The Complexity of Tree Transducer Output Languages

Kazuhiro Inaba\textsuperscript{1} and Sebastian Maneth\textsuperscript{2,3}

\textsuperscript{1} The University of Tokyo, kinaba@is.s.u-tokyo.ac.jp
\textsuperscript{2} National ICT Australia, sebastian.maneth@nicta.com.au
\textsuperscript{3} University of New South Wales, Sydney

ABSTRACT. Two complexity results are shown for the output languages generated by compositions of macro tree transducers. They are in $\text{NSPACE}(n)$ and hence are context-sensitive, and the class is NP-complete.

1 Introduction

Macro tree transducers (mtts) \cite{12,14} are a finite-state machine model of tree-to-tree translations. They are motivated by syntax-directed semantics of programming languages and recently have been applied to XML transformations and query languages \cite{18,21}. Mtts are a combination of top-down tree transducers and macro grammars \cite{13}. They process the input tree top-down while accumulating several output trees using their context parameters. Sequential composition of mtts gives rise to a powerful hierarchy (the “mtt-hierarchy”) of tree translations which contains most known classes of tree translations such as those realized by attribute grammars, by MSO-definable tree translations \cite{5}, or by pebble tree transducers \cite{20}. Consider the range, or output language, of a tree translation; it is a set of trees. If we apply “yield” to these trees, i.e., concatenate their leaf symbols from left to right, we obtain a string language. The string languages obtained in this way from the mtt-hierarchy form a large class (containing for instance the IO- and OI-hierarchies \cite{6}) with good properties, such as being a full AFL and having decidable membership, emptiness, and finiteness \cite{7}.

In this paper we study the complexity of the output (string or tree) languages of the mtt-hierarchy. Note that we do not explicitly distinguish between string or tree output languages here, because the translation “yield” which turns a tree into its frontier string (seen as a monadic tree) is a particular simple macro tree translation itself and hence the corresponding classes have the same complexity. Small subclasses of our class of languages considered here are the IO-macro languages (or, equivalently, the yields of context-free-tree languages under IO-derivation) and the string languages generated by attribute grammars. Both of these classes are LOG(CFL)-complete by \cite{2} and \cite{10}, respectively. Another subclass of our class is that of OI-macro languages, which are equivalent to the indexed languages \cite{1}, by \cite{13}. This class is known to be NP-complete \cite{22}. Hence, our class is NP-hard too (even already at level 2). Our first main result is that output languages of the mtt-hierarchy are NP-complete; thus, the complexity remains in NP when going from...
indexed languages to the full mt hierarchy. In terms of space complexity, languages generated by compositions of top-down tree transducers (mtts without context parameters) are known to be in DSPACE(n) [3]. This result was generalized in [17] to compositions of total deterministic mtts. Our second main result is that output languages of the mt hierarchy (generated by compositions of nondeterministic mtts) with regular tree languages as inputs are in NSPACE(n) and thus are context-sensitive. The approach of our proof can be seen as a generalization of the proofs in [3] and [17]; moreover, we make essential use of the idea of compressed representation of backtracking information, used by Aho in [1] for showing that the indexed languages are in NSPACE(n).

We first solve the “translation membership” problem for a single mt M. That is, we show that, given trees s and t, we can determine whether or not the pair (s, t) is in M’s translation, in linear space and polynomial time with respect to |s| + |t| on a nondeterministic Turing Machine (|s| denotes the size of the tree s). The challenge here is the space complexity; we use a compressed representation of M’s output trees for input s, inspired by [19], and then check if t is contained using a recursive procedure in which nodes needed for backtracking are compressed using a trie, similar to Aho’s compression of index strings in [1]. Then, we generalize these results from one mt to compositions of mtts. Here, the challenge is the existence of intermediate trees. Consider the composition τ of two translations realized by mtts: τ₁ followed by τ₂. To check (s, t) ∈ τ, we nondeterministically guess an intermediate tree u, and check whether (s, u) ∈ τ₁ and (u, t) ∈ τ₂. From the complexity result of single mtts, we know that this can be done in O(|s| + |u| + |t|) space. This can, however, be much larger than O(|s| + |t|); the size |u| of the intermediate tree u can actually be double-exponentially larger than |s| and |t|. The basic idea to prove the linear size complexity for compositions of mtts is to bound the sizes of all such intermediate input trees. This is achieved by putting the mtts in certain normal forms such that they do not delete much of their input, in the sense that every output tree t has a corresponding input tree of size only linearly larger than |t|. Although our approach is similar to [17], the existence of context parameters and nondeterminism together adds new challenges in every step of the proof. For example, consider the mt M_{dexp} with the following three rules r₀, r₁, and r₂:

\[
\begin{align*}
&q_0, a(x) \rightarrow q, x \langle (q, x)(e) \rangle \\
&q, a(x)(y) \rightarrow q, x \langle (q, x)(y) \rangle
\end{align*}
\]

Here, + denotes a nondeterministic choice; e.g., when the state q reads an input node labeled e, it generates an output node labeled either b or c. This mt takes a tree of form a(a(⋯a(e)⋯)) as input (with n occurrences of a) and generates a full binary tree of height 2ⁿ (note that, without parameters, the height growth can only be linear) with each non-leaf node arbitrarily labeled either b or c. Therefore, the size of the set of possible output trees is 2²ⁿ. To decide whether (s, t) ∈ τ_{M_{dexp}} for given trees s and t, we essentially have to find the correct choice among the triple exponentially many candidates. To address the issue, we (1) instead of solving the membership problem for all mtts, only deal with mtts in the above mentioned non-deleting normal form, and which are linear with respect to the input variables, and (2) exploit the compressed representation of outputs of mtts [19] for manipulating the output set.
2 Preliminaries

The notation used in this paper will be the same as that used in [17], except that we denote the sequential composition by the operator ; instead of o, and the label of a tree node by label(t, ν) instead of t[ν]. We denote by pos(t) ⊆ N* the set of nodes of a tree t.

