supseteq \Delta V \), we have that for each \(j \in [1, k] \), \((j, T)\) is inserted into \(D \) exactly once (into some relation \(R_{i(1)} \) with \(i \in I \)). Thus, \(X = \{x_i \mid i \in I\} \) is a hitting-set of \(C \) and \(|\Delta D| = k + |I| = k + |X| \). If there exists another hitting-set \(X' \) such that \(|X'| < |X| \), we can use the construction method previously described to find a solution \(\Delta D' \) such that \(|\Delta D'| \leq k + |X'| < k + |X| = |\Delta D| \), which contradicts the assumption that \(\Delta D \) is minimum.

The problem for \(PU \) views is as hard as for \(JU \) views.

Theorem 14. The source side-effect problem is \(NP \)-hard for key preserving \(PU \) views and group insertions.

Proof: We prove this by reduction from the 1-in-3 \(3SAT \) problem. We refer to the proof of Theorem 6 for the statement of the 1-in-3 \(3SAT \) problem.

Given an instance \(\phi \) of the 1-in-3 \(3SAT \) problem, we define a source database \(D \), a key preserving \(PU \) query \(Q \), and a set \(\Delta V \) of tuples to be inserted into the view \(V = Q(D) \) such that \(\phi \) is 1-in-3 satisfiable if and only if there exists a (minimum) source insertion \(\Delta D \) such that \(V \cup \Delta V \subseteq Q(D \cup \Delta D) \). The reduction is similar to the one given in the proof of Theorem 6.

Base relations. The database \(D \) consists of one relation \(R(K, X_1, \ldots, X_k, Y_1, \ldots, Y_k, C_1, \ldots, C_{n+k}, W) \), where \(K \) is the key, the attributes \(X_i \) and \(Y_i \) range over \(\{T, F\} \) for \(i \in [1, k] \), \(C_j \) ranges over \(\{1, n+k\} \) for all \(j \in [1, n+k] \), and \(W \) is in \(\{F\} \). Intuitively, \(X_i, Y_i (1 \leq i \leq k) \) encode the truth value of \(x_i \) and its negation, respectively. We use \(C_{n+k} \) together with \(W \) to determine whether a truth assignment is valid, i.e., whether only one of \(X_i \) and \(Y_i \) is \(T \). We use \(C_j (1 \leq j \leq n) \) to check whether clause \(c_j \) is satisfied by the truth assignment. Initially, \(D = \emptyset \).

View. We define a key preserving \(PU \) query \(Q = V_1 \cup V_2 \).

- \(V_1 = \bigcup_{i=1}^{n} V_{1,i} \), where \(V_{1,i} = \cup_{\delta \in \lambda(X_i, Y_i, W)} \pi_{K, X_i, Y_i, Z, C} (\delta_{n+i}(\delta(R))) \), where \(\lambda(X_i, Y_i, W) \) is the set of all (bijective) renaming of \(X_i, Y_i, W \) as \(X, Y, Z \), and \(\delta_{n+i} \) renames \(C_{n+i} \) as \(C \). Intuitively, renaming in \(\lambda(X_i, Y_i, W) \) enumerates permutations of \(X_i, Y_i \) and \(W \). The query \(V_1 \) is used to verify whether tuples in \(D \) define a valid truth assignment. Initially, \(V_1(D) = \emptyset \).

- \(V_2 = \bigcup_{i=1}^{n} V_{2,i} \), where each \(V_{2,i} \) is defined according to the clause \(C_i \) of \(\phi \). Suppose that \(C_i = \ell_{i_1} \lor \ell_{i_2} \lor \ell_{i_3} \). If \(\ell_{i_1} = T \), then let \(A_{i_1} = X_i \) if \(\ell_{i_2} = \bar{x}_s \), then let \(A_{i_2} = Y_i \) if \(\ell_{i_3} = \bar{x}_s \). Then define \(V_{2,i} = \cup_{\delta \in \lambda(A_{i_1}, A_{i_2}, A_{i_3})} \pi_{K, X_i, Y_i, Z, C} (\delta(\delta(R))) \), where as before, \(\lambda(A_{i_1}, A_{i_2}, A_{i_3}) \) is the set of all (bijective) renaming of \(A_{i_1}, A_{i_2}, A_{i_3} \) as \(X, Y, Z \), and \(\delta \) renames \(C_i \) as \(C \). Intuitively, \(V_{2,i} \) introduces a tuple into \(V \) if clause \(c_i \) is 1-in-3 satisfied by the truth assignment encoded by a tuple of \(D \). Initially, \(V_2(D) = \emptyset \).

