Adaptive quadtree simulation of sediment transport

Citation for published version:

Digital Object Identifier (DOI):
10.1680/eacm.2010.163.2.101

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Proceedings of the ICE - Engineering and Computational Mechanics
Title: Adaptive Quadtree Simulation of Bed Morphological Change

Abstract: Morphodynamic change is a key factor in the development of river systems. This paper describes a two-dimensional model of fluvial bed morphodynamics, with the flow hydrodynamics represented by the hyperbolic nonlinear shallow water equations and the bed morphodynamics by the bed deformation equation. Bed load transport is estimated using a simple expression. Suspended sediment transport is not considered. The model uses a deviatoric form of the nonlinear shallow water equations that mathematically balances the source and flux gradient terms at equilibrium, including the effects of non-uniform bed topography. The governing equations are solved in a decoupled way, using a Godunov-type finite volume solver for the nonlinear shallow water equations and second-order finite differences for the bed deformation equation, both based on adaptive quadtree grids. The evolution of a sandbar in an open channel is tested against generalized approximate analytical solutions. The numerical predictions on adaptive quadtree grids are found to be in excellent agreement with the approximate analytical solutions within the range of validity of the latter. Results are also presented for the evolution of a sand dune and a sand pit. It is demonstrated that the de-coupled shallow flow and bed morphodynamics calculations are computationally efficient and accurate. It is shown that the use of adaptive quadtree grids leads to a much improved computational performance over that on an equivalent fine resolution fixed uniform grid.
Adaptive Quadtree Simulation of Sediment Transport and Morphological Change due to Shallow Flows

Jingmin Huang DPhil a, Alistair G.L. Borthwick CEng, PhD, DSc, FICE a*, Richard L. Soulsby MSc b

a Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
b Visiting Professor, Dept of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
and Technical Director, HR Wallingford, Howbery Park, Wallingford, OX10 8BA, U.K.

ABSTRACT

Morphodynamic change is a key factor in the development of river systems. This paper describes a two-dimensional model of fluvial bed morphodynamics, with the flow hydrodynamics represented by the hyperbolic nonlinear shallow water equations and the bed morphodynamics by the bed deformation equation. Bed load transport is estimated using a simple expression. Suspended sediment transport is not considered. The model uses a deviatoric form of the nonlinear shallow water equations that mathematically balances the source and flux gradient terms at equilibrium, including the effects of non-uniform bed topography. The governing equations are solved in a decoupled way, using a Godunov-type finite volume solver for the nonlinear shallow water equations and second-order finite differences for the bed deformation equation, both based on adaptive quadtree grids. The evolution of a sandbar in an open channel is tested against generalized approximate analytical solutions. The numerical predictions on adaptive quadtree grids are found to be in excellent agreement with the approximate analytical solutions within the range of validity of the latter. Results are also presented for the evolution of a sand dune and a sand pit. It is demonstrated that the de-coupled shallow flow and bed morphodynamics calculations are computationally efficient and accurate. It is shown that the use of adaptive quadtree grids leads to a much improved computational performance over that on an equivalent fine resolution fixed uniform grid.

* Corresponding author. Tel.: +44-1865-273047; Fax: +44-1865-273010.
E-mail address: alistair.borthwick@eng.ox.ac.uk.
Key Words: morphodynamics, shallow water equations; bed load, Godunov-type scheme; approximate Riemann solver; adaptive quadtree grid

NOTATION

\(A \) bed-load sediment transport coefficient
\(C_D \) skin friction drag coefficient
\(Co \) Courant number
\(D \) water depth at the inflow boundary
\(ds \) side length of the cell
\(f \) Coriolis parameter
\(f(u) \) flux vector
\(g \) acceleration due to gravity
\(g(u) \) flux vector
\(H \) apex height of dune or bar
\(h \) total water depth
\(h_b \) bed elevation
\(h_s \) still water depth
\(i, j \) cell spatial indices
\(L \) dimension of square (quadtree) domain
\(lev \) cell subdivision level
\(M \) cell index at outlet
\(m \) power index
\(n \) time index
\(q_{bx}, q_{by} \) bedload
\(q_o \) inflow flux
\(q_{sx}, q_{sy} \) suspended load
\(q_{tx}, q_{ty} \) total volumetric sediment transport rate components
\(S_{ox}, S_{oy} \) bed slope components
\(s(u) \) source term vector
\(T \) morphodynamic time-scale
\(t \) time
\(\mathbf{u} \) vector of conserved variables
\(U, V \) depth-averaged velocity components
\(U_0 \) depth-averaged inflow velocity
\(x, y \) Cartesian horizontal spatial coordinates
\(x_0, x_1, x_2 \) prescribed locations in the \(x \)-direction
\(z_0 \) bed roughness length