A macro tree transducer (mtt) M is a tuple (Q, Σ, Δ, q0, R), where Q is the ranked alphabet of states, Σ and Δ are the input and output alphabets, q0 ∈ Q(0) is the initial state, and R is the finite set of rules of the form ⟨q, σ(x1, . . . , xn)⟩(y1, . . . , ym) → r where q ∈ Q(m), σ ∈ Σ(k), and r is a tree in TΔ∪(Q×X)∪Ym. Rules of such form are called ⟨q, σ⟩-rules, and the set of right-hand sides of all ⟨q, σ⟩-rules is denoted by Rq,σ. We always assume Σ(0) and Δ(0) (and thus, TΣ and TΔ) are non-empty. The rules of M are used as term rewriting rules in the usual way. We denote by ⇒M the derivation relation of M on T(Q×X)∪Δ and by u|M the set {t ∈ TΔ | u ⇒*M t}. Note that "state-calls" ⟨q, xi⟩ can be nested and therefore different orders of evaluation yield different trees. Unless otherwise specified, we assume the outside-in (OI) derivation in which we always rewrite the outermost (= top-most) state calls. By Corollary 3.13 of [12], this order of evaluation yields the same set of output trees as the unrestricted (OI) derivation in which we always rewrite the outermost (= top-most) state calls.

For a technical reason, we define a slight extension of mtts. We fix the set of choice nodes C = {θ(0), + (2)} and assume it to be disjoint with other alphabet. An mtt with choice and failure (mttcf) M is a tuple (Q, Σ, Δ, q0, R) defined as for normal mtts, except that the right-hand sides of rules are trees in TΔ∪(Q×X)∪Ym∪C. The derivation relations (⇒M and ↓M) and the realized translation (τM) are defined similarly as for mtts, with two additional rewrite rules: +(t1, t2) ⇒M t1 and +(t1, t2) ⇒M t2. Thus, + denotes nondeterministic choice and θ denotes failure (because there is no rule for it). Again, we assume the outside-in evaluation order. For a right-hand side r of an mttcf, we say a position ν ∈ pos(r) is top-level if for all proper prefixes ν′ of ν, label(r, ν′) ∈ Δ∪C. We say an mttcf is canonical if for every right-hand side r and for every top-level position ν ∈ pos(r), label(r, ν) ̸∈ C. The idea of the choice and failure nodes comes from [12]. There they show that any MT generating trees in TΔ can be regarded as a D,MT generating "choice trees" in TΔ∪C; a choice tree each of the choice trees denotes the set of possible output trees by interpreting θ as the empty set and +(c1, c2) as the union of the sets denoted by c1 and c2.

3 Complexity of a Single MTT

In this section we show that for any canonical mttcf M having properties called path-linear and non-erasing, there is a nondeterministic Turing Machine that decides whether a given
pair \((s, t)\) of trees is in \(\tau_M\) in \(O(|s| + |t|)\) space and in polynomial time with respect to \(|s| + |t|\). Thus, this “translation membership” problem is in \(\text{NSPACE}(n)\) and \(\text{NP}\). Two previous works on the same membership problem for restricted classes of macro tree transducers – for total deterministic mttcfs [17] and for nondeterministic mttcfs without parameters (top-down tree transducers) [3] – both give \(\text{DSPACEn}\) algorithms. First let us briefly explain where the difficulty arises in our case, i.e., with nondeterminism and parameters.

For total deterministic mttcfs, the \(\text{DSPACEn}\) complexity is proved via a reduction to the case of linear total deterministic mttcfs, and then to attribute grammars (which are deterministic by default), whose output languages are \(\text{LOG}(\text{CFL})\)-complete and therefore have \(\text{DSPACEn}\) membership test[10]. For nondeterministic tts, the complexity is achieved by a straightforward backtracking-based algorithm; given the input tree \(s\) and the output tree \(t\), it generates each possible output of \(s\) by simulating the recursive execution of state calls, while comparing with \(t\). The following two facts imply the \(\text{DSPACEn}\) complexity: (1) the depth of the recursion is at most the height of \(s\), and (2) to backtrack we only need to remember for each state call the rule that was applied (which requires constant space). Note that neither (1) nor (2) hold for mttcfs; the recursion depth can be exponential and the actual parameters passed to each state call must also be remembered for backtracking.

Here we concentrate on a restricted class of mttcfs, namely, **canonical, non-erasing**, and **path-linear** mttcfs, which is exactly the class of mttcfs needed later in Section 4, to obtain the complexity result for the output languages of the mtt-hierarchy. For a canonical mtt, we define a right-hand side of a rule to be **non-erasing** if it is not in \(Y\). A canonical mttcf is **non-erasing** if the right-hand sides of all its rules are non-erasing. An mttcf is **path-linear** if a subtree of the form \((q, x_j) \cdots (p, x_j) \cdots \) in its rules implies \(i \neq j\).

**Making MTTCFs Total Deterministic** Let \(M\) be a canonical, non-erasing, and path-linear mttcf. It is easy to see that we can always construct a total deterministic mttcf \(M'\) equivalent to \(M\) by simply taking \((q, \sigma(\cdots ))(\cdots ) \rightarrow + (r_1, \cdots , + (r_n, \theta) \cdots )\) for \(\{r_1, \ldots , r_n\} = R_q\). Then, \(M' = (Q, \Sigma, \Delta, q_0, R')\) can be seen as a total deterministic mtt \(N = (Q, \Sigma, \Delta \cup C, q_0, R')\) whose outputs are the choice trees denoting sets of output trees of \(M\). The non-erasing and non-erasure of \(M\) implies that in any right-hand side \(r \in R'\) and every position \(v \in \text{pos}(r)\) with \(\text{label}(v) \in Y\), there exists a proper prefix \(v'\) of \(v\) with \(\text{label}(v') \neq +\). Path-linearity is preserved from \(M\) to \(M'\).

**Compressed Representation** Our approach is to represent the output choice tree \(\tau_N(s)\) in a compact (linear size) structure, and then compare it to the given output tree \(t\). Given a total deterministic mtt \(N\) and an input tree \(s \in T_{\Sigma}\), we can, in time \(O(|s|)\), calculate a straight-line context-free tree grammar (or SLG, a context-free tree grammar that has no recursion and generates exactly one output) of size \(O(|s|)\) that generates \(\tau_N(s)\), using the idea of [19]. Rather than repeating the full construction of [19], we here give a direct representation of the nodes of \(\tau_N(s)\).

