Improving Data Quality: Consistency and Accuracy

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Proceedings of the 33rd International Conference on Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Improving Data Quality: Consistency and Accuracy

Gao Cong1 Wenfei Fan2,3 Floris Geerts2,4,5 Xibei Jia2 Shuai Ma2

1Microsoft Research Asia 2University of Edinburgh 3Bell Laboratories 4Hasselt University 5transnational Univ. Limburg

gaocong@microsoft.com \{wenfei@inf, fgeerts@inf, x.jia@sms, sma1@inf\}.ed.ac.uk

Abstract

Two central criteria for data quality are consistency and accuracy. Inconsistencies and errors in a database often emerge as violations of integrity constraints. Given a dirty database D, one needs automated methods to make it consistent, i.e., find a repair D' that satisfies the constraints and “minimally” differs from D. Equally important is to ensure that the automatically-generated repair D' is accurate, or makes sense, i.e., D' differs from the “correct” data within a predefined bound. This paper studies effective methods for improving both data consistency and accuracy. We employ a class of conditional functional dependencies (CFDs) proposed in [6] to specify the consistency of the data, which are able to capture inconsistencies and errors beyond what their traditional counterparts can catch. To improve the consistency of the data, we propose two algorithms: one for automatically computing a repair D' that satisfies a given set of CFDs, and the other for incrementally finding a repair in response to updates to a clean database. We show that both problems are intractable. Although our algorithms are necessarily heuristic, we experimentally verify that the methods are effective and efficient. Moreover, we develop a statistical method that guarantees that the repairs found by the algorithms are accurate above a predefined rate without incurring excessive user interaction.

1. Introduction

Real-world data is often dirty, i.e., containing inconsistencies, conflicts and errors. A recent survey [31] reveals that enterprises typically expect data error rates of approximately 1–5%. The consequences of dirty data may be severe. For example, it is reported [12] that wrong price data in retail databases alone costs US consumers $2.5 billion annually. With this comes the need for effective methods to improve the quality of data, or to clean data.

Inconsistencies, errors and conflicts in a database often emerge as violations of integrity constraints. A central problem for data cleaning is how to make the data consistent: given a dirty database D, we want to minimally edit the data in D such that it satisfies certain constraints. In other words, we want to find a repair of D, i.e., a database Repr that satisfies the constraints and is as close to the original D as possible. This is the data cleaning approach that satisfies the constraints and is as close to the “correct” data as possible. This is the data cleaning approach that satisfies the constraints and is as close to the “correct” data as possible.

In practice one also wants incremental methods to improve the consistency of the data: given a clean database D that satisfies a set of constraints, and updates ΔD on the database D, it is to find a repair ΔRepr of ΔD such that $D \oplus \Delta \text{Repr}$ satisfies Σ (we use \oplus to denote the application of updates). This is often advantageous to batch methods that compute a repair Repr of $D \oplus \Delta D$ starting from scratch instead of finding a typically much smaller ΔRepr.

Another important problem for data cleaning is how to guarantee that a repair is accurate, or makes sense. Although an automatically-generated repair $\text{Repr} = D \oplus \Delta \text{Repr}$ in the incremental case satisfies the constraints, it may contain edits to the original D that are not what the user wants. To ensure that Repr cannot go too wrong, assume that D_{opt} is the “correct” repair of D. We want Repr to be as close to D_{opt} as possible by guaranteeing that $|\text{diff}(\text{Repr}, D_{\text{opt}})|/|D_{\text{opt}}|$ is within a predefined bound ϵ. Here diff counts the attribute-level differences between two databases. There has been a host of work on data cleaning (e.g., [4] [25] [10] [14] [34]). However, to develop practical data-cleaning tools there is much more to be done. First, the previous work often models the consistency of data using traditional dependencies, e.g., functional dependencies (FDs). Traditional FDs were developed mainly for schema design, but are often inadequate for data cleaning. This calls for the use of constraints particularly developed for data cleaning that are able to catch more inconsistencies than traditional dependencies [29]. Second, few algorithms have been developed for automatically finding repairs, and even less incremental methods are in place. Third, none of the previous automated methods provides performance guarantee for the accuracy of the repairs found. These are illustrated by the example below.

Example 1.1: A company maintains a relation of sale records:

\begin{verbatim}
order(id, name, AC, PR, PN, STR, CT, ST, zip).
\end{verbatim}

Each order tuple contains information about an item sold (a unique item id, name and price PR), and the phone number (area code AC, phone number PN) and address of the customer who purchased the item (street STR, city CT, state ST). An example database D is shown in Fig. 1(a) (the last rows will be elaborated on later).

Traditional FDs on the order database include:

\begin{verbatim}
fd_1: [AC, PN] \rightarrow [STR, CT, ST] fd_2: [zip] \rightarrow [CT, ST] fd_3: [id] \rightarrow [name, PR] fd_4: [CT, STR] \rightarrow [zip]
\end{verbatim}

That is, the phone number of a customer uniquely determines her address, and the zip code determines the city; in addition id uniquely determines the name and PR of the item sold, and the city and street uniquely determine the zip code.

Although the database of Fig. 1(a) satisfies these FDs, the data is not clean: tuples t_3 and t_4 indicate that when the area code is 212, the city could be PHI in PA, which is not the case in real life.

Such inconsistencies can be captured by conditional functional dependencies (CFDs) introduced in [6]. For example, Fig. 1(b) shows two CFDs ϕ_1 and ϕ_2. CFD ϕ_1 extends FD fd_1 by including a pattern tableau T_1: it asserts that for any two order tuples, if they have the same area code 212 (resp. 610, 215) and PN, then they must have the same STR, CT, ST and moreover, the city and
state must be NYC and NY (resp. PHI and PA), respectively, regardless of what values PN, STR have (intuitively "don’t care"). It enforces bindings of semantically related values: each tuple in T_1 specifies a constraint that only applies to tuples satisfying a certain pattern, rather than to the entire relation like f_1. For example, the constraint specified by the second tuple in T_1 only applies to tuples with AC = 212. Similarly, CFD φ_2 extends FD f_2. Note that CFDs φ_1 and φ_2 cannot be expressed as traditional FDs since they specify patterns with data values. In contrast, standard FDs are a special case of CFDs.

The database of Fig. 1 is not consistent with these CFDs. Indeed, tuple t_3 violates φ_2 since $t_3[AC] = 212$ but $t_3[CT, ST] \neq \{NYC, NY\}$; it also violates φ_3: although $t_3[zip] = 10012$, $t_3[CT, ST] \neq \{NYC, NY\}$. Similarly, t_4 also violates φ_2 and φ_3. To make the database D consistent, one may want to edit t_3 and t_4 such that $t_3[CT, ST] = t_4[CT, ST] = \{NYC, NY\}$, as suggested by CFDs φ_1 and φ_2. In other words, a repair $Repr$ of D consists of tuples t_3, t_2 and t_4 updated as above. A central task of data cleaning is to develop automated methods to find such repairs.

Now suppose that one wants to insert a tuple t_5 into $Repr$, where $t_5[AC, PN, CT, ST, zip] = (215, 8983490, NYC, NY, 10012)$. Then t_5 and t_3 violate f_1; while they agree on AC, PN, they have different CT, ST. The objective of incremental data cleaning is to automatically and minimally update t_5 such that $Repr$ and the updated t_5 satisfy all the CFDs and FDs given above. This is nontrivial: a naive approach to updating t_5 may lead to an infinite process. Indeed, one might want to change $t_5[CT, ST]$ to (PHI, PA) as suggested by CFD φ_1. However, the updated t_5 now violates CFD φ_2: $t_5[zip] = 10012$ but $t_5[CT, ST]$ is not (NYC, NY). Now if we change $t_5[CT, ST]$ back to (NYC, NY) as suggested by φ_2, we are back to the original t_5 and again need to resolve the violation of φ_1.

A possible fix might be by changing $t_5[CT, ST, zip]$ to (PHI, PA, 19014). While $Repr$ and this edited t_5 indeed satisfy all the constraints, this change may not be accurate: the correct edit could be letting $t_5[AC] = 212$ while keeping the rest of t_5 unchanged. Improving the accuracy of the data aims to guarantee that the repairs found are as close to the correct data as possible.

Contributions. We present a data-cleaning framework that supports automated methods for finding repairs of databases, and for incrementally finding repairs in response to database updates. It also supports a statistical method that guarantees that the repairs found by our algorithms are accurate. As opposed to previous work on data cleaning, our methods are based on CFDs introduced in [8], rather than traditional dependencies. As we have seen above, CFDs are able to capture inconsistencies beyond what standard FDs can detect. Furthermore, CFDs commonly arise in practice. In data integration, for example, FDs that hold on individual sources will hold only conditionally, and thus become CFDs, on the integrated data.

Our first contribution is an algorithm for finding repairs of databases based on CFDs. As shown in [5], the problem of finding a quality repair is NP-complete even for a fixed set of traditional FDs. We show that this problem remains tractable for CFDs, and that FD-based repairing algorithms may not even terminate when applied to CFDs. To this end we adopt the cost model of [5] that incorporates both the accuracy of the data and edit distance. Based on the cost model, we extend the FD-based repairing heuristic introduced in [5] such that it is guaranteed to terminate and find quality repairs when working on CFDs. To our knowledge no prior work has considered repairing algorithms based on CFDs.

Our second contribution consists of complexity bounds and an effective algorithm for incrementally finding repairs. We show that the problem for incrementally finding quality repairs does not make our lives easier: it is also NP-complete. In light of this we develop an efficient heuristic algorithm for finding repairs in response to updates, namely, deletions or insertions of a group of tuples. This algorithm can also be used to find repairs of a dirty database.