View updates. Let \(\Delta V = \{(0, \tau, j) \mid \tau = (\tau[X], \tau[Y], \tau[Z]) \), \(\tau \) is a permutation of \((T, F, F), j \in [1, n+k] \)\}.
By the view definition and the fact that µ is a truth assignment, we have that \(V_1(\Delta D)\) is the set \(\{((0, \tau), j) \mid \tau = (\tau[X], \tau[Y], \tau[Z])\) is a permutation of \((T, F, F), j \in [n + 1, n + k]\}\}. Similarly, we have that \(V_2(\Delta D)\) is the set \(\{((0, \tau), j) \mid \tau = (\tau[X], \tau[Y], \tau[Z])\) is a permutation of \((T, F, F), j \in [1, n]\}\}. Hence, \(Q(D \cup \Delta D) = V \cup \Delta V\).

Conversely, assume that there exists a (minimum) source insertion \(\Delta D\) such that \(V \cup \Delta V = \Delta V \subseteq Q(\Delta D) = Q(D \cup \Delta D)\). Since the tuple \((0, T, F, F, 1) \in \Delta V\) is inserted into the view, \(R\) has key attribute \(K\), and \(Q\) is key preserving, one can see that \(\Delta D\) must contain a unique tuple \(t\) with \(t[K] = 0\). Since all other tuples in \(\Delta V\) share this key value, \(t\) is the only tuple in \(\Delta D\) contributing to \(\Delta V\). We can therefore assume that \(\Delta D\) consists of the single tuple \(t\). By the definition of \(V\), each \(V_{i,j}\) can only insert exactly one set of tuples into the view, where the set is of the form \(\{(0, \tau, g(i, j)) \mid \tau \text{ is a permutation of } (T, F, F)\}, g(i, j)\) is the value of \(t[C[i,j]]\) when \(i = 1\) and it is \(t[C[j]]\) when \(i = 2\). Since we know that there are precisely \(n + k\) such sets in \(\Delta V\), and there are precisely \(n + k\) sub-queries \(V_{i,j}\), each mapping \(g(i, j)\) must be a bijection. That is, \(g : V_{i,j} \rightarrow [1, n + k]\) is a bijection, where \(g(1, j) = t[C[i,j]]\) and \(g(2, j) = t[C[j]]\).

We use the mapping \(g\) to define a truth assignment of \(x_1, \ldots, x_k\). For arbitrary \(x_i\), \((0, T, F, F, g(i, j))\) is inserted into \(V\) through a subquery \(V_{i,j}\). By the definition of \(V_{i,j}\), we can conclude that \(\{t[X_i], t[Y_i]\} = \{T, F\}\). Hence, a truth assignment for \(\phi\) is defined by \(\mu(x_1) = t[X_1], \ldots, \mu(x_k) = t[X_k]\). Next, we verify that this assignment is a 1-in-3 truth assignment of \(\phi\). Consider an arbitrary clause \(C_{i,j}\) of \(\phi\). Since \((0, T, F, F, g(2, i))\) is inserted into \(V\) through subquery \(V_{2,i}\), by the definition of \(V_{2,i}\), we know that there is exactly one \(1\) among the truth values of the three literals in the clause. Hence, \(\mu\) is indeed a 1-in-3 truth assignment.

Tractability results. We next identify some polynomial-time solvable subclasses. As in the view side-effect analysis (Theorem 7), SP views and SU views behave well. In contrast to their view side-effect counterparts (Proposition 5), the source side-effect analyses of SJ views and key preserving SPJ views also become simpler.

The result below also tells us that the source side-effect problem is in PTIME for SJ views and group insertions. In contrast, for group deletions the problem is NP-hard for any views defined with join operations, no matter whether they are key preserving or not (Corollary 9).

Theorem 15. The source side-effect problem is in PTIME for (a) SP views, (b) SU views, (c) SJ views, and (d) key preserving SPJ views, for group insertions.

Proof: The PTIME algorithms for cases (a) and (b) are similar to those of the view side-effect problem given in the proof of Theorem 7. In fact, the algorithms provided there return solutions for the source side-effect problem. We therefore concentrate on cases (c) and (d). These cases requires a bit more effort (recall that the view side-effect problem for these cases is intractable, by Proposition 5).