Let \(N\) be a total, deterministic, non-erasing, and path-linear mtt with output alphabet \(\Delta \cup C\) and let \(s\) be an input tree. Let \(E = \{(r, v) \mid q \in Q, \sigma \in \Sigma, r \in R_{q, \sigma}, v \in \text{pos}(r)\}\). For a list \(e = (r_0, v_0) \cdots (r_n, v_n)\) of elements of \(E\), we define \(\text{orig}(e)\) (the origin of \(e\)) as \(e.i_0 \cdots i_{k-1}\) where \(k\) is the smallest index satisfying \(\text{label}(r_i, v_k) \notin Q \times X\) (or, let \(k = n + 1\) when all labels are in \(Q \times X\)) and \(i_j\) is the number such that \(\langle q, x_j \rangle = \text{label}(r_j, v_j)\) for some \(q\). We call \(e\)
well-formed if \( \text{label}(r_j, v_i) \in Q \times X \) for every \( i < n \), \( \text{label}(r_n, v_n) \in \Delta \cup C \), and \( \text{orig}(e) \in \text{pos}(s) \). Intuitively, \( e \) is a partial derivation or a “call stack” of the mtt \( N \). Each node of \( \tau_N(s) \) can be represented by a well-formed list, which can be stored in \( O(|s|) \) space because its length is at most \( 1 + (\text{height of } s) \) and the size of each element depends only on the size of the fixed mtt, not on \( |s| \). Note that \( e \) can represent many nodes in \( \tau_N(s) \) if the mtt is non-linear in the parameters. For instance, for \( M_{\text{desp}} \) from the Introduction and the input tree \( s_3 = a(a(a(e))) \), the list \( (r_0, e.1)(r_1, e.1)(r_1, e.1)(r_2, e.1) \) represents all b-nodes at depth 16 of the tree \( \tau_M(s_3) \), of which there are \( 2^8 \) many. The label \( \text{c-label}(e) \) of the node represented by \( e \) is \( \text{label}(r_n, v_n) \). The operation \( \text{c-child}(e, i) \) which calculates the representation of the \( i \)-th child of the node represented by \( e \) is defined in terms of the following three operations. For a well-formed list \( e = (r_0, v_0) \ldots (r_n, v_n) \) with \( \text{rank}(\text{c-label}(e)) = m \), we define \( \text{down}_i(e) \) for \( 1 \leq i \leq m \) as \( (r_{i-1}, v_{i-1}) \). For \( e = (r_0, v_0) \ldots (r_n, v_n) \) such that \( \text{label}(r_n, v_n) = y_i \in Y \), we define \( \text{pop}(e) = (r_0, v_0) \ldots (r_{n-1}, v_{n-1}) \). For a list \( e = (r_0, v_0) \ldots (r_n, v_n) \) where \( \text{label}(r_n, v_n) = (q, x_j) \in Q \times X \), we define \( \text{expand}(e) = (r_0, v_0) \ldots (r_n, v_n)(r_{n+1}, e) \) where \( r_{n+1} \) is the right-hand side of the unique \( (q, \text{label}(s, \text{orig}(e))) \)-rule. Then, the operation \( \text{c-child}(e, i) \) is realized by the following algorithm: first apply \( \text{down}_i \) to \( e \), then repeatedly apply \( \text{pop} \) as long as possible, and then repeatedly apply \( \text{expand} \) as long as possible. The non-erasure of \( N \) ensures that this yields a well-formed list; in the last step, when \( \text{expand} \) cannot be applied to \( e = \ldots (r_{n}, v_{n}) \), \( \text{label}(r_{n}, v_{n}) \) is obviously not in \( Q \times X \) and by non-erasure is not in \( Y \), hence it is in \( \Delta \cup C \). Since the length of a well-formed list is bounded by \( |s| \) and \( \text{pop} \) (and \( \text{expand} \), respectively) always decreases (increases) the length of the list by one, each of them is executed at most \( |s| \) times in the calculation of \( \text{c-child} \). Hence, \( \text{c-child} \) runs in polynomial time with respect to \( |s| \). Similarly, the representation of the root of \( \tau_N(s) \) is obtained in polynomial time by repeatedly applying \( \text{expand} \) as long as possible to \( e_0 = (r_0, e) \) where \( r_0 \) denotes the right-hand side of the unique \( (q_0, \text{label}(s, e)) \)-rule. Note that a similar list representation is used in the proof of Theorem 3 in [4].

**Matching Algorithm with NP Time Complexity** Let \( t \in T_\Delta \). Figure 1 shows the non-deterministic algorithm MATCH that decides, given a well-formed list \( e \) and a node \( v \) of \( t \), whether the set of trees represented by the choice tree at \( e \) contains the subtree of \( t \) rooted at \( v \). The operations \( \text{c-label} \) and \( \text{c-child} \) are defined as above. The operations \( \text{label}, \text{rank}, \) and \( \text{child} \) are basic tree operations, assumed to run in polynomial time with respect to \( |t| \). If we apply MATCH to the representations of the root nodes of \( \tau_N(s) \) and \( v = e \), we can decide whether \( (s, t) \in \tau_M \). Since this is the standard top-down recursive comparison of two trees, the correctness of the algorithm should be clear.

In each nondeterministic computation, MATCH is called once for each node of \( t \). In each call, the while-loop iterates at most \( c|s| \) times for a constant \( c \). This is due to non-erasure, i.e., for every \( Y \)-node in right-hand sides there exists a non- \( + \) ancestor node. If we once \( \text{expand} \) a list for obtaining \( \text{c-child} \), we never see \( Y \)-nodes in right-hand sides (thus never

```plaintext
MATCH (e, v)
1: while \( \text{label}(e) = + \) do
2: \( e \leftarrow \text{c-child}(e, k) \) where \( k = 1 \) or \( 2 \),
   nondeterministically chosen
3: if \( \text{c-label}(e) = \text{label}(v) \) then
   4: return false
   5: else if \( \text{rank}(\text{label}(v)) = 0 \) then
      6: return true
5: else for \( i = 1 \) to \( \text{rank}(\text{label}(v)) \) do
10: if not MATCH(\( \text{c-child}(e, i), \text{child}(v, i) \)) then
9: return false
11: return true
```

Figure 1: Matching Algorithm
pop) before seeing some Δ-node. Thus, during the while-loop, the sequence of applied operations must be: first pop's and down's are applied, and then expand is applied (if any), and after that no pop is applied, i.e., the only operations applied are expand or down. In other words, it has to be in the regular set \((\text{pop} \text{down})^* (\text{expand} \text{down})^*\). However, since the length of a well-formed list is at most \(|s|\), we can continuously pop without expanding at most \(|s|\) times, and the same for expand without popping. Also, the numbers of continuous down's are bounded by the height of the right-hand sides of the rules of \(N\). Thus, the loop terminates after at most \(2 \cdot (1 + \text{the maximum height of right-hand sides of } N) \cdot |s|\) iterations. Altogether, the total running time is polynomial in \(|s| + |t|\).