Our third contribution is a statistical method to improve the accuracy of the repairs found by our algorithms. On one hand, in order to ensure that the repairs meet the expectation of the user, it is necessary to involve domain experts to inspect the repairs. On the other hand, it is too costly to manually check each editing when dealing with a large dataset. In response to this we develop a sampling method that, by involving the user to inspect and edit samples of manageable size, guarantees that the accurate rates of the repairs found are above a predefined bound with a high confidence.

Our fourth contribution is an experimental study of our proposed cleaning algorithms. We evaluate the accuracy and scalability of our methods with real data scraped from the Web. We find that CFDs are able to catch inconsistencies that traditional FDs fail to detect, and that our repairing and incremental repairing algorithms efficiently find accurate candidate repairs for large datasets.

Our conclusion is that CFDs and the proposed algorithms are a promising tool for cleaning real-world data. To our knowledge, our algorithms are the first automated methods for finding repairs and incrementally finding repairs based on conditional constraints. Furthermore, no prior work has studied methods for guaranteeing the accuracy of repairs without incurring excessive manual efforts.

2. Conditional Functional Dependencies

In this section we review conditional functional dependencies (CFDs) proposed in [8].

For a relation schema R, let attr(R) denote its set of attributes. The domain of an attribute A is denoted by dom(A). Given a database instance D over R, the active domain of an attribute A is denoted by adom(A, D); it consists of all the constants in dom(A) that appear as the A-attribute of a tuple in D. In this paper we consider relation schemas consisting of a single relation R only. However, our repairing methods are applicable to general relation schemas by repairing each relation in isolation. This is possible since CFDs address a single relation only.
\(\varphi_3 = (\text{order} : \text{id}) \rightarrow [\text{name}, \text{PR}, T_3]\), and \(T_3\) is

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>PR</th>
</tr>
</thead>
</table>

\(\varphi_4 = (\text{order} : [\text{CT}, \text{STR}] \rightarrow [\text{zip}], T_4)\), where \(T_4\) is

| CT | STR | zip |

Figure 2: Standard FDs expressed as CFDs

CFD. A CFD \(\phi\) on relation \(R\) is a pair \((R : X \rightarrow Y, \; T_p)\), where (1) \(X\) and \(Y\) are subsets of \(\text{attr}(R)\); (2) \(R : X \rightarrow Y\) is a standard FD, referred to as the FD embedded in \(\phi\); (3) \(T_p\) is a tableau with all attributes in \(X\) and \(Y\), referred to as the pattern tableau of \(\phi\), where for each \(A\) in \(X\) or \(Y\), and each pattern tuple \(t_p \in T_p\), \(t_p[A]\) is either a constant ‘a’ in \(\text{dom}(A)\), or an unnamed variable ‘\(_\)’.

If \(A\) appears in both \(X\) and \(Y\), we use \(t_p[A_L] \text{ and } t_p[A_R]\) in the tableau \(T_p\) to distinguish the occurrence of the \(A\) attribute in \(X\) and \(Y\), respectively. We denote \(X\) as \(\text{LHS}(\phi)\) and \(Y\) as \(\text{RHS}(\phi)\).

Example 2.1: Constraints \(\varphi_1\) and \(\varphi_2\) given in Fig. 1(b) are CFDs. In \(\varphi_1\), for example, \(X\) (i.e., \(\text{LHS}(\varphi_1)\)) is \([\text{AC}, \text{PN}]\), \(Y\) (i.e., \(\text{RHS}(\varphi_1)\)) is \([\text{STR}, \text{CT}, \text{ST}]\), the standard FD embedded in \(\varphi_1\) is \([\text{AC}, \text{PN}] \rightarrow [\text{STR}, \text{CT}, \text{ST}]\), and the pattern tableau is \(T_1\) (we separate the LHS and RHS attributes in a pattern tuple with ‘\(_\)’). Each pattern tuple in \(T_1\) expresses a constraint. For instance, the first tuple of \(T_1\) expresses the standard FD \(\text{fd}_1\).

In fact all the constraints we have encountered so far can so far can be expressed as CFDs. Indeed, the first pattern tuple of \(\varphi_2\) expresses \(\text{fd}_2\), and the CFDs given in Fig. 2(b) specifies \(\text{fd}_3(\varphi_3)\) and \(\text{fd}_4(\varphi_4)\).

Example 2.2: The pattern tableau \(T_p\) of a CFD \(\phi\) refines the standard FD embedded in \(\phi\) by enforcing the binding of semantically related data values. In general, the FD embedded in \(\phi\) may not hold on the entire relation; it holds only on tuples matching the pattern tuples.

Semantics. To give the precise semantics of CFDs, we first define an order \(\succ\) on data values and ‘\(_\)’ in such a way that \(\eta_1 \succ \eta_2\) or \(\eta_1 = \eta_2\) or \(\eta_2 \succ \eta_1\) is a data value ‘\(a\)’ and ‘\(_\)’.

A relation instance of \(D\) satisfies the CFD \(\phi = (R : X \rightarrow Y, \; T_p)\), denoted by \(D \models \phi\), iff for each pair of tuples \(t_1, t_2 \in D\), and for each tuple \(t_p\) in the pattern tableau \(T_p\), if \(t_1[X] = t_2[X] \approx t_p[X]\), then \(t_3[Y] = t_2[Y] \approx t_p[Y]\).

A CFD \(\phi\) is consistent with respect to \(\Sigma\) in \(D\), denoted by \(D \models \phi\), iff \(\varphi_i = (R : X \rightarrow Y, \; T_p)\), denoted by \(D \models \varphi_i\), iff for each pair of tuples \(t_1, t_2 \in D\), and for each tuple \(t_p\) in the pattern tableau \(T_p\), if \(t_3[X] = t_2[X], t_1[Y] = t_3[Y] \approx t_p[Y]\), then \(t_1[X] = t_2[X], t_1[Y] = t_2[Y] \approx t_p[Y]\).

We say that a database \(D\) satisfies a set \(\Sigma\) of CFDs, denoted by \(D \models \Sigma\), if \(D \models \varphi\) for each \(\varphi \in \Sigma\). Moreover, we say that \(D\) is consistent with respect to \(\Sigma\) in \(D\), denoted by \(D \models \Sigma\), if \(D \models \varphi\) for each \(\varphi \in \Sigma\).

Observe that pattern tableaus in CFDs are quite different from Codd tables, variable tables and conditional tables, which have been traditionally used in the context of incomplete information [20][19]. The key difference is that each of these tables represents possibly infinitely many relation instances, one instance for each instantiation of variables. No instance represented by these tables formalisms can include two tuples that result from different instantiations of a single relation. In contrast, a pattern tableaus is used to constrain-as part of a CFD—a single relation instance, which can contain any number of tuples that all instantiations of the same pattern tuple via different instantiations of the unnamed variables ‘\(_\)’.

Normal form. From the semantics of CFDs we immediately obtain a normal form of CFDs. Given a set \(\Sigma\) of CFDs, we may assume that each CFD \(\phi \in \Sigma\) is of the form \(\phi = (R : X \rightarrow A, \; t_p)\), where \(A \in \text{attr}(R)\) and \(t_p\) is a single pattern tuple. For ease of exposition we assume that CFDs are given in the normal form.

Satisfiability. To clean data based on CFDs we need to make sure that the CFDs are satisfiable, or make sense. The satisfiability problem is to determine, given a set \(\Sigma\) of CFDs, whether or not there exists a (non-empty) database \(D\) such that \(D \models \Sigma\). While this problem is trivial for traditional FIDs, i.e., any set of FIDs is satisfiable, this is no longer true for CFDs. Indeed, it has been shown that this problem is intractable in general [6]. However, when the database schema is fixed, satisfiability of CFDs can be decided in \(\text{PTIME}\). In the sequel we consider satisfiable CFDs only.

3. A Framework for Data Cleaning

We have seen that CFDs are capable of capturing more inconsistencies than traditional FIDs. The next question is how to resolve these violations and hence improve data consistency? Moreover, as there may exist (possibly infinitely) many repairs, which candidate repair should be chosen? Furthermore, how can one tell whether a repair is accurate or not? In this section we answer these questions, state the problems we will tackle, and present an overview of our data-cleaning framework.

3.1 Violations and Repair Operations

We first formalize the notion of violations, which helps us decide how “dirty” a data tuple is. We then discuss edit operations to resolve the violations.

Consider a database \(D\) and a set \(\Sigma\) of CFDs. For each tuple \(t\) in \(D\), the number of violations incurred by \(t\), denoted by \(\text{vio}(t)\), is computed as follows. Initially \(\text{vio}(t)\) is set to 0.

- For each CFD \(\varphi_i = (R : X \rightarrow A, t_p)\) in \(\Sigma\), if \(t[X] \approx t_p[X]\) but \(t[A] \neq t_p[A]\), we say that \(t\) violates \(\varphi\), and increment \(\text{vio}(t)\) by 1.
- This may occur when \(t_p[A]\) is a constant.
- For each CFD \(\varphi = (R : X \rightarrow A, t_p)\) in \(\Sigma\), if \(t[X] \neq t_p[X]\) and \(t[A] \approx t_p[A]\), then for each tuple \(t'\) in \(D\) such that \(t[X] = t'[X] \approx t_p[X]\) but \(t[A] \neq t'[A]\), we say that \(t\) violates \(\varphi\) with \(t'\), and add 1 to \(\text{vio}(t)\).

We can w.l.o.g. assume that \(t_p[A] = _\) since otherwise the violation is already covered by case (1) above.

For a subset \(C\) of \(D\), the number of violations in \(C\) is defined to be the sum of \(\text{vio}(t)\) for all \(t\) in \(C\), denoted by \(\text{vio}(C)\).