SJ views. Consider an SJ query \(Q = \sigma_C(\delta_{f_1}(R_1) \bowtie \cdots \bowtie \delta_{f_k}(R_k))\). A PTIME algorithm is given as follows.

Because \(Q\) does not contain any projection, we can derive for each tuple \(t\) in \(\Delta V\) and for each relation \(R_i\) \((i \in [1, k])\) in \(Q\) a candidate insert tuple \(\hat{t}_i = (\hat{a}_i, \hat{b}_i)\) over the attributes of \(R_i\), where \(\hat{a}_i\) corresponds to the key attributes of \(R_i\). Then each for each \(i \in [1, k]\) \(\hat{t}_i\) \(\in \Delta V\) whether \((\delta_{f_1}(\hat{t}_1) \bowtie \cdots \bowtie \delta_{f_k}(\hat{t}_k))\) satisfies the selection condition \(C\). If not, then no solution exists and the algorithm halts. Otherwise, we check for each \(\hat{t}_i\) whether there exists already a tuple \(s_i \in R_i\) having the same key \(\hat{a}_i\). If this is the case, \(\hat{t}_i\) should be equal to \(s_i\). If there exists a tuple \(\hat{t}_i\) for which this does not hold, then no solution exists and the algorithm stops. Otherwise, the algorithm continues.

We remark that \(\Delta D\) is the minimum solution. Indeed, in each instance \(R_i\), the number of tuples inserted into \(D\) is the same as the number of new keys for \(R_i\) present in \(\Delta V\). This is the minimum requirement for any solution.

The algorithm clearly runs in polynomial time.

Key preserving SPJ views. Consider a key preserving SPJ query \(Q = \pi_{B_1, \ldots, B_m} \sigma_C(\delta_{f_1}(R_1) \bowtie \cdots \bowtie \delta_{f_k}(R_k))\).

As before, for each tuple \(t\) in \(\Delta V\) and each relation \(R_i\) in \(Q\), we associate a template \(\hat{t}_i = (\hat{a}_i, \hat{b}_i, \hat{z}_i)\).

The PTIME algorithm first checks for incompatible templates. More specifically, the algorithm checks whether (i) there are no two different templates with the same key; and (ii) no template \(\hat{t}_i\) with the same key as an existing tuple \(s_i\) in \(R_i\), but which differs from \(s_i\) in another attribute. If no incompatible templates are found, then the algorithm continues.

If no conflicts are found, we define \(\Delta R_i\) to be the set of templates \(\hat{t}_i\) which have no matching tuple \(s_i\) in \(R_i\). We instantiate the variables in these templates as follows. For each tuple \(t\) in \(\Delta V\), we compute a conjunctive formula \(\phi_t\) representing the selection and join conditions to hold on \(\hat{t}_1 \bowtie \cdots \bowtie \hat{t}_k\) such that it will generate \(t\) in the view. The formula \(\phi_t\) consists of conjuncts of equations of the form \(x = y\), where \(x\) and \(y\) are either variables or constants in \(\hat{t}_i\), for \(i \in [1, k]\). We group together all conjuncts \(\phi_t\) into a single conjunction \(\Phi = \wedge_{i \in \Delta V} \phi_{t_i}\), and check whether there exists an instantiation of the variables that satisfies \(\Phi\), using a method similar to the one given for case (a) in the proof of Theorem 7.

The algorithm is illustrated in Fig. 9 for the base relations \(R_1, R_2, R_3\), with keys \(A, C\) and \(D\), respectively, the key preserving SPJ view \(Q = \pi_{A,C,D}(\sigma_{A = E}(R_1 \bowtie R_2 \bowtie R_3))\), and view update \(\Delta V\). We also depict the templates for each tuple in \(\Delta V\). For example, we show \(\Phi\) and a possible instantiation of the variables. The updated view is shown on the bottom right. In this case no side
effects were created (while in general, side effect may be inevitable).

Since we are not concerned about the size of the side effects, we do not have to take into account constraints regarding existing constants in the database (this is in contrast to the coNP-hardness proof of Proposition 5). Hence, if an instantiation exists, we can convert the templates into tuples that populate the update set \(\Delta R \). Finally, we define \(\Delta D = \{ \Delta R_1, \ldots, \Delta R_k \} \).

Obviously, \(\Delta D \) is a solution. It is also minimum. Indeed, at most a single tuple for each new key in tuples in \(\Delta V \) is added, a necessary requirement for any solution.