**Linear Space Complexity** The MATCH algorithm takes \(O((|s| + \log |t|)|t|)\) space if naively implemented, because in the worst case the depth of recursion is \(O(|t|)\) and we have to remember \(e\) (which costs \(O(|s|)\) space) and \(v\) (\(O(\log(|t|))\) space at least, depending on the tree node representation) in each step of the recursion. However, note that the lists of nodes share common prefixes! Suppose the root node is represented by \((r_0, v_0)(r_1, v_1)(r_2, v_2)(r_3, v_3)\) and its child node is obtained by applying \(\text{down}\), \(\text{pop}\), and \(\text{expand}\). Then the child node is of the form \((r_0, v_0)(r_1, v_1)(r_2, v'_2)(r_3, v_3)\), which shares the first two elements with the root node representation. We show that if we store lists of nodes with common prefixes maximally shared, then, in the case of path-linear mtt's, their space consumption becomes \(O(|s| + |t|)\). The idea of sharing lists resembles the proof of context-sensitivity of indexed languages [1].

We encode a list of well-formed lists as a tree, written in parenthesized notation on the tape. For example, the list of three lists \([\rho_1\rho_2\rho_3, \rho_1\rho_2\rho_4, \rho_1\rho_2\rho_6]\) is encoded as \(\rho_1(\rho_2(\rho_3, \rho_4), \rho_5(\rho_6))\). Since the number of parentheses is \(\leq 2n\) and that of commas is \(\leq n\) where \(n\) denotes the number of nodes, the size of this representation is \(O(n)\). When the function MATCH is recursively called, we add the current \(e\) to the end of the list. The addition is represented as an addition to the rightmost path. As an example, let \(e = \rho_1\rho_5\rho_7\rho_8\). The common prefix \(\rho_1\rho_5\) with the current rightmost path \(\rho_1\rho_5\rho_8\) is shared, and the suffix \(\rho_7\rho_8\) is added as the rightmost child of the \(\rho_5\)-node. Then, we have a new tree \(\rho_1(\rho_2(\rho_3, \rho_4), \rho_5(\rho_6, \rho_7(\rho_8)))\). Removal of the last list, which happens when MATCH returns, is the reverse operation of addition; the rightmost leaf and its ancestors that have only one descendant leaf are removed. Note that, since by definition a well-formed list cannot be a prefix of any other well-formed lists, each well-formed list always corresponds to a leaf node of the tree. It is straightforward to implement these two operations in linear space and in polynomial time.

Let us consider what happens if we apply this encoding to the output of a path-linear mtt. In the algorithm MATCH we only proceed downwards in the trees, i.e., the parameter \(e'\) to the recursive calls is always obtained by applying \(\text{c-child}\) several times to the previous parameter \(e\). Thus, the lists \([e_0, e_1, \ldots, e_n]\) of node representations we have to store during the recursive computation always satisfy the relation \(e_j \in \text{c-child}^*(e_i)\) for every \(i < j\). Let \(e = (r_0, v_0) \ldots (r_m, v_m)\) and \(e' = (r'_0, v'_0) \ldots (r'_m, v'_m)\) be proper prefixes of different elements in the same list satisfying the condition (here we assume that \(e\) is taken from the element preceding the one where \(e'\) is taken). Then, \(\text{orig}(e) = \text{orig}(e')\) only if \(e = e'\). This can be proved by contradiction. Suppose \(\text{orig}(e) = \text{orig}(e')\) and \(e \neq e'\), and the \(j\)-th elements are the first difference between \(e\) and \(e'\). Recall that \(e'\) is a prefix of a well-formed list obtained by repeatedly applying \(\text{c-child}\) to another well-formed list, of which \(e\) is a prefix. Then it
must be the case that \( r_j = r'_j \) (by definition of expand, \( r_j \) and \( r'_j \) are uniquely determined from \( (r_0, v_0) \ldots (r_{j-1}, v_{j-1}) \) and \( (r'_0, v'_0) \ldots (r'_{j-1}, v'_{j-1}) \), which are equal) and \( v_j \) is a proper prefix of \( v'_j \). However, due to path-linearity, the input variable at \( v_j \) and \( v'_j \) must be different, which contradicts \( \text{orig}(e) = \text{orig}(e') \). Therefore, we can associate a unique node in \( \text{pos}(s) \) with each proper prefix of the lists, which means that the number of distinct proper prefixes is at most \(|s|\). Similarly, it can be shown that adding only to the rightmost path is sufficient for maximally sharing all common prefixes. Suppose not, then there must be in the list three nodes of the forms \( e_1 = e.(r,v).e'_1 \), \( e_2 = e.(r,v').e'_2 \), and \( e_3 = e.(r,v).e'_3 \) with \( v \neq v' \) in this order. Note that if this happened, then the prefix \( e.(r,v) \) would not be shared by the rightmost addition. However, \( e_2 \in c\text{-}child^+(e_1) \) implies that \( v \) is a proper prefix of \( v'_j \), and by \( e_3 \in c\text{-}child^+(e_2) \), \( v' \) is a proper prefix of \( v \), which is a contradiction. Hence, the number of nodes except leaves in the tree encoding equals the number of distinct proper prefixes, which is at most \(|s|\). We can bound the number of leaves by \(|t|\), the maximum depth of the recursion. So, the size of the tree encoding of a list of nodes is \( O(|s| + |t|) \). We can easily remember the whole list of \( v \)’s in \( O(|t|) \) space. Since in the lists \[v_1, \ldots, v_n\], \( v_{i+1} \) is always a child node of \( v_i \), we only need to remember the child number for each node. For example, the list \([e,e.2,e.2.1]\) can be encoded as \([e,2,1]\). Thus, we only need \( \leq \text{height}(t) \) many numbers, each of which is between 1 and the maximal rank of symbols in \( \Delta \), which is a constant.