A repair \(\text{Repr}\) of a database \(D\) w.r.t. a set \(\Sigma\) of CFDs is a database (i) satisfies \(\Sigma\), i.e., \(\text{Repr} \models \Sigma\), and (ii) is obtained from \(D\) by means of a set of repair operations.

We consider attribute value modifications as repair operations, along the same lines as [5][1][2][3][4]. Note that tuple insertions do not lead to repairs when CFDs are concerned, and that tuple deletions can be mimicked by attribute value modifications.

When we modify the \(A\)-attribute of a tuple \(t\) in the database \(D\), we either draw its value from \(\text{dom}(A, D)\), i.e., the set of \(A\)-attribute values occurring in \(D\), or use the special value null whenever necessary. That is, we do not invent new values. We pick null if the value of an attribute is unknown or uncertain. To simplify the discussion we assume that one can keep track of a given tuple \(t\) in \(D\) during the repair process despite that the value of \(t\) may change.

(Continued on next page)
Attribute value modifications are sufficient to resolve CFD violations: If a tuple t violates a CFD $\phi = \{ \langle R : X \rightarrow A, t_p \rangle \}$ (case 1 above), we resolve the CFD violation by either modifying the values of the RHS5(ϕ) attribute such that $t[A] \neq t_p[A]$, or changing the values of some LHS5(ϕ) attributes such that $t[X] \neq t_p[X]$. If t violates ϕ with another tuple t' (case 2 above), we either modify $t[A]$ (resp. $t'[A]$) such that $t[A] = t'[A]$, or change $t[X]$ (resp. $t'[X]$) such that $t[X] \neq t_p[X]$ (resp. $t'[X] \neq t_p[X]$).

Remarks. (1) We adopt the simple semantics of the SQL standard [23] for null: $t_1[X] = t_2[X]$ evaluates to true if either one of them contains null. (2) In contrast, when matching a data tuple t and a pattern tuple t_p, $t[X] \neq t_p[X]$ is false if $t[X]$ contains null, i.e., CFDs only apply to those tuples that precisely match a pattern tuple, which does not contain null. (3) In case some attributes are non-nullable, we use SET DEFAULT to reset attributes values to their default value. The semantics of the matching operator is re-defined accordingly. For convenience, we assume that all attributes are nullable. (4) A tuple can be “deleted” via value modifications by setting null to all of its attributes.

3.2 Cost Model

As a violation may be resolved in more than one way, an immediate question is which one to choose? One might be tempted to pick the one that incurs least repair operations. While such a repair is close to the original data, it may not be accurate.

We would like to make the decision based on both the accuracy of the attribute values to be modified, and the “closeness” of the new value to the original value. Following the practice of US national statistical agencies [13, 29], we assume that a weight in the range [0, 1] is associated with each attribute A of each tuple t in the dataset D, denoted by $w(t, A)$ (see the wt rows in Fig. 1(b)). The weight reflects the confidence of the accuracy placed by the user in the attribute $t[A]$, and can be propagated via data provenance analysis in data transformations. Given this, we extend the cost model of [11] to provide a guidance for how to choose a repair.

For two values v, v' in the same domain, we assume that a distance function $d(v, v')$ is in place, with lower values indicating greater similarity. In our implementation, we simply adopt the Damerau-Levenshtein (DL) metric [16], which is defined as the minimum number of single-character insertions, deletions and substitutions required to transform v to v'. The cost of changing the value of an attribute $t[A]$ from v to v' is defined to be:

$$\text{cost}(v, v') = w(t, A) \cdot d(v, v') / \max(|v|, |v'|).$$

Intuitively, the more accurate the original $t[A]$ value v is and more distant the new value v' is from v, the higher the cost of this change. We use $d(v, v') / \max(|v|, |v'|)$ to measure the similarity of v and v' to ensure that longer strings with 1-character difference are closer than shorter strings with 1-character difference.

The cost of changing the value of an R-tuple t to t' is the sum of $\text{cost}(t[A], t'[A])$ for each $A \in \text{attr}(R)$ for which the value of $t[A]$ is modified. The cost of a repair Repr of D, denoted $\text{cost}(\text{Repr}, D)$, is the sum of the costs of modifying tuples in D.

Example 3.1: Recall from Example 1, that tuple t_3 violates CFDs φ_1, φ_2 given in Fig 1(b). There are at least two alternative methods to resolve the violations: changing (1) $t_3[\text{CT, ST}]$ to (NYC, NY), or (2) $t_3[\text{zip}]$ to 19014 and $t_3[\text{AC}]$ to 215. The costs of these repairs are $3/3 \ast 0.1 + 3/3 \ast 0.1 = 0.2$ and $1/3 \ast 0.9 + 2/5 \ast 0.8 = 0.6$, respectively, in favor of option (1). Indeed, although option (1) involves more editing than option (2), it may be more reasonable since the weights of $t_3[\text{CT, ST}]$ indicate that these attributes are less trustable and thus are good candidates to change.

Remarks. (1) Although the cost model incorporates the weight information, our cleaning algorithms to be given shortly do not necessarily rely on this. In the absence of the weight information, our algorithms set $w(t, A) = 1$ for each attribute A of each tuple t. In this case our algorithms use the number of violations $\text{vio}(t)$ to guide repairing process, and our experimental results show that the algorithms work well even when the weight information is not available. (2) Other similarity metrics (see, e.g., [11]) can also be used instead of the DL metric in our model.

3.3 A Data Cleaning Framework: Overview

The repairing problem is stated as follows: given a set Σ of CFDs over a schema R and a database instance D of R, it is to compute a repair Repr of D such that $\text{Repr} \models \Sigma$ and $\text{cost}(\text{Repr}, D)$ is minimum. That is, we want automated methods to find a repair consistent w.r.t. Σ by modifying D. Intuitively, the smaller cost(Repr, D) is, the more accurate and closer to the original data Repr is.

We also study the incremental repairing problem: suppose that the database D is consistent, i.e., $\text{D} \models \Sigma$. Given updates ΔD to D, we want to find a repair $\Delta \text{D}_{\text{Repr}}$ of D such that $\text{D} \oplus \Delta \text{D}_{\text{Repr}} \models \Sigma$ and cost($\Delta \text{D}_{\text{Repr}}$, ΔD) is minimum. Since small ΔD often incurs a small number of CFD violations, and because D is clean and thus should not be updated, it is more reasonable and more efficient to compute $\Delta \text{D}_{\text{Repr}}$ than computing a repair Repr of $D \oplus \Delta D$ starting from scratch. We consider group updates: ΔD is a set of tuples to be inserted or deleted. For any deletions ΔD, the tuples can be simply removed from D without causing any CFD violation. Thus we need only to consider tuple insertion.

To assess the accuracy of repairs, assume a correct repair D_{opt} of D, perhaps worked out manually by domain experts. We say that a repair is accurate w.r.t. a predefined bound ϵ at a predefined confidence level δ, if the ratio of $\text{dof}(\text{Repr}, \text{D}_{\text{opt}}) / |D_{\text{opt}}|$ is within the bound ϵ at the confident level δ.

In practice it is unrealistic to manually find D_{opt} or involve domain experts to inspect the entire Repr when the dataset is large. To this end we employ a semi-automated and interactive approach: we let the user inspect small samples, and edit the sample data as well as input CFDs if necessary; leveraging the user input, we invoke our automated (incremental) repairing methods to revise repairs.

Putting these together, we develop a framework for data cleaning as shown in Fig 3. The framework consists of three modules. (a) The repairing module takes as input a database D and a set Σ of CFDs. It automatically finds a candidate repair Repr. (b) The incremental repairing module takes updates ΔD as additional input, and automatically finds repair $\Delta \text{D}_{\text{Repr}}$. (c) The output repairs of these two modules are sent to the sampling module, which also takes as input accuracy bound and confidence (ϵ, δ). The sampling module generates a sample and lets the user inspect it. The user feedback – both changes $\Delta \Sigma$ to the CFDs and changes to the sample data – is recorded. If the accuracy is below the predefined bound, the repairing or incremental repairing module is invoked again based on the user feedback. The process may continue until an accurate enough repair is recommended to the user. In the next three sections, we present algorithms and methods for supporting these modules.
4. An Algorithm for Finding Repairs

We now present an algorithm for the repairing module, which automatically finds a candidate repair for an inconsistent database.

It is nontrivial to find a quality repair. As shown in [5], the repairing problem is already NP-complete for standard FDs even when the relational schema and FDs are fixed (i.e., the intractability is the data complexity). We show that for CFDs the problem remains NP-complete, i.e., CFDs do not add to the complexity of this problem.

Corollary 4.1: The repairing problem for CFDs is NP-complete, even for a fixed database schema and a fixed set of CFDs.

This tells us that practical automated methods for this problem have to be heuristic. Worse, although CFDs do not increase the worst-case complexity, previous methods for repairing FDs no longer work on CFDs. Indeed, while it suffices to resolve FD violations by only editing values of attributes in the RHS of FDs [5], this strategy may not terminate on CFDs, as shown by the next example.

Example 4.1: Recall CFDs φ_1, φ_2 from Fig 10. As illustrated in Example 1.1, tuples t_1, t_2 violate φ_1. While this violation can be resolved by changing the value (NY, NY) of the RHS of φ_1 attributes $t_2[CT, ST]$, to the values $t_2[CT, ST]$, this introduces a violation of φ_2. This can no longer be resolved by changing the value of the RHS of φ_2 attributes $t_3[CT, ST]$ back to (NY, NY) as suggested by φ_2, since otherwise we are back to the original t_3, have to resolve the violation of φ_1 again, and end up with an infinite process.

To cope with this we present a repair algorithm, MATCHREPAIR, which is a nontrivial extension of the algorithm for FDs proposed in [5]. It extends the notion of equivalence classes of [5], and it guarantees to terminate and finds a repair w.r.t. CFDs.