As opposed to Proposition 5 and Theorem 6, we show that the source side-effect problem is tractable for SPU and SJU views for single-tuple insertions. Putting these together with Theorems 13 and 14, we can see that group insertions complicate the source side-effect analysis.

Corollary 16. The source side-effect problem is in PTIME for (a) SPU views and (b) SJU views, for single-tuple insertions.

Proof: (a) SPU views. Consider an SPU query \(Q = \bigcup_{i=1}^{k} \pi_{B_i,\ldots,B_m}(\sigma_{C_i}(\delta_{f_i}(R_i))) \), a database \(D \), the view \(Q(D) \), and view update \(\Delta V \) consisting of a single tuple \(t \). We present a PTIME algorithm that, given \(Q, D, Q(D) \) and \(\Delta V \), computes a minimum \(\Delta D \) to produce \(\Delta V \).

The algorithm first checks whether the only tuple \(t \) in \(\Delta V \) is already present in the view \(V = Q(D) \). If yes, then \(\Delta D = \emptyset \). Otherwise, the algorithm proceeds as follows.

For \(i \in [1,k] \), we invoke the PTIME algorithm for SP views given in the proof of Proposition 15 to check whether or not \(t \) can be inserted into \(\pi_{B_i,\ldots,B_m}(\sigma_{C_i}(\delta_{f_i}(R_i))) \) by inserting a source tuple \(\Delta D_i \) into base relation \(R_i \). If the answer is yes for some \(i \in [1,k] \), then it inserts a single tuple \(\Delta D_i \) into the relation \(R_i \). Otherwise, \(t \) cannot be inserted into \(V \). Obviously, the algorithm is in PTIME, and \(\Delta D \) contains at most one tuple (thus minimum).

(b) SJU views. Similarly, one can develop a PTIME algorithm to handle SJU views and single-tuple insertions. The algorithm leverages the PTIME algorithm for SJ views (Theorem 15), along the same lines as above. \(\square \)

Finally, we show that single-tuple insertions and key preservation taken together make our lives much easier. Contrast this with Proposition 5, which shows that the view side-effect is intractable for (key preserving) views defined with join alone and single-tuple insertions.

Corollary 17. The source side-effect problem is in PTIME for key preserving SPJU views, for single-tuple insertions.

Proof: There exists a PTIME algorithm that, given a key preserving SPJU query \(Q \), a database \(D \), the view \(Q(D) \), and view update \(\Delta V \) with a single tuple as input, computes a minimum \(\Delta D \) to produce \(\Delta V \), if it exists. The algorithm is similar to the one for SPU views given in the proof of Corollary 16. Indeed, the only difference between the two is that here we invoke the PTIME algorithm for key preserving SP views (Theorem 15) for single insertions, rather than the one for SP views. \(\square \)

5 THE ANNOTATION PLACEMENT PROBLEM

In this section we investigate the annotation placement problem. Given a single location (field) \(l \) in a view tuple \(\Delta V \), a source database \(D \), an SPJU query \(Q \) and the view \(V = Q(D) \), the problem is to identify a single field \(l' \) in a single tuple \(\Delta D \) such that (a) if the value of the field \(l \) of \(\Delta V \) is changed to \(a \), then so is the field \(l' \) of \(\Delta D \), and (b) the change \(a \) to \(l' \) is propagated to a smallest number of fields in the view. As stated in Section 1, this problem studies how an annotation attached to a location in the view is propagated backward to the source data.

In contrast to the view side-effect problem and the source side-effect problem (Sections 3 and 4), we do not need to consider group updates or insertions for the annotation placement problem. As a consequence this section presents a single result: the annotation placement problem is in PTIME for all subclasses of key preserving SPJU views. In contrast, it was shown in [1] that the problem is NP-hard for general PJ views, and it is in PTIME for SJU and SPU views.

Theorem 18. The annotation placement problem is in PTIME for any subclass of key preserving SPJU views.