**Theorem 1.** Let \( M \) be a canonical, non-erasing, and path-linear mttcf. There effectively exists a nondeterministic Turing Machine which, given any \( s \) and \( t \) as input, determines whether \((s,t) \in \tau_M \) in \( O(|s| + |t|) \) space and in polynomial time with respect to \(|s| + |t|\).

### 4 Complexity of Compositions of MTTs

As explained in the Introduction, the key idea for obtaining linear-size complexity for compositions of mttts is to bound the size of all intermediate input trees, and this is achieved by putting the mttts into “non-deleting” forms. In the same way as for total deterministic mttts [17], we classify the “deletion” in mttts into three categories – erasing, input-deletion, and skipping (a similar classification without erasing, which is a specific use of parameters, is also used in the case of nondeterministic tts [3]). The resolution of each kind of deletion, however, requires several new techniques and considerations compared to previous work, due to the interaction of nondeterminism and parameters. In the rest of this paper, we first explain how we eliminate each kind of deletion, and then show the main results.

**Erasing** We first consider “erasing” rules – rules of the form \( \langle q, \sigma(\cdots) \rangle(y_1, \ldots, y_m) \rightarrow y_i \), as defined in Section 3. An application of such a rule consumes one input \( \sigma \)-node without producing any new output symbols; hence it is deleting a part of the input. Note that if the rank of \( \sigma \) is non-zero, then a rule as above is at the same time also input-deleting, which is handled in Section 4. In the case of total deterministic mttts, “non-erasing” is a normal form, i.e., for every total deterministic mttt there is an equivalent one without erasing rules. Unfortunately, we could not find such a normal form for nondeterministic mttts with OI semantics. Note that for OI context-free tree grammars (essentially mttts without input: think of \( \langle q, x \rangle \) as a nonterminal \( N_{q,t} \), or equivalently, think of macro grammars [13] or indexed
grammars [1], with trees instead of strings in right-hand sides), it has been shown [16] that there is no non-erasing normal form. The problems is, that “inline expansion”, as used to obtain non-erasing total deterministic mtts, generates copies of evaluated trees, which may not correctly model the OI semantics of the original transducer. Therefore, we move from normal mtts to mtts with choice and failure. The example above can be represented by an mtcf rule \(\langle q_1, a(x_1, x_2) \rangle \rightarrow \langle q_2, x_1 \rangle + (B, + (C, A(B, C)))\), for instance. We will show that every mt can be simulated by a non-erasing mtcf.

**Lemma 2.** Let \(M\) be a mt. There effectively exists a linear tt \(E\) and a canonical mtcf \(M'\) such that \(M'\) is non-erasing and \(\tau_E ; \tau_M = \tau_M\). Path-linearity is preserved from \(M\) to \(M'\).

**Proof.** The idea is, we first predict all erasing beforehand and annotate each input node by the information of erasing, by using a preprocessing linear tt. Then we replace all erasing state calls (e.g., \(\langle q, x_1 \rangle(q_1)\) with the rule \(\langle q, \ldots \rangle(y_1) \rightarrow y_1\)) in the right-hand sides of rules with the result of the erasing call (e.g., \(u_1\)). Note that we have to deal with nondeterminism. Suppose we have two rules \(\langle q, \sigma \rangle(y_1, y_2) \rightarrow y_1\) and \(\langle q', \sigma \rangle(y_1, y_2) \rightarrow y_2\) and a state call \(\langle q, x_1 \rangle(q_1, q_2)\) in a right-hand side. In order to preserve the nondeterminism, we replace the state call by \(+ (u_1, u_2)\).

Let \(M = (Q, \Sigma, \Delta, q_0, R)\). We define \(E\) to be a nondeterministic linear tt with the set of states \(P = \{Q \rightarrow 2^{1^{\ldots n}}\} \cup \{p_0\}\) (functions from \(Q\) to \(2^{1^{\ldots n}}\) where \(n\) is the maximum rank of the states of \(Q\), and one distinct state \(p_0\), which is the initial state), the input alphabet \(\Sigma\), the output alphabet \(\Sigma_p = \{\sigma, p_1, \ldots, p_k\}^k \mid \sigma^k \in \Sigma, p_i \in P\}\), and the following rules for every \(\sigma^k \in \Sigma\) and \(p_1, \ldots, p_k \in \{Q \rightarrow 2^{1^{\ldots n}}\}\): \(\langle p, \sigma(x_1, \ldots, x_k) \rangle \rightarrow (\sigma, p_1, \ldots, p_k)((p_1, x_1), \ldots, (p_k, x_k))\) where \(p \in \{p_0, q \rightarrow \{f(r) \mid (q, \ldots, r) \rightarrow r \in R\}\}\) with \(f\) recursively defined as follows: \(f(y_i) = \{i\}, f(\delta(\ldots)) = \emptyset, f((\sigma', x_i)(r_1, \ldots, r_m)) = \bigcup \{f(r_i) \mid i \in p_j(q')\}\). The transducer \(E\) modifies the label \(\sigma^k\) of each input node into the form \(\sigma^k(p_1, \ldots, p_k)\). The annotated information \(p_i\) intuitively means “if a state \(q\) of \(M\) is applied to the \(i\)-th child of the node, it will erase and return directly the \(e\)-th parameter for \(e \in p_i(q)\)”. If \(p_i(q) = \emptyset\) then no erasing will happen. The rule of \(E\) is naturally understood if it is read from right to left, as a bottom-up translation. Formally speaking, the following claim holds. It is easily proved by induction on the structure of \(s\).