4.1 Resolving CFD Violations

We first revise the notion of equivalence classes explored in [5], and then present our strategy for repairing CFDs.

Equivalence classes. An equivalence class consists of pairs of the form (t, A), where t identifies a tuple in which A is an attribute.

In a database D, each tuple t and each attribute A in t have an associated equivalence class, denoted by $\text{eq}(t, A)$.

In a repair we will assign a unique target value to each equivalence class E, denoted by $\text{target}(E)$. That is, for all $(t, A) \in E$, $\text{target}(t, A)$ has the same value $\text{target}(E)$. The target value $\text{target}(E)$ can be either ‘∅’, a constant a, or null, where ‘∅’ indicates that $\text{target}(E)$ is not yet fixed, and null means that $\text{target}(E)$ is uncertain due to conflict. To resolve CFD violations we may “upgrade” $\text{target}(E)$ from ‘∅’ to a constant a, or from a to null, but not the other way around. In particular, we do not change $\text{target}(E)$ from one constant to another.

Intuitively, we resolve CFD violations by merging or modifying the target values of equivalence classes. Consider a CFD $\varphi = (R : X \rightarrow A, t_p)$. For any pair of tuples t_1 and t_2 in D, if $t_1[X] = t_2[X] = t_p[X]$, then (t_1, A) and (t_2, A) should belong to the same equivalence class and eventually, $\text{eq}(t_1) = \text{eq}(t_2)$. If $(t_1, A) \neq (t_2, A)$, we may be able to resolve the violation by merging $\text{eq}(t_1)$ and $\text{eq}(t_2)$ into one. By using equivalence classes, we separate the decision which attribute values should be equal from the decision of what value should be assigned to the equivalence class. We defer the assignment of $\text{target}(E)$ as much as possible to reduce poor local decisions, such as changing the value of $t_3[CT, ST]$ in Example 1.1.

We use E to keep track of the current set of equivalence classes in a database D. Initially, E consists of $\text{eq}(t, A)$ for all tuples t in D and all attribute A in t, where $\text{eq}(t, A)$ starts with a single pair (t, A), with $\text{target}(\text{eq}(t, A)) = ∅$.

Procedure CFD-RESOLVE. Leveraging equivalence classes, we present the main idea of our strategy for resolving CFD violations, which is done by procedure CFD-RESOLVE, a key component of algorithm MATCHREPAIR.

Procedure CFD-RESOLVE takes as input a pair (t, A) and a CFD $\varphi = (R : X \rightarrow A, t_p)$, where t violates φ. Recall from Section 3 that t may violate φ if $t[X] \neq t_p[X]$ and in addition, either (1) $t[A] \neq t_p[A]$ and $t_p[A]$ is a constant a; or (2) there exists another tuple t' such that $t'[X] = t[X]$ but $t'[A] \neq t[A]$, where $t_p[A] = ∅$. The procedure resolves the violation as follows.

1. If $t[A] \neq t_p[A]$ and $t_p[A] = a$. There are two cases to consider.
 1.1 If $\text{target}(\text{eq}(t, A)) = ∅$, i.e., the target value of $\text{eq}(t, A)$ is not yet fixed, we resolve this by simply letting $\text{target}(\text{eq}(t, A)) := a$.
 1.2 Otherwise $\text{target}(\text{eq}(t, A))$ is either a distinct constant b, or null for which we know that the value cannot be made certain. In this case we have to change the value of some LHS(φ) attribute of t, a situation that does not arise when repairing traditional FDs.

More specifically, we look at each attribute B_i in X such that $\text{target}(\text{eq}(t, B_i))$ is ∅, i.e., not yet fixed. If no such B_i exists, we cannot resolve the conflict with a certain value. Thus we pick B_i such that the sum of weights of attributes in $\text{eq}(t, B_i)$ is minimal, and change $\text{target}(\text{eq}(t, B_i))$ to null. If there exists B_i with $\text{target}(\text{eq}(t, B_i)) = ∅$, we pick such a B_i and a value v such that $\text{cost}(\text{eq}(t, B_i), v)$ is minimum, and let $\text{target}(\text{eq}(t, B_i)) := v$. The value v is picked by a procedure FINDV, which we shall discuss shortly, along with the definition of $\text{cost}(\text{eq}(t, B_i), v)$.

Example 4.2: Continuing with Example 1.1, suppose that we want to resolve the violation of φ_2 caused by tuple t_5. If $\text{target}(\text{eq}(t_5, CT))$ and $\text{target}(\text{eq}(t_5, ST))$ are ∅, we can resolve this by simply letting them be NY and NY, respectively. However, if these target values were already set to PH and PA when, e.g., resolving the violation of φ_1 caused by t_5 and t_6, we can no longer change these target values of the RHS(φ_2) attributes. Hence, we have to change the value of the LHS(φ_2) attribute $t_5[zip]$. Now procedure FINDV may set $\text{target}(\text{eq}(t_5, zip))$ to 19014. If, however, $\text{target}(\text{eq}(t_5, zip))$ was already given another constant, we set it to null since there is no certain value to resolve the violation.

2. If t violates φ with another tuple t'. We consider the following cases. Suppose that $\text{target}(\text{eq}(t', A)) = b$ and $\text{target}(\text{eq}(t' - A)) = \eta'$. (2.1) Neither η nor η' is null, and at least one of them is ∅. In this case the violation is resolved by merging $\text{eq}(t, A)$ and $\text{eq}(t' - A)$ into one. We remark that this step is identical to the resolution step for FDs presented in [5]. In fact this is the only operation required to resolve all FD violations. For CFDs, more needs to be done. We let $\text{target}(\text{eq}(t', A))$ be ∅ if both η and η' are ∅. If one of them is a constant c, we let $\text{target}(\text{eq}(t, A)) := c$.

(2.2) η and η' are distinct constants c, c', respectively. Like case (1.2) above, this inconsistency cannot be resolved by changing RHS(φ) attributes, and we have to resolve this by changing some LHS(φ) attribute of either t or t', along the same lines as case (1.2).

(2.3) At least one of η and η' is null. Assume that it is η. Then target will be given null as its value. By the simple semantics of null, $\text{target}(\text{eq}(t', A))$ no matter what value $\text{target}(\text{eq}(t', A))$ will eventually take. In other words, the violation is already resolved.

Example 4.3: Consider again the setting of Example 1.1 and suppose that we want to resolve the violation of φ_2 caused by t_1 and t_2. If the target values of $\text{eq}(t_1, CT)$ and $\text{eq}(t_2, ST)$ (resp. $\text{eq}(t_1, CT)$ and $\text{eq}(t_2, ST)$) are ∅, and none of them is null, we can resolve the violation by simply merging $\text{eq}(t_2, CT)$ and $\text{eq}(t_1, ST)$ and by merging $\text{eq}(t_5, ST)$ and $\text{eq}(t_1, ST)$. In the presence of conflicting target values, e.g., when $\text{eq}(t_5, CT)$ and $\text{eq}(t_1, CT)$ have distinct
constant target values, we have to change the target value of the
LHS(ϕ1) attributes of either t1 or t2, i.e., the target value of one of
eq \text{eq}(t_5, AC), \text{eq}(t_5, PN), \text{eq}(t_1, AC) \text{ or } \text{eq}(t_1, PN).

4.2 Batch Repair Algorithm

We now present algorithm BATCHREPAIR. In addition to the set
\mathcal{E} of equivalence classes, the algorithm keeps track of violations
of CFDs. As we have seen in Example 4.1, a repair may generate
new violations. Therefore, we maintain for each CFD \varphi \in \Sigma
a set Dirty_Tuples(\varphi) of tuples that (possibly) violate \varphi. We
update these sets after each resolution of a violation. More precisely,
suppose that a violation of \varphi caused by t is resolved by updating
\text{eq}(t, A). Then for each tuple t′, if (t′, A) \in \text{eq}(t, A), and for
each \psi = (R : X \rightarrow C; t_0), if \psi \in \text{eq}(t_1, \{C\}), we add \psi
to Dirty_Tuples(\psi). We then remove \rho from Dirty_Tuples(\varphi). In
this way Dirty_Tuples always contain all potentially unresolved tuples.

The algorithm is shown in Fig. 4. We start with initialization of
the set \mathcal{E} of equivalence classes and Dirty_Tuples (lines 1-4). Next,
as long as there are dirty tuples (loop on line 5) we greedily look for
the “best” next repair. More specifically, the procedure PICKNEXT
loops over each CFD \varphi \in \Sigma and its violating tuple t; it identifies
which pair (\varphi, t) incurs the least cost to repair (line 6). The
algorithm then resolves t for \varphi (line 7), resulting in a modified set
of equivalence classes, by invoking procedure CFD-RESOLVE. It then
updates the set of dirty tuples (line 8) before finding the next best
repair. If no more dirty tuples are unresolved (line 9), then for each
equivalence class \mathcal{E} \in \mathcal{E} with \text{target}(\mathcal{E}) = \varphi, it finds a constant value
with the least cost to instantiate \text{target}(\mathcal{E}) (lines 10-12). That is, ul-
timately all equivalence classes will have either a constant value
or null. This instantiation may introduce new violations, and thus
Dirty_Tuples should be maintained (line 13). After the loop, we
create a repair \text{Repr} by editing the original database \mathcal{D} by using the
target values of equivalence classes (lines 14-15).