Proof: It suffices to prove it for key preserving SPJU views. Let \(\mathcal{R} = \{R_1,\ldots,R_n\} \) be a relational schema, \(D \) an instance of \(\mathcal{R} \), and \(Q = \bigcup_{i=1}^{k} Q_i \), an SPJU query, where \(Q_i = \pi_{A_1,\ldots,A_m}(\sigma_{C_i}(\delta_{f_{i1}}(R_{i1})) \ldots \pi_{f_{i}}(R_{in})) \). We use \((V,t,A_i) \) to denote a location in the view, i.e., an annotation is attached to the \(A_i \) attribute of tuple \(t \in V \) (= \(Q(D) \)). We develop a PTIME algorithm that, given \(D, Q, Q(D) \) and \((V,t,A_i) \) as input, finds a single tuple \(\Delta D \) in \(D \) and a single location \((D, \Delta D, B_j) \) in \(\Delta D \) such that an annotation in this field of \(\Delta D \) propagates to a smallest number of tuples in \(V \) including \((V,t,A_i) \).
We first show how we process each SPJ subquery \(Q_i \), \(i \in [1, k] \). We decompose \(t \) into \(t_1, \ldots, t_n \) based on \(Q_i \), where \(t_{ij} \) is the attribute value vector (including key attributes) associated with the relation \(R_{ij} \). Utilizing the key preservation condition, the algorithm checks whether the following conditions are satisfied: (a) there is a tuple \(t'_{ij} \in R_{ij} \) (unique if exists) with the same key-attribute values as \(t_{ij} \) on \(R_{ij} \), for each \(j \in [1, n_i] \), (b) \(t' = t'_{ij} \bowtie \cdots \bowtie t'_{in} \) satisfies the selection condition \(C_i \), and (c) \(t = \pi_{A_1, \ldots, A_m} (t') \). If not, we know that \(t \) cannot be generated by subquery \(Q_i \) and thus \(\Delta D_i = \emptyset \). Otherwise, for each \(t_{ij} \), if it contains attribute \(B_l \) and an annotation on \(B_l \) can be propagated to the specified field \(A_l \) in \(t \), we check the other tuples in the entire view \(Q(D) \) to compute the side effects generated by annotating \(B_l \) of \(t_{ij} \). After processing all \(t_{ij} \), \(j \in [1, n_i] \), we can find the location with the minimum side effects for annotating a tuple in \(Q(D) \), as well as its side effects \(S_i \) on the entire view \(Q(D) \), where \(S_i \) is the set of view locations affected by annotating \(B_l \). This can be done in \(\text{PTIME} \).

By processing each \(Q_i \) as above, we find \(\Delta D_i \) and \(S_i \) for all \(i \in [1, k] \). We pick a nonempty \(\Delta D_i \) such that \(S_j \) is minimum among all \(S_i \)’s with nonempty \(\Delta D_i \). Then \(\Delta D_j \) is the location with minimum side effects.

6 Conclusion
We have identified a practical condition, namely, the key preservation condition, which simplifies the propagation analysis of annotations. For key preserving views, we have shown that the annotation placement problem is tractable for all subclasses of SPJU queries, and that the view and source side-effect problems are in \(\text{PTIME} \) for SPJ views and single-tuple deletions, as opposed to \(\text{NP-hard} \) for general SPJ views [1], [13]. We have also investigated the impact of group updates on the complexity of the propagation analysis, and shown that group updates complicate the analysis: for group deletions the view and source side-effect problems become \(\text{NP-hard} \) for all subclasses of key preserving SPJU views that involve join operation. In addition, we have established the first complexity results for the analysis of view insertions for SPJU views, key preserving or not. These provide a complete picture of the complexity (intractability and tractability) of the annotation propagation analysis, which is useful in both data provenance and view-update processing.

We are currently studying approximation (heuristic) algorithms for conducting the propagation analysis when the associated problems are intractable. We also plan to identify other practical conditions on view definitions such that the analysis can be performed efficiently. Finally, we only considered lower bounds for the intractable cases. The identification of upper bounds is left for future work.

References
TABLE 1
Complexity of the view side-effect problem for deletion propagation

<table>
<thead>
<tr>
<th>Query class</th>
<th>single deletion</th>
<th>group deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>general view</td>
<td>key preserving view</td>
</tr>
<tr>
<td>JU</td>
<td>NP-hard ([1])</td>
<td>NF-hard (Cor. 2)</td>
</tr>
<tr>
<td>PU</td>
<td>PTIME ([1])</td>
<td>PTIME (Cor. 3)</td>
</tr>
<tr>
<td>PJ</td>
<td>NP-hard ([1])</td>
<td>PTIME (Prop. 1)</td>
</tr>
<tr>
<td>J</td>
<td>PTIME ([1])</td>
<td>PTIME (Thm. 4)</td>
</tr>
</tbody>
</table>