**Claim:** (1) For each \(s \in T_\Sigma\) and \(q \in Q^{(n)}\), there is a unique \(p \in P \setminus \{p_0\}\) such that \(\langle p, s \rangle \in E \neq \emptyset\), and \(e \in p(q)\) if and only if \(y_i \in (q, s)(y_1, \ldots, y_m)\). (2) Let us denote by \(|s|\) such \(p\) determined by \(s\). The output \(s' \in T_E(s)\) is unique. For \(b \in \text{pos}(s) = \text{pos}(s')\), \(\text{label}(s', b) = (\text{label}(s, b), [s|_{[1]}], \ldots, [s|_{[k]}])\) where \([s|_{[v]}\) is the subtree of \(s\) rooted at the node \(v\).

Then, let \(M' = (Q, \Sigma_p, \Delta, q_0, R')\) with \(R' = \{(q, \sigma(p_1, \ldots, p_k)(x_1, \ldots, x_k)(y_1, \ldots, y_m) \rightarrow r' \mid r \in R, \sigma, r' \in \text{ne}(r), r' \notin Y\}\) where the set \(\text{ne}(r)\) is defined inductively by \(\text{ne}(r) = \{y_j\}\) if \(r = y_j\) and \(\text{ne}(r) = \{\delta(r'_1, \ldots, r'_i) \mid r'_i \in \text{ne}(r_i)\}\) if \(r = \delta(r_i, \ldots, r_i)\), and \(\text{ne}(r) = \bigcup \{\text{ne}(r_i) \mid i \in p_j(q')\}\) \(\cup \{\langle q', x_i \rangle(\text{ne}(p_1), \ldots, \text{ne}(p_k))\}\) if \(r = \langle q', x_i \rangle(r_1, \ldots, r_i)\) and \(\text{ne}\) defined as follows: \(\text{ne}(y_j) = y_j, \text{ne}(\delta(r_1, \ldots, r_i)) = \delta(\text{ne}(r_1), \ldots, \text{ne}(r_i))\), and \(\text{ne}(\langle q', x_i \rangle(r_1, \ldots, r_i) = \{(u_1, + (u_2, \ldots, + (u_v, \theta)\cdots)\) where \([u_1, \ldots, u_2, \theta] = \text{ne}(\langle q', x_i \rangle(r_1, \ldots, r_i))\). The correctness of this construction is proved by induction on the structure of the input tree \(s\).

**Input-Deletion** The second kind of deletion we investigate is “input-deletion”. For instance, if there is the rule \(\langle q_0, a(x_1, x_2) \rangle \rightarrow \lambda(\langle q_0, x_2 \rangle)\) for the initial state \(q_0\) and the input
is of the form \( a(t_1, t_2) \), then the subtree \( t_2 \) is never used for the output calculation. Although total deterministic mtts can be made nondeleting (i.e., to always traverse all subtrees of every input tree) by preprocessing with a deleting linear tt [17], it becomes more difficult for nondeterministic mtts. The point is, under nondeterminism, we cannot argue the input-deleting property of each transducer. Rather, we can only argue whether each computation is input-deleting or not. This is a weaker version of the nondeletion condition used for total deterministic mtts, but it is sufficient for our purpose.

In order to speak more formally, here we define the notion of computation tree (following the method of [3], but extending it to deal with accumulating parameters). For any finite set \( P \), we define the ranked alphabet \( P = \{ p^{(1)} \mid p \in P \} \). Let \( M = (Q, \Sigma, \Delta, q_0, R) \) be an mttc and \( s \in T_\Sigma \). The set \( \text{COMP}(M, s) \) is the set of trees \( \text{comp}(q_0, \varepsilon) \leq T_{\Delta, \text{pos}(s)} \) called computation trees (or sometimes, simply computations). The derivation \( \text{comp}(q_0, \varepsilon) \leq \) is carried out under the following set of rewriting rules with outside-in derivation: \( \langle u_1, u_2 \rangle \rightarrow u_1, u_2 \), and \( \text{comp}(q, \nu)(\bar{y}) \rightarrow f_v(r) \) for \( q \in Q, \nu \in \text{pos}(s), r \in R_{q, \text{label}(s, p)} \), where \( f_v \) is inductively defined as \( f_v(p) = \nu, \nu(f_{\delta}(r_1, \ldots, r_k)) = \nu(\delta(f_{v}(r_1), \ldots, f_{v}(r_k))) \), and \( f_v(q', x_j)(r_1, \ldots, r_k) = \text{comp}(q', \nu)(f_v(r_1), \ldots, f_v(r_k)) \). Intuitively, \( \text{COMP}(M, s) \) is the set of trees \( \langle q_0, s \rangle \) where the parent of each \( \Delta \)-node is a monadic node labeled by the position in the input tree \( s \) that generated the \( \Delta \)-node. For example, the output tree \( \langle \alpha(q, \varepsilon, 1(\beta), \varepsilon, 2(\gamma(q(\delta)))) \rangle \) means that the \( \alpha \) and \( \delta \) nodes are generated at the root node of the input tree, and the \( \beta \) and \( \gamma \) nodes are generated at the first and the second child of the root node, respectively. Let \( \text{delpos} \) be the translation that removes all \( \nu \in \text{pos}(s) \) nodes. It is easily proved by induction on the number of derivation steps that \( \text{delpos}(\text{COMP}(M, s)) = \langle q_0, s \rangle \leq M \), i.e., if we remove all \( \text{pos}(s) \) nodes from a computation tree, we obtain an output tree of the original mtt.

We say that a computation tree \( u \) is non-input-deleting if for every leaf position \( \nu \in \text{pos}(s) \), there is at least one node in \( u \) labeled by \( \nu \). Note that the rewriting rules of \( \text{comp} \) corresponding to erasing rules do not generate any \( \text{pos}(s) \) node. Thus, non-input-deletion implies that not only some state is applied to every leaf, but also a non-erasing rule of some state must be applied.

**Lemma 3.** Let \( M \) be a canonical non-erasing mttc. There effectively exists a linear tt \( I \) and a canonical non-erasing mttc \( M' \) such that \( \tau_M = \tau_I ; \tau_M' \), and for every input-output pair \( \langle s, t \rangle \in \tau_M \), there exists a tree \( s' \) and a computation tree \( u \in \text{COMP}(M', s') \) such that \( \langle s, s' \rangle \in \tau_I, t = \text{delpos}(u) \), and \( u \) is non-input-deleting. Also, \( M' \) is path-linear if \( M \) is.