The most expensive and elaborate procedure is PICKNEXT (see
Fig. 5). It finds the next tuple t and \mathcal{C}FD \varphi to be repaired. More
specifically, for each CFD \varphi and its unresolved tuple t, PICKNEXT
first decides for which attribute B of t it can update \text{eq}(t, B) to
resolve the violation (line 3), following the analysis described in
Section 4.1. After B is fixed, it finds a set S of tuples that agree
with t on all the attributes in \varphi except B (line 4). The idea is that we
may pick a target value v for \text{eq}(t, B) from the B-attribute values
of the tuples in S (line 5). It then analyzes the cost of repairing the
violation using v (lines 6-7), where \text{Cost}(t, B, v) is defined to be
\sum_{t′ \in \mathcal{E}(t, B)} w(t′, C) \cdot \text{cost}(v, t′(C)). It returns \{t, B, v\} with
the least cost (line 8).

It remains to show how the value v is picked. Given t, B, and \varphi,
procedure FINDV (not shown) aims to select semantically-related
values by first using values in CFDs. If this is not possible, a value is
selected from values appearing in related tuples. Moreover, by the
definition of Cost the optimal value is selected in a way similar to
as in the most-common-value strategy. More precisely, \text{FINDV} checks
whether B = A. If so, v is already determined by either
t_5[A] (case 1.1) in Section 4.1 or the target values of \text{eq}(t, A)
and \text{eq}(t', A) (t' is the tuple with which \varphi violates, case 2.1).
Otherwise, i.e. if B \notin \text{LHS}(\varphi), it inspects target(\text{eq}(t_1, B)) for
all \tau \in S, and finds v with the least Cost\{t, B, v\} such that v \neq \varphi[B].
The motivation for picking v from S is to find a semantically-
related value, identified by the pattern \emptyset[X \in \{A\} \{B\}]. If such
v does not exist, it lets v := \varnothing.

Example 4.4: Returning to Example 4.3, suppose now that the
target values of \text{eq}(t_5, CT), \text{eq}(t_5, ST) \text{ are } (\varnothing, PA). To resolve
the violation of \varphi_2 caused by t_5, we decide to change the target
value of t_5[zip]. Procedure PICKNEXT finds \mathcal{S} = \{t_1, t_2, t_3, t_4\},
i.e., \mathcal{S} consists of all tuples t' with (\varnothing, PA) as the target value of
\text{eq}(t', CT), \text{eq}(t', ST)). Now Procedure \text{FINDV} attempts to
choose v from the target values of \text{eq}(t', zip) for t' \in S. There
are two such values: 19014 and 100012. It decides to pick 19014
since it is the only one that differs from t_5[B]. If S were empty or
tag(\text{eq}(t_5, zip)) already had a constant, it assigns null to v.

Upon receiving \{t, B, v, \varphi\} from PICKNEXT, procedure CFD-
RESOLVE in algorithm BATCHREPAIR merges or update the target
values of equivalence classes to resolve the violation of \varphi caused
by t, as described in Section 4.1.

Correctness. Clearly at each step of algorithm BATCHREPAIR, a
CFD violation is resolved. However, each step can also introduce
new violations as illustrated in Example 4.3. Moreover, a tuple t can
appear as a violation multiple times. Nevertheless, BATCHREPAIR
always terminates and generates a repair.

Theorem 4.2: Given any database \mathcal{D} and any set \Sigma of CFDs,
BATCHREPAIR terminates and finds a repair \text{Repr} \models \Sigma \text{ for } \mathcal{D}.

Proof sketch: At each step either the total number N of equiva-

ces classes is reduced or the number H of those classes that are
assigned a constant or null is increased. Let k be the number of
\{t, A\} pairs in D. Since N \leq k and H \leq 3 \cdot k (the target value
of \text{eq}(t, A) can only be \varnothing, a constant, or null), BATCHREPAIR neces-
sarily terminates. Furthermore, since the algorithm proceeds until
no more dirty tuples exist, it always finds a repair of \mathcal{D}.

5. An Incremental Repairing Algorithm

In this section we present the algorithm underlining the incre-
mental module of our framework shown in Fig. 6 which tackles
the incremental repairing problem. As remarked in Section 4.3
it suffices to consider \Delta D consisting of insertions only, as deletions
ever cause any inconsistencies.
Procedure INC\textsc{Repair}(D, \Delta D, \Sigma, \mathcal{O})

Input: A clean database \(D\), a set \(\Sigma\) of CFDs, a set of updates \(\Delta D\), and an ordering \(\mathcal{O}\) on \(\Delta D\).

Output: A repair \(\text{Repr}\) of \(D \otimes \Delta D\) such that \(D \subseteq \text{Repr}\).

1. \(\text{Repr} := D\).
2. for each \(t \in \Delta D\) in the given order \(\mathcal{O}\) do
 3. \(\text{Repr} := \text{Tuple\textsc{Resolve}(t, \text{Repr}, \Sigma)}\);
 4. \(\text{Repr} := \text{Repr} \cup \{\text{Repr}_t\}\);
5. return \(\text{Repr}\).

Figure 6: Algorithm INC\textsc{Repair}

One might think that the incremental repairing problem is simpler than its batch (non-incremental) counterpart. Unfortunately it is not the case. Indeed, since the repairing problem (see Section 4) can be seen as an instance of the incremental repairing problem (indeed, just consider the case that \(D = \emptyset\)), we immediately obtain the following corollary from Theorem 5.2.

Corollary 5.1: The incremental repairing problem for CFDs is \(NP\)-complete, even for a fixed schema and a fixed set of FDs.

Therefore, we again have to rely on heuristics in the incremental setting. We first develop a heuristic in Section 5.1 and then present optimization techniques to improve the algorithm in Section 5.2.

Finally, we show in Section 5.5 that the incremental algorithm in fact provides an alternative method for the repairing problem.

5.1 Incremental Algorithm and Local Repairing Problem

Given a set of updates \(\Delta D\), Corollary 5.1 tells us that it is beyond reach in practice to find an optimal \(\Delta D_{\text{repair}}\). Furthermore, we cannot directly apply the algorithm developed for the repairing problem to find \(\Delta D_{\text{repair}}\) since we cannot prevent it from updating the clean database \(D\). Following the approach commonly used in repairing census data \([13, 35]\), we repair the tuples in \(\Delta D\) one at a time following some ordering \(\mathcal{O}\) on these tuples. We assume that \(\mathcal{O}\) is given but will provide various orderings in Section 5.2.

Therefore, the key problem is to find, given a clean database \(D\), a tuple \(t\) to be inserted into \(D\), and a set \(\Sigma\) of CFDs, a repair \(\text{Repr}_t\) of \(t\) of minimum cost such that \(D \cup \{\text{Repr}_t\}\) is a repair. We refer to this as the local repairing problem.

Algorithm INC\textsc{Repair}. The overall driver of our incremental repairing algorithm is presented in Fig. 6. Taking as input a database \(D\), \(\Sigma\), a set \(\Delta D\) of updates, and an ordering \(\mathcal{O}\) on \(\Delta D\), it does the following. It first initializes the repair \(\text{Repr}\) with the current clean database \(D\) (line 1). It then invokes a procedure called TUPLE\textsc{Resolve} (line 3) to repair each tuple \(t\) in \(\Delta D\) according to the given order \(\mathcal{O}\) (line 2), and adds the local repair \(\text{Repr}_t\) of \(t\) to \(\text{Repr}\) (line 4) before moving to the next tuple. Once all tuples in \(\Delta D\) are processed, the final repair is reported (line 5).

The key characteristics of INC\textsc{Repair} are (i) that the repair grows at each step, providing in this way more information that we can use to clean the next tuple, and (ii) that the data in \(D\) is not modified since it is assumed to be clean already.

Algorithm TUPLE\textsc{Resolve}. The core of the INC\textsc{Repair} algorithm is the procedure TUPLE\textsc{Resolve} that aims to solve the local repairing problem. One might think that the local repairing problem would make our lives easier. However, the result below tells us that it is not the case.

Theorem 5.2: The local repairing problem is \(NP\)-complete. Moreover, it remains intractable if one considers standard FDs only.

Proof sketch: The \(NP\)-hardness is verified by reduction from the distance-SAT problem, which is \(NP\)-complete \([3]\). That is to determine, given a propositional logic formula \(\phi\), an initial truth assignment \(\rho_1\), and a constant \(k\), whether there exists a truth assignment \(\rho_2\) that satisfies \(\phi\) and differs from \(\rho_1\) in at most \(k\) variables.

Theorem 5.2 shows that finding the optimal repair \(\text{Repr}\) of \(t\) is infeasible in practice. Indeed, the naive approach, namely, enumerating all possible repairs and then selecting the one with the minimal cost, is clearly not an option in case that the number of attributes or the size of the active domains is large.

In light of this intractability, procedure TUPLE\textsc{Resolve} is based on a greedy approach. As shown in Fig. 6, it takes as input a single tuple \(t\) to be inserted, the current repair \(\text{Repr}\), and a set \(\Sigma\) of CFDs, and returns a repair \(\text{Repr}_t\) of \(t\) such that \(\text{Repr} \cup \{\text{Repr}_t\} \subseteq \Sigma\).

Before we explain TUPLE\textsc{Resolve} in more detail, we need some notation. For a fixed integer \(k > 0\) and a set of attributes \(X \subseteq \text{attr}(R)\) we denote by \([X]^k\) the set of all subsets of \(X\) of size \(k\). For a tuple \(t\), a set \(C \subseteq [X]^k\), and \(\bar{v} = (v_1, ..., v_k)\), where \(v_i \in \text{dom}(C)\), \(\overline{D}A\subseteq \{\text{null}\}\) for each \(A \in \mathcal{C}\), we denote by \(t[C/\bar{v}]\) the tuple obtained by replacing \(t[A]\) by \(v_i\) for each \(A \in \mathcal{C}\) and leaving the other attributes unchanged. Finally, for a set of CFDs and a set \(X \subseteq \text{attr}(R)\), we denote by \(\Sigma(X)\) the set of CFDs in \(\Sigma\) of the form \((R : Y \rightarrow A, \mathcal{T}_p)\) with \(Y \subseteq \{A\} \subseteq X\).