TABLE 2
Complexity of the view side-effect problem for insertion propagation

<table>
<thead>
<tr>
<th>Query class</th>
<th>single insertion</th>
<th>group insertion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>general view</td>
<td>key preserving view</td>
</tr>
<tr>
<td>PU</td>
<td>NP-hard (Thm. 6)</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>coNP-hard (Prop. 5)</td>
<td></td>
</tr>
<tr>
<td>P, U</td>
<td>PTIME (Thm. 7)</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3
Complexity of source the side-effect problem for deletion propagation

<table>
<thead>
<tr>
<th>Query class</th>
<th>single deletion</th>
<th>group deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>general view</td>
<td>key preserving view</td>
</tr>
<tr>
<td>JU</td>
<td>NP-hard ([1])</td>
<td>NP-hard (Cor. 10)</td>
</tr>
<tr>
<td>PU</td>
<td>PTIME (Cor. 11)</td>
<td></td>
</tr>
<tr>
<td>PJ</td>
<td>NP-hard ([1])</td>
<td>PTIME (Prop. 8)</td>
</tr>
<tr>
<td>J</td>
<td>PTIME ([1])</td>
<td>PTIME (Thm. 15)</td>
</tr>
</tbody>
</table>

TABLE 4
Complexity of the source side-effect problem for insertion propagation

<table>
<thead>
<tr>
<th>Query class</th>
<th>single insertion</th>
<th>group insertion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>general view</td>
<td>key preserving view</td>
</tr>
<tr>
<td>P, U</td>
<td>NP-hard (Thm. 12)</td>
<td>PTIME (Thm. 17)</td>
</tr>
<tr>
<td>JU</td>
<td>PTIME (Cor. 16)</td>
<td></td>
</tr>
<tr>
<td>PU</td>
<td>PTIME (Cor. 11)</td>
<td></td>
</tr>
<tr>
<td>PJ</td>
<td>NP-hard (Thm. 12)</td>
<td>PTIME (Thm. 15)</td>
</tr>
<tr>
<td>U, P, J</td>
<td>PTIME (Thm. 15)</td>
<td></td>
</tr>
</tbody>
</table>

Gao Cong is an Assistant Professor at Nanyang Technological University, Singapore. He was an Assistant professor at Aalborg University, Denmark from 2008 to 2010. Before that, he worked as a researcher at Microsoft Research Asia, and as a postdoctoral research fellow at the University of Edinburgh. He received his PhD from the National University of Singapore. His current research interests include search and mining social media, and spatial keyword query processing.

Wenfei Fan is Professor of Web Data Management in the School of Informatics, University of Edinburgh, UK. He is also a National Professor of the Thousand-Talent Program and a Yangtze River Scholar at Harbin Institute of Technology, China. He received his PhD from the University of Pennsylvania, and his MS and BS from Peking University. He is a recipient of the Alberto O. Mendelzon Test-of-Time Award of ACM PODS 2010, the Roger Needham Award in 2008, the Outstanding Overseas Young Scholar Award in 2003, the Career Award in 2001, the ICDE Best Paper Award in 2007, and the Best Paper of the Year Award from Computer Networks in 2002. His current research interests include data quality, data integration, integrity constraints, distributed query processing, Web services and XML.
Floris Geerts received his PhD from Hasselt University, Belgium and is currently a Senior Research Fellow at the University of Edinburgh. His research interests include data quality, annotation management and database query languages.

Jianzhong Li is a professor and the chairman of the Department of Computer Science and Engineering at the Harbin Institute of Technology, China. He worked in the University of California at Berkeley as a visiting scholar in 1985. From 1986 to 1987 and from 1992 to 1993, he was a staff scientist in the Information Research Group at Lawrence Berkeley National Laboratory, Berkeley, USA. His current research interests include database management systems, data warehousing and data mining, sensor network, and data intensive super computing. He has authored three books, including Parallel Database Systems, Principle of Database Systems and Digital Library, and published more than 200 technical papers in refereed journals and conference proceedings. He is an associate editor of Knowledge and Data Engineering and refereed papers for varied journals and proceedings.

Jizhou Luo is an associate professor of the School of Computer Science and Technology, Harbin Institute of Technology, China, from which he received his PhD in 2006. His current research interests include query processing in sensor network, the design and analysis of algorithms in intensive data computing, and annotation management in RDBMS.