**Proof.** Let \( M = (Q, \Sigma, \Delta, q_0, R) \). We define \( I \) as \( \{ \{ d \}, \Sigma, \Sigma, d, U \} \) where \( \Sigma' = \{ (s, i_1, \ldots, i_m) | \sigma_i \in \Sigma, 1 \leq i_1 < \cdots < i_m \leq k \} \) and \( U = \{ (d, \sigma(x_1, \ldots, x_k) \rightarrow (s, i_1, \ldots, i_m)(d, x_1), \ldots, (d, x_m) | (s, i_1, \ldots, i_m) \in \Sigma' \} \). The transducer \( I \) reads the input and nondeterministically deletes subtrees while encoding the numbers of the non-deleted subtrees in the current label. We define the mttc \( M' \) as \( (Q, \Sigma', \Delta, q_0, R') \) where

\[
R' = \{ \langle q, (s, i_1, \ldots, i_m)(x_1, \ldots, x_m) \rangle \rightarrow r' \mid r \in R_{q,p} \text{ such that for all top-level calls } \langle q', x_p \rangle \text{ in } r, p = \{ i_1, \ldots, i_m \}, \text{ and } r' \text{ is obtained by replacing } \langle q', x_j \rangle \text{ in } r \text{ with } \langle q', x_j \rangle \text{ and } \langle q', x_p \rangle \text{ with } \theta \text{ for } p \notin \{ i_1, \ldots, i_m \} \}.
\]
The transducer $M'$ has basically the same rules as $M$, except that state calls on ‘deleted’ children are replaced by $\theta$ (or, if it is at the top-level then the rule is removed, to preserve canonicity). It should be easy to see that $M'$ is canonical and non-erasing, and preserves the path-linearity of $M$. The correctness of the construction is proved by taking as $s'$ the minimal substructure of $s$ that contains all nodes used for calculating $t$. 

**Skipping** The third and last kind of deletion is “skipping”. A computation tree $u$ is *skipping* if there is a node $v \in \text{pos}(s)$ labeled by a rank-1 symbol such that no node in $u$ is labeled $v$. For a canonical, non-erasing, and path-linear mttcf, skipping is caused by either one of the following two forms of rules. One type is of the form $\langle q, \sigma(x_1) \rangle(x_1, \ldots, y_m) \rightarrow (q', x_1)(u_1, \ldots, u_v)$ where $u_i \in T_{Y^{\cup}C}$, and such rules are called *skipping*. The others are rules which are not skipping but are of the form $\langle q, \sigma(x_1) \rangle(x_1, \ldots, y_m) \rightarrow (q', x_1)(u_1, \ldots, u_v)$ where $u_i \in T_{A^{\cup}U^{\cup}C}$, and such rules are called *quasi-skipping*. Note that, since the mttcf is path-linear, there are no nested state calls in right-hand sides of rules for input symbols of rank 1. Also note that if the root node of the right-hand side of a rule is not a state call, then it must be a $\Delta$-node since the mttcf is canonical and non-erasing. So an application of such a rule generates a $\Delta$-node and thus a $v \in \text{pos}(s)$ node for the current input node. Therefore, it is sufficient to consider only skipping and quasi-skipping rules.

Quasi-skipping rules may cause skipping computations due to parameter deletion: for example, consider the quasi-skipping rule $\langle q, \sigma(x_1) \rangle(y_1) \rightarrow (q', x_1)(\delta(y_1))$; if there is a $q'$-rule with a right-hand side not using $y_1$, then the $\sigma$-node may be skipped. For total deterministic mtts [17], there is a “parameter non-deleting” normal form, i.e., every total deterministic mt is equivalent to one that uses all parameters in the right-hand sides of its rules, and thus only skipping rules (without choice nodes) were considered there. Unfortunately, as for non-erasure, we could not find such a normal form for nondeterministic mtts. Instead, we add some auxiliary skipping rules to mttcfs, so that we only need to consider skipping rules. Note that quasi-skipping rules cause skipping computations only when parameters are deleted. The idea is, if a parameter in some rule is never used for a computation, then replacing the parameter by a failure symbol $\theta$ does not change the translation, and moreover, such replacement changes a quasi-skipping rule into a skipping rule.

**Lemma 4.** Let $M$ be an canonical, non-erasing, and path-linear mttcf. There effectively exists a linear tt $S$ and a canonical, non-erasing, and path-linear mttcf $M'$ such that (1) $\tau_S \tau_M = \tau_M$ and (2) for every input tree $s$ and non-input-deleting computation tree $u \in \text{COMP}(M, s)$, there exists a tree $s'$ and a computation tree $u'$ such that $s' \in \tau_S(s)$, $u' \in \text{COMP}(M', s')$, $\text{delpos}(u') = \text{delpos}(u)$, and $u'$ is both non-input-deleting and non-skipping.

**Proof.** First, we construct a new set $\overline{R}$ of skipping rules from quasi-skipping rules of $M$, by replacing all $\Delta$ nodes in each quasi-skipping rule by the failure symbol $\theta$. We then prove that adding rules in $\overline{R}$ to $M$ does not change the translation, and moreover, the addition implies that all skipping computations of $M$ have a derivation that does not apply quasi-skipping rules to skipped nodes. Thus we may assume that all skipping computations are caused by skipping rules, and hence we can straightforwardly extend the proofs for total deterministic mtts [17] and nondeterministic tss [3].
Lemma 5. Let \( M = (Q, \Sigma, \Delta, q_0, R) \) be an mttcf, \( s \) an input tree, and \( u \) a non-input-deleting, non-skipping computation tree in \( \text{COMP}(M, s) \) with \( \text{delpos}(u) = t \). Then \( |s| \leq 2|t| \).

Proof. Since \( u \) is non-input-deleting and non-skipping, for all nodes \( v \in \text{pos}(s) \) of rank zero or one, there exists a node labeled \( v \) in \( u \), and by definition of computation trees, its child node is labeled by a symbol in \( \Delta \). Thus, \( \text{leaves}(s) + \text{rank1nodes}(s) \leq |t| \) where \( \text{leaves}(s) \) is the number of leaf nodes of \( s \) and \( \text{rank1nodes}(s) \) is the number of nodes of \( s \) labeled by rank-1 symbols. Since \( |s| \leq 2 \times \text{leaves}(s) + \text{rank1nodes}(s) \) (this holds for any tree \( s \)), we have \( |s| \leq 2|t| \) as desired.