We explain how procedure TUPLE\textsc{Resolve} works in an inductive way. In a nutshell, it greedily finds the “best” sets of attributes of \(t\) to modify in order to create a repair. More specifically, for a fixed \(k > 0\), it first finds the “best” \(C_1 \in \{\text{attr}(R)[k]\} (\text{lines } 4-9)\) and attribute values \(\bar{v} = (v_1, ..., v_k)\) for the attributes in \(C_1\) such that (i) \(v_i\) is in \(\text{dom}(\mathcal{R}_{[A_i]}\cup \{\text{null}\})\) (line 5); (ii) \(\mathcal{R}_{[C_1/\bar{v}]}\) satisfies all CFDs in \(\Sigma(C_1)\) (line 5); and (iii) the cost \(\text{costfix}(C_1, \bar{v}) = \text{cost}(t[C_1/\bar{v}] \times \text{vio}(t[C_1/\bar{v}])\) (lines 6-8).

In other words, the predefined parameter \(k\) limits the number of possible repairs that we consider. Our experiments show that for \(k = 1, 2\) we are already able to obtain good results. We denote the set of all \(k\)-tuples \(v\) satisfying (i) and (ii) by \(\nu (\text{line } 5)\). Once TUPLE\textsc{Resolve} finds \(C_1\) and \(\bar{v}\), \(C_1\) is added to \(\mathcal{C}\) and \(t\) is replaced by \(t_1 = t[C_1/\bar{v}]\) (line 9). Furthermore, TUPLE\textsc{Resolve} will never backtrack and modify \(t\) for the attributes in \(C_1\) again.

Suppose that TUPLE\textsc{Resolve} already selected \(n\) best pairwise disjoint sets \(C_1, ..., C_n\) in \(\{\text{attr}(R)[k]\) and \(k\)-tuples \(v_1, ..., v_n\) such that for \(t_m = t_{m-1} \cup \{C_m/v_m\}\), we have that \(\mathcal{R}_{[t_m]} \cup \{t_m\} \subseteq \Sigma(C)\), where \(\mathcal{C} = C_1 \cup \cdots \cup C_{n-1}\). That is, \(t_m\) is the current (almost) repair for \(t\). If \(\text{attr}(R) = \mathcal{C}\) then clearly \(t_m\) is a repair of \(t\) and TUPLE\textsc{Resolve} will output \(\text{Repr}_t = t_m\) (line 2, line 10).

Otherwise, TUPLE\textsc{Resolve} finds the next best set \(C_{n+1}\) in \(\{\text{attr}(R) \setminus \mathcal{C}\}[k]\) and finds a \(k\)-tuple \(v_{n+1}\) satisfying the same conditions (i)-(iii) as above except that the repair \(t_{n+1} = t_m \cup \{C_{n+1}/v_{n+1}\}\) must satisfy \(\Sigma(C_{n+1}) \cup \mathcal{C}\). Again, the set \(C_{n+1}\) is then added to \(\mathcal{C}\) and the current (almost) repair is set to \(t_{n+1}\). The procedure TUPLE\textsc{Resolve} keeps selecting such sets of attributes and values until \(\text{attr}(R)\) is completely covered.
It is important that \bar{v} is allowed to contain null values (see property (ii)). Indeed, this is needed for guaranteeing the existence of k-tuples \bar{v} satisfying property (ii) as the next example illustrates.

Example 5.1: Consider t_5 in Example 5.1 and suppose that $k = 2$. Suppose that TUPLERESOLVE already fixed all attributes except CT and ST. In fact, no attribute values in t_5 are changed since the violated CFDs involve the two non-fixed attributes. In order for TUPLERESOLVE to repair t_5 it needs to find a tuple $\bar{v} = (v_1, v_2)$ for $C = \{CT, ST\}$ such that $t_5[C]\bar{v}$ satisfies both φ_1 and φ_2. As observed in Example 5.1, no such \bar{v} exists when we only consider values in the active domains. Thus the only possible \bar{v} here is $(null, null)$. In contrast, Example 5.1 shows that $C = \{CT, ST, zip\}$ for $k = 3$, and $\bar{v} = \langle PHI, PA, 19014 \rangle$ provides a repair for t_5.

Correctness. The termination of INCOREPAIR follows from the fact that (i) each tuple in ΔD is treated only once; and (ii) each attribute is modified at most once by TUPLERESOLVE. Moreover, TUPLERESOLVE always generates a repair for each tuple in ΔD.

Theorem 5.3: Given a database D, a set Σ of CFDs and update ΔD, INCOREPAIR always terminates and finds a repair ΔD_{repr} such that $D \cup \Delta D_{\text{repr}} = \Sigma$, regardless of the ordering \mathcal{O}.

5.2 Ordering for Processing Tuples and Optimizations

While the ordering \mathcal{O} for processing tuples has no impact on the termination of an INCOREPAIR process, it does make a difference when it comes to repairing performance and the accuracy of the repair. We next study various orderings, based on which we develop (and experiment with) variants of the INCOREPAIR algorithm.

Theorem 5.2 tells us that it is beyond reach in practice to find an ordering that leads to an optimal repair. Thus we propose and experiment with the following orderings.

Linear-scan ordering. A naive approach is to adopt an arbitrary linear-scan order for \mathcal{O}, with the benefit that it incurs no extra cost. We refer to INCOREPAIR based on this as L-INCOREPAIR.

A greedy algorithm based on violations. This algorithm, referred to as V-INCOREPAIR, is based on the number of violations $\text{vio}(t)$ of each tuple t, which is defined in Section 5.2. A tuple $t \in D$ might cause multiple violations of constraints in Σ. Intuitively, the less $\text{vio}(t)$ is, the more accurate t is and the less costly to repair it. Algorithm V-INCOREPAIR repairs tuples in the increasing order of $\text{vio}(t)$ so that accurate tuples are included in Repr early, and based on them we resolve violations of “less accurate” tuples.

A greedy algorithm based on weights. Another approach is based on the weight $\text{wt}(t)$ of a tuple t (recall the definition of $\text{wt}(t)$ from Section 5.3). Intuitively, the larger $\text{wt}(t)$ is, the more accurate t is. We develop a variant of INCOREPAIR, referred to as W-INCOREPAIR, which processes tuples based on the decreasing order of $\text{wt}(t)$ to reduce the cost and improve the quality of repairs found.

We next present optimizations adopted by our algorithm.

Optimization. The main computational cost of INCOREPAIR lies in the procedure TUPLERESOLVE. Indeed, there one needs to (i) consider all possible subsets C of attributes of size k; (ii) for each such C compute the set V consisting of all possible k-tuples \bar{v} on the attributes in C that satisfy the relevant CFDs; and (iii) obtain from V the tuple \bar{v} that has minimal cost with $t[C]$ by (i) searching a nested way until a suitable candidate tuple is found. Again, we introduce null whenever no suitable attribute value can be found.

5.3 Applying INCOREPAIR in the Non-incremental Setting

Algorithm INCOREPAIR can also be used in the non-incremental setting. Indeed, given a dirty database D' one can first extract a maximal consistent set of tuples D from D' and then simply apply INCOREPAIR to D and $\Delta D = D' \setminus D$. However, computing such a maximal set of tuples might be too hard in practice:

Proposition 5.4: It is NP-hard to find, given a database D' and a set Σ of CFDs, a maximal subset C of D' such that $C \models \Sigma$.

Proof sketch: This is verified by reduction from the independent set problem, which is NP-complete (cf. [17]).

Greedy algorithms do provide some approximation guarantees [7] for finding such a set C. However, unless for each CFD $\varphi \in \Sigma$ the number of tuples that violate φ with another tuple is bounded by a small constant, the approximation factor grows with the size of the database [19]. A simpler approach is to compute the set C' of tuples that do not violate any constraint in Σ. This clearly does not give us a maximal set of tuples but as shown in [28] it can be efficiently computed using SQL queries. Moreover, in practice one can often expect this set to be fairly large. Indeed, the typical error rate of real-world data in enterprises is 1%-5% [61].

6. Statistical Methods for Improving Accuracy

In this section we present the third part of the cleaning framework shown in Fig. 8, i.e., the sampling module. The repairing algorithms BATCHREPAIR and INCOREPAIR both return a repair Repr that satisfies the CFDs in Σ, i.e., consistent w.r.t. the given CFDs. However, certain value changes in Repr, which were automatically generated, may not be what the user wants. Referring to Examples 5.1 and 5.2 INCOREPAIR (for $k = 3$) resolves the φ_3 by modifying t_5 in the attributes CT, ST and ZIP, while the user may have wanted to modify $t_5[AC]$ only. This concerns the accuracy of the repair, rather than its consistency.

As remarked in Section 5.3 it is unrealistic to consult the user for every change. To improve the accuracy without incurring excessive human efforts, we propose a sampling process. The procedure SAMPLING (not shown) involves the user to inspect and edit a
sample of \(\text{Repr} \) rather than the entire \(\text{Repr} \). This procedure ensures that for candidate repairs found by the repairing algorithms, their estimated inaccuracy rate, i.e., \(\| \text{dif}(\text{Repr}, \text{D}_{\text{opt}}) \| / |\text{D}_{\text{opt}}| \), is below a predefined bound \(\epsilon \) with high confidence \(\delta \).