Main Results

Lemma 6. Let \( K \in \{\text{NSPACE}(n), \text{NP}\} \) and \( F \) a class of \( K \) languages effectively closed under \( \text{LT} \). Then \( \text{LMT}(F) \) and \( T(F) \) are also in \( K \).

Proof. Let \( M \) be a linear mtt or a tt. Note that in both cases, \( M \) is path-linear. First, we make it non-erasing; by Lemma 2, there exist a linear tt \( E \) and a canonical, non-erasing, and path-linear mttcf \( M_1 \) such that \( \tau_E; \tau_{M_1} = \tau_M \). Next, we make each computation non-input-deleting; by Lemma 3, there exist a linear tt \( I \) and a canonical, non-erasing, and path-linear mttcf \( M_2 \) such that \( \tau_I; \tau_{M_2} = \tau_{M_1} \). For every \( (s_1, t) \in \tau_{M_1} \), there is an intermediate tree \( s_2 \) and a non-input-deleting computation \( u \in \text{COMP}(M_2, s_2) \) such that \( (s_1, s_2) \in \tau_I \) and \( \text{delpos}(u) = t \). Then, we make each computation non-skipping; by Lemma 4, there exist a linear tt \( S \) and a canonical, non-erasing, and path-linear mttcf \( M_3 \) such that \( \tau_S; \tau_{M_3} = \tau_{M_2} \). For every non-input-deleting computation \( u \in \text{COMP}(M_2, s_2) \), there is an intermediate tree \( s_3 \) and a non-input-deleting, non-skipping computation \( u' \in \text{COMP}(M_3, s_3) \) such that \( (s_2, s_3) \in \tau_S \) and \( \text{delpos}(u') = \text{delpos}(u) \). Altogether, we have \( \tau_E; \tau_I; \tau_S; \tau_{M_3} = \tau_{M_1} \) and for every \( (s, t) \in \tau_M \) there exists a tree \( s_3 \) such that \( (s, s_3) \in \tau_E; \tau_I; \tau_S \) and a non-input-deleting, non-skipping computation \( u' \in \text{COMP}(M_3, s_3) \) such that \( \text{delpos}(u') = t \). By Lemma 5, \( |s_3| \leq 2|t| \).

Let \( L \) be a language in \( F \). To check whether \( t \in \tau_M(L) \), we nondeterministically generate every tree \( s' \) of size \( |s'| \leq 2|t| \) and for each of them, test whether \( (s', t) \in \tau_M \) and \( s' \in (\tau_E; \tau_I; \tau_S)(L) \). By Theorem 1, the former test can be done nondeterministically in \( O(|s'| + |t|) = O(|t|) \) space and polynomial time with respect to \( |t| \). By the assumption that \( F \) is closed under \( \text{LT} \), the language \( (\tau_E; \tau_I; \tau_S)(L) \) is also in \( K \). Thus the latter test is in complexity \( K \) with respect to \( |s'| = O(|t|) \).

Note that, for \( T \), the result is known to hold also for \( K = \text{DSPACE}(n) \) (Theorem 1 of [3]).

Lemma 7. Let \( K \in \{\text{NSPACE}(n), \text{NP}\} \) and \( F \) a class of \( K \) languages effectively closed under \( \text{LT} \). Then \( \text{MT}(F) \) is also in \( K \) and effectively closed under \( \text{LT} \).

Proof. The closure under \( \text{LT} \) immediately follows from the following known results: \( \text{MT} = \text{D}_{\text{MT}}; \text{T} \) (Corollary 6.12 of [12]), \( \text{T}; \text{LT} = \text{D}_{\text{QREL}}; \text{T} \) (Lemma 2.11 of [9]), and \( \text{D}_{\text{MT}}; \text{D}_{\text{QREL}} \subseteq \text{D}_{\text{MT}} \) (Lemma 11 of [11]). By Lemma 2.11 of [9] and Theorem 2.9 of [8], \( \text{T}; \text{LT} \subseteq \text{LT} \) \( \text{T} \), which implies that \( \text{T}(F) \) is also closed under \( \text{LT} \). By the decomposition \( \text{MT} = D_T; \text{LMT} \) (page 138 of [12]), \( \text{MT}(F) \subseteq \text{LMT}(T(F)) \). By applying Lemma 6 twice, \( \text{LMT}(T(F)) \) is in \( K \).

By REGT, we denote the class of regular tree languages [15].
Theorem 8. $MT^*(\text{REGT}) \subseteq \text{NSPACE}(n) \cap \text{NP-complete}$. 

Proof. The class REGT is closed under LT (Propositions 16.5 and 20.2 of [15]) and is in $\text{NSPACE}(n) \cap \text{NP}$ (see, e.g., [15]). By induction on $k \geq 1$ it follows from Lemma 7 that $MT^k(\text{REGT})$ is in $\text{NSPACE}(n)$ and $\text{NP}$. As noted in the Introduction, NP-hardness follows from [22] and the fact that the indexed languages, which are equivalent to the yields of context-free-tree languages under OI-derivation, are in $MT^2(\text{REGT})$.

Although we only have considered outside-in evaluation order up to here, the previous result holds for compositions of mtts in inside-out evaluation order. This is because $MT^*_\text{IO} = MT^*$ by Theorem 7.3 of [12], where $MT^*_\text{IO}$ denotes the class of translations realized by mtts in inside-out evaluation order. The yield translation, which translates a tree into its string of leaf labels from left to right (seen as a monadic tree), is in $D_M^*$. Therefore the output string languages $\text{yield}(MT^*(\text{REGT}))$ of mtts are also in the same complexity class as Theorem 8. Especially, this class contains the IO- and OI- hierarchies [6]. Note that the IO-hierarchy is in $D_M^*$ and hence in $D_{SPACE}(n)$ by Corollary 17 of [17]. The first level of the OI-hierarchy are the indexed languages [13] which are NP-complete [22].

Corollary 9. The OI-hierarchy is in $\text{NSPACE}(n) \cap \text{NP-complete}$.

Thanks This work was partly supported by the Japan Society for the Promotion of Science.

References