Given a repair \(\text{Repr} \) and predefined \(\epsilon \) and \(\delta \), procedure sampling works as follows: (1) it draws a sample \(S \) from \(\text{Repr} \) and lets the user inspect \(S \); (2) based on the user feedback and \(\epsilon \), it computes a test statistic \(z \); and finally (3) it compares \(z \) with the critical value \(z_{\alpha} \) at confidence level \(\delta \), which is obtained via normal distribution (see, e.g., [1]), where \(\alpha = 1 - \delta \). If \(z \leq z_{\alpha} \), then it rejects the null hypothesis that the proportion of inaccurate data in \(\text{Repr} \) is above the given \(\epsilon \) value, and \(\text{Repr} \) is returned as a candidate repair. Otherwise it recruits the user to edit both the sample \(S \) and CFDs in \(\Sigma \). This user interaction may trigger new violations after which the repairing algorithm and sampling process are invoked again, based on the possibly user-revised set \(\Sigma \) of CFDs and database.

The objective of sampling is twofold: (i) it involves the users to check whether the repair is accurate enough to meet their expectation on the data quality; and (ii) it allows the repairing algorithms to “learn” from the user interaction and improve the next round of cleaning process. In particular, the user may enter new CFDs based on new semantic bindings of related values.

We next outline methods for drawing a sample and for computing the statistic test. We also discuss the size of the samples required to guarantee with high probability that the inaccuracy ratio is below the predefined \(\epsilon \) threshold.

Sampling methods

A naive approach is to use uniform random sampling techniques. However, the tuples drawn in this way may not sufficiently represent those that were modified by the repairing algorithm, which are the tuples that we would like the user to check since they have a higher likelihood to be inaccurate. This motivates us to employ the stratified sampling method [1].

The idea is to partition the tuples in \(\text{Repr} \) into multiple strata and draw certain number of tuples from each strata, giving priority to strata that are likely to be inaccurate. More specifically, suppose that we want to draw a sample of \(k \) tuples. We partition \(\text{Repr} \) into \(m \) strata \(P_1, \ldots, P_m \) with \(m < k \). For \(i \in [1, m] \), the stratum \(P_i \) consists of those tuples \(t \) in \(\text{Repr} \) such that \(t \) was obtained by the repairing algorithm by modifying a tuple \(t \) in the original dataset \(D \) with \(\text{vio}(t) \geq v_i \), where \(\text{vio}(t) \) is the number of violations of \(t \) (Section 7.1), and \(v_i \) is a fixed threshold. Alternatively, instead of using \(\text{vio}(t) \) one can use \(\text{cost}(t, \cdot) \) to partition the data set.

We also assume predefined thresholds \(\xi_0, \ldots, \xi_m \) such that

\[
\sum_{i \leq |S|} \xi_i = 1 \quad \text{and} \quad \xi_i \geq \xi_{i+1}.
\]

Then we draw \(\xi_i \cdot k \) many tuples from the stratum \(P_i \). In this way we give a larger coefficient \(\xi_i \) to the stratum \(P_i \) and thus draw more tuples from \(P_i \), if tuples in \(P_i \) are more likely to be inaccurate. We draw tuples from each \(P_i \) by leveraging a widely used algorithm (e.g., [13]) that scans the data in one pass and uses constant space, and let \(S \) consist of tuples drawn from all strata.

Statistical Test

Let random variable \(X \) denote the number of inaccurate tuples in a sample. Because the probability of having an inaccurate tuple in the sample is proportional to the size of that sample, the variable \(X \) obeys a Binomial distribution, which is commonly computed via its normal approximation (provided that the sample size is large enough). Thus we can compute the test statistic by

\[
z = (\hat{p} - \epsilon) / \left(\sqrt{\hat{p}(1-\hat{p})/n} \right),
\]

where \(\hat{p} \) is the inaccuracy rate in a specific sample, \(\epsilon \) is the predefined inaccuracy rate and \(k \) is the sample size. As mentioned earlier, we compare the test statistics \(z \) with the critical value \(z_{\alpha} \) at confidence level \(\delta \). If \(z \leq z_{\alpha} \), we can conclude that the inaccuracy rate of \(\text{Repr} \) is below \(\epsilon \) with probability \(\delta \).

The remaining question is how to compute the inaccuracy rate \(\hat{p} \) for a specific sample \(S \). First, we let the user inspect and mark the tuples that fall short of the expectation. From the user feedback we get, for each \(i \in [1, m] \), a number \(\epsilon_i \), which is the number of inaccurate tuples in those tuples drawn from stratum \(P_i \). The estimated inaccuracy rate \(\hat{p} \) of the sample \(S \) is computed by:

\[
\hat{p} = \frac{\left(\sum_{i \leq k} \epsilon_i \cdot s_i \right) / \left(\sum_{i \leq k} s_i \right)}{s_i}, \quad \text{where} \quad s_i = |P_i|/|\xi_i \cdot k|.
\]

Sample size

We next discuss the choice of the size \(k \) for the sample \(S \). In general, the lower the inaccuracy rate of \(\text{Repr} \) is, the larger the sample is required. Intuitively, this is because in order for inaccurate tuples to appear in the sample, a large enough sample needs to be taken. A theoretical prediction for sampling size can be derived using Chernoff bounds [1], as follows.

Theorem 6.1: For a random sample \(S \) of size \(k \) and a constant \(c \), if \(k > \frac{\delta}{1 - \delta} \frac{\ln(1 - \epsilon)}{1 + \sqrt{(\ln(1 - \epsilon))^{2} + 1.2 \cdot c \cdot \ln(1 + \frac{1}{\delta})}} \), then \(P[X < c] < 1 - \delta \) holds, i.e., the probability that at least \(c \) many inaccurate tuples appear in the sample \(S \) is no less than \(\delta \).

Proof sketch: The Chernoff bounds [1] state that for any positive constant \(0 < \eta < 1 \), we have \(P[X < (1 - \eta)k\eta] \leq \frac{e^{-\eta^2 k\eta}}{\eta^2 k\eta} \). By rewriting \(P[X < c] < P[X < (1 - (1 - c/(k\eta)))k\eta] \), and applying the Chernoff bound result to \(P[X < (1 - (1 - c/(k\eta)))k\eta] < 1 - \delta \), we get the inequality stated in the theorem.

7. Experimental Evaluation

In this section, we present an experimental study of our repairing algorithms. We investigate the repair quality, scalability, and sensitivity to error rate and types of violations for both \textsc{BatchRepair} and \textsc{IncRepair}.

7.1 Experimental Setting

Our experiments were conducted on an Apple Xserve with 2.3GHz PowerPC dual CPU and 4GB of memory; of those, at most 2GB could be used by our system. We used a commercial DBMS on the same machine.

Data and constraints

Our experiments used an extension of the relation shown in Fig. 1. Specifically, its schema models a company’s sales records and includes 4 additional attributes, namely, the country of the customer CTY, the tax rate of the item VAT, the title TT and quantity of the item QTT. To populate this table, we scraped real-life data from \textsc{Amazon} and other websites, and generated datasets of various sizes, ranging from 10k to 300k tuples.

Our set \(\Sigma \) consists of 7 CFDs: 5 taken from Fig. 1 and Fig. 2, together with two new cyclic CFDs.

We included 300-5,000 tuples in the pattern tables of these CFDs, enforcing patterns of semantically related values which we identified through analyzing the real data. Note that the set of constraints is fairly large since each pattern tuple is in fact a constraint.

We first populated the table such that the initial datasets are consistent with all the CFDs in \(\Sigma \). We refer to this “correct” data as \(\text{D}_{\text{opt}} \). We then introduced noise to attributes in \(\text{D}_{\text{opt}} \) such that each “dirty” tuple violates at least one or more CFDs. To add noise to an attribute, we randomly changed it either to a new value which is close in terms of DL metric (distance between 1 and 6) or to an existing value taken from another tuple. Such “dirty” dataset is referred to as \(D \). We used a parameter \(\rho \) ranging from 1% to 10% for the noise rate.

Moreover, in accordance to the cost model defined in Section 3.2 we set weights to the attributes of tuples in \(D \) in the following way. Suppose that \(t \) is a tuple in \(D \), then we say that \(A \) is a “clean” attribute for \(t \) if the corresponding tuple \(t' \) in \(\text{D}_{\text{opt}} \) agrees with \(t \) on attribute \(A \); otherwise we call \(A \) “dirty” for \(t \). For dirty attributes
in t, we randomly assign a weight $w(t, A)$ in $[0, a]$; for clean attributes we randomly select a weight $w(t, A)$ in $[b, 1]$. This is based on the assumption that a clean attribute usually has a slightly higher weight than a dirty attribute. In the experiments, we set $a = 0.6$ and $b = 0.5$. We also studied the case when no weight information was available, by setting the weights to 1 for all attributes.

Algorithms. We have implemented prototypes of BatchRepair and all three variants of InCrePAIR, i.e., L-InCrePAIR, V-InCrePAIR and W-InCrePAIR, all in Java. We did not experiment with algorithm Sampling because we could easily find out the inaccuracy rate in a repair Repr by comparing the clean data and the repair, since we started with the clean data.

In the experiments we used InCrePAIR to repair the entire data set, as described in Section 5.3, except in one occasion (Fig. 12). That is, L-InCrePAIR, V-InCrePAIR and W-InCrePAIR were applied to non-incremental setting except for Fig. 12.

Measuring repair quality. There is no benchmark algorithm available for repairing CFDS. While each repair Repr of the database D found by our algorithms satisfies all the CFDS (this follows from the correctness of our algorithms), it still may contain two types of errors: (a) the noises that are not fixed, and (b) the new noises introduced in the repairing process. Although it is important to distinguish these two types of errors, the metrics used in previous data cleaning work often considers the first type of errors while ignoring the second type. For example, precision measures the percentage of error corrected, which does not distinguish these two types of errors.

To measure these two types of errors, we used the notions of Precision and Recall, which are widely used in information retrieval and many other areas. Precision is the ratio of the number of correctly repaired noises to the total number of noises. It measures repair completeness. For a dirty dataset D and a Repr found by our algorithms, we compute the number of noises by $\text{diff}(D, D_{opt})$ (recall that we know D_{opt}). The number of changes made by the repairing algorithm is $\text{diff}(D, \text{Repr})$ and the number of noises correctly repaired is $\text{diff}(D, \text{Repr}) - \text{diff}(D_{opt}, \text{Repr})$. Note that our algorithm may change some values to null. If such a value before the change is correct, we count the null as an error; otherwise, we treat it as a correction.

7.2 Experimental Results

We now report our findings concerning the accuracy (Precision/Recall) of our algorithms, their scalability in terms of the size of the data, noise rates, and types of violations, and show the efficacy of CFDS vs. FDs in repairing data.

Efficacy of CFDS vs. FDs. We first show that CFDS are indeed more effective than FDs in repairing dirty data. In Fig. 8 we ran BatchRepair on a dataset of 60K tuples and varied the noise rate ρ between 2% to 10%. The upper two curves report the accuracy for our set of CFDS. The lower two curves show the accuracy for the embedded FDs (i.e., the CFDS in which the pattern tableau consists of a single pattern of wildcards only). Figure 8 shows that patterns improved significantly the accuracy of the repair.

Quality of the repair. We evaluated the data quality of our repairing algorithms. We show the accuracy in terms of Precision (Fig. 9 and Recall (Fig. 10) of all our algorithms, i.e., BatchRepair, L-InCrePAIR, V-InCrePAIR and W-InCrePAIR. In these experiments, we varied the noise rate ρ from 1% to 10%. The total database size was fixed at 60K tuples.

Our experiments show that V-InCrePAIR and W-InCrePAIR consistently outperform L-InCrePAIR, while W-InCrePAIR performs slightly better than V-InCrePAIR. The accuracy of W-InCrePAIR is influenced by the quality of the weights, i.e., the choice of a and b. The good performance of V-InCrePAIR is consistent with the expectation that a tuple which has less violations is more likely to be a correct tuple. Indeed, algorithm V-InCrePAIR first repairs tuples that are more likely to be correct, which will provide more reliable information when cleaning less accurate dirty tuples subsequently. A similar argument holds for the good accuracy of W-InCrePAIR. Moreover, the running times (Fig. 12) of L-InCrePAIR and W-InCrePAIR are similar and slightly better than V-InCrePAIR. Therefore, the improved quality of the latter two algorithms does not come at a price, in terms of time.

Also in Fig. 2 and Fig. 10 we show the accuracy of the repair given by BatchRepair. Although BatchRepair and InCrePAIR are different in nature, the quality of the repairs provided by them is comparable. Note also that the Precision and Recall decrease slightly with the increase of noise rate, as expected. The values of Recall are relatively high, which means that our algorithms can repair most of the errors. Precision shows that new noises were introduced when repairing these errors.

In the following, when reporting on the InCrePAIR algorithm we always used V-InCrePAIR, as it consistently gave good results for a wide range of (a, b)-values.

In Fig. 9 we verify our intuition that CFDS with a constant in their RHS are more informative during the repairing than those with a variable RHS. In this experiment we fixed the size of the data to 60K tuples and varied the percentage of violations for constant CFDS w.r.t. violations for variable CFDS from 20% to 80%. As can be seen, an increasing number of constant CFD violations enabled both BatchRepair and InCrePAIR to achieve higher accuracy.

Scalability. In the following experiments we investigate the scalability of our algorithms. In Fig. 14 we show the scalability of BatchRepair. As described in Section 4.1, the overall complexity is governed by the procedure PickNext. We found in our experiments that without any further optimization, BatchRepair runs very slow. Therefore, we applied some additional optimizations based on the dependency graph of the CFDS, which help PickNext to select the next CFD to repair. As Fig. 14 shows, the optimized BatchRepair scales very well for database sizes varying from 60K to 300K tuples. The noise rate was fixed at 5%.

The effectiveness of InCrePAIR, when used in the incremental setting, is reported in Fig. 12. We started from a clean database consisting of 60K tuples and inserted 10 to 70 dirty tuples. It shows that InCrePAIR significantly outperforms BatchRepair in this incremental setting, with comparable accuracy (see Figs. 9 and 10). Observe that the running time of InCrePAIR increases faster than that of BatchRepair.

The scalability of all our algorithms with respect to noise rate is shown in Fig. 15. We fixed the data size to 60K tuples and varied the noise rate from 1% to 10%. All algorithms require more time when the data has more noise, as expected. An interesting observation is that BatchRepair is less sensitive to the noise rate because it can repair many tuples simultaneously.

In Fig. 15 we show that the presence of violations for variable CFDS has a negative effect on the time performance of both BatchRepair and InCrePAIR. This is not surprising since such violations involve multiple tuples.

Summary. Our experimental results demonstrate both the effectiveness and efficiency of our repairing algorithms. (1) We find that all of our repairing algorithms, even the worst-performed L-InCrePAIR, improve the quality of the data. (2) All of our algorithms scale well with the database size. (3) Algorithms BatchRepair and V-InCrePAIR provide repairs that have comparable accuracy. (4) Repair quality decreases when the noise rate increases.
for all of the algorithms. (5) If violations are mainly caused by constant CFDs, then the algorithms run more efficiently and provide more accurate results. (6) While our algorithms correctly fix noises, they may also introduce new noises. This is an issue not yet well studied by previous work.

8. Related Work

A variety of constraint formalisms have been proposed \([2, 3, 4, 5, 6, 25, 26, 27]\). Except for [6], these formalisms have not been applied in the context of data cleaning. CFDs are proposed in [6], which studies satisfiability and implication analyses of CFDs, and gives SQL techniques for detecting inconsistencies using CFDs. However, it does not propose cleaning methods. Constraints of [6] also referred to as conditional functional dependencies, and their extension known as constrained dependencies of [26], also restrict an FD to hold on a subset of a relation. However, they cannot express even CFDs. More expressive are constraint-generating dependencies (CGDs) of [2] and constrained tuple-generating dependencies (CTGDs) of [27]. While both CGDs and CTGDs can express CFDs, this expressive power comes with the price of high complexity.

Research on constraint-based data cleaning has mostly focused on two topics introduced in [2]: repair is to find another database that is consistent and minimally differs from the original database (e.g., [2, 5, 25, 26, 27, 28]) and consistent query answer is to find an answer to a given query in every repair of the original database (e.g., [2, 5, 25, 26, 28]). Most earlier work (except [5, 20, 23, 55]) considers traditional full and denial dependencies, which subsume FDs, but do not consider patterns defined with data values. Beyond traditional dependencies, logic programming is studied in [20, 23] for fixing census data. A tableau representation of full dependencies with data values is studied in [23], which focuses on condensed representation of repairs and consistent query answers.

Closest to our work is [5]. Here, a cost model and repairing algorithms are developed for standard FDs and INDS. Our cost model (Section 3.2) is an extension of the one proposed in [5], by allowing weights to be associated with attributes rather than with tuples. As remarked earlier, repairing CFDs is far more intriguing than standard FDs. Our batch repairing algorithm (Section 5) is a nontrivial extension of the algorithms of [5] in that both are based on equivalence classes of tuple attributes, but the algorithms of [5] may not terminate on CFDs. Incremental repairing and sampling for improving data accuracy (Section 5) and [5] are not considered in [5].

Value modifications as repair operations are used in [13, 21, 28] for the elimination of approximate duplicates. As observed in [5], it is possible to model many cases of this problem in terms of FDs and INDS repair. As shown in Section 5.2, clustering techniques developed for merge-purge have immediate applications in constraint-based data cleaning. There have also been commercial ETL (extraction, transformation, loading) tools, in which a large portion of the cleaning work has still to be done manually or by low-level programs (see [29] for a comprehensive survey).

Related to this work are also the AJAX, Potter’s Wheel and ARKTOS systems. AJAX [15] proposes a declarative language for specifying data cleaning operations (duplicate elimination) during data transformations. Potter’s Wheel [30] is an interactive data cleaning system, which supports a sliding-window interface, and combines data transformations and error detection (syntax and irregularities). ARKTOS [32] is an ETL tool that detects inconsistencies based on basic keys, foreign keys and uniqueness constraints, etc., but makes little effort to remove the detected errors. While a constraint repair facility will logically become part of the cleaning process supported by these tools and systems, we are not aware of analogous functionality currently in any of the systems mentioned.
9. Conclusions

We have proposed a framework for improving data quality, based on CFDs. We have shown that the problem for finding optimal repairs and the problem for incrementally finding optimal repairs are both NP-complete. In light of these intractability results, we have developed heuristic algorithms for both problems, and experimentally verified their effectiveness and efficiency in improving the consistency of the data. To improve the accuracy of the data, we have proposed a statistical method that guarantees to find a repair above a predefined accuracy rate with a high confidence. To our knowledge, this work is among the first treatments of both consistency and accuracy, and is the first effort to (incrementally) clean data based on conditional constraints. We expect that CFDs and data-cleaning methods based on CFDs will yield a promising tool for improving the quality of real-life data.

Several extensions are targeted for future work. First, to effectively clean real-life data, it is often necessary to consider both CFDs and inclusion dependencies. We are investigating effective methods for improving the consistency and accuracy of the data based on both CFDs and inclusion dependencies. Second, we are studying effective methods to automatically discover useful CFDs from real-life data. Finally, we are exploring conditional constraints beyond CFDs.

Acknowledgments. Wenfei Fan is supported in part by EPSRC GR/S63205/01, GR/T72433/01, EPSRC GR/S63205/01, and EPSRC GR/T27433/01. F. Geerts is a postdoctoral researcher of the FWO Vlaanderen and is supported in part by EPSRC GR/S63205/01.

10. References