\(\Delta t \) hydrodynamic time step
\(\Delta T \) morphodynamic time step
\(\Delta x, \Delta y \) spatial cell sizes in \(x, y \) directions
\(\varepsilon \) bed porosity
\(\eta \) free surface elevation above still water level
\(\tau_{wx}, \tau_{wy} \) stress components at the water surface
\(\tau_{bx}, \tau_{by} \) stress components at the bed
\(\nu \) eddy viscosity coefficient
\(\rho \) fluid density
\(\Delta \) magnitude of bed level gradient

1. **INTRODUCTION**

River bed evolution involves complex 3-D interactions between the flow and the bed sediment, including sediment transport, erosion and deposition, and feedback between the changing bed morphology and flow field. A major challenge is to provide accurate predictions of the physical processes while propagating changes in bed level over a broad range of space and time scales. The basic structure of morphodynamic models consists of sub-models for the hydrodynamic and sediment transport processes. The sediment conservation law is generally used to determine changes in bed level (see e.g. Nicholson et al.\(^1\)). Proper coupling of the hydrodynamic model and sediment transport model including the sediment conservation law is essential for accurate long-term simulation.
Hudson and Sweby developed a 1-D morphodynamic numerical model to simulate the evolution of a mound, using coupled and decoupled numerical approaches. Hudson and Sweby considered five different Godunov-type formulations, each of which included a flux-limited version of Roe’s approximate Riemann solver to remove spurious oscillations at cell interfaces. The numerical predictions were compared with an approximate analytical 1-D bed deformation solution obtained following De Vriend. Hudson and Sweby indicated that of all the formulations, the decoupled steady approach is most accurate. Furthermore, Hudson and Sweby present a detailed overview of explicit Godunov-type numerical methods for solving 1-D morphodynamical systems, and suggest improved Lax-Wendroff and high resolution schemes with equilibrium balancing based on the coupled hydrodynamics and bed deformation equations.

Depth-integrated 2DH models are applicable to flow domains in which there is relatively simple monotonic vertical variation in the velocity, such that a depth-averaged value is representative. Examples include tidal flows in well-mixed estuaries and coastal areas. In a paper on the mathematical modelling of morphological evolution, De Vriend provided useful advice on how to construct a 2DH numerical model. De Vriend pointed out that three major issues needed to be considered: a) the predictive ability of the constituent models when applied to a given situation; b) the balance of the compound models as to physical reliability and numerical accuracy; and c) the appropriate interaction of the constituent models, both physically and numerically. A considerable number of 2DH morphodynamics models have been developed in the past thirty or so years (see Fleming and Hunt; Yamaguchi and Nishioka; O’Connor and Nicholson, Wang et al.; de Vriend; Tanguy and Zhang; Van Wijngaarden; Grunnet et al.).

In the present paper, a 2DH morphodynamic numerical model is described based on a deviatoric form of the hyperbolic nonlinear shallow water equations and the bed deformation equation, which mathematically balances the flux and source terms at equilibrium. The equations are discretised on a quadtree grid using a Godunov-type finite volume scheme with either HLL or Roe’s approximate Riemann solver (Toro). A first order upwind method is used for simulation of the evolution of a sand bar, a sand dune and hole.
2. GOVERNING EQUATIONS

2.1 Hydrodynamics

The two-dimensional shallow water equations are the depth-averaged version of the Reynolds averaged Navier Stokes equations. They are applicable to nearly horizontal flows with negligible vertical acceleration, such as large-scale flood waves where the wavelength is much larger than the water depth. The two-dimensional nonlinear shallow water equations may be derived by depth-integrating the three-dimensional Reynolds-averaged Navier-Stokes equations, neglecting the vertical acceleration of water particles, and taking the pressure distribution to be hydrostatic. Expressed in matrix form as a system of conservation laws given by Rogers et al.\(^{14,15}\), a conservation law of the two-dimensional nonlinear shallow water equations may be written as

\[
\frac{\partial \mathbf{u}}{\partial t} + \frac{\partial \mathbf{f}}{\partial x} + \frac{\partial \mathbf{g}}{\partial y} = \mathbf{s},
\]

(1)

in which the vector of conserved variables, \(\mathbf{u}\), the flux vectors, \(\mathbf{f}(\mathbf{u})\) and \(\mathbf{g}(\mathbf{u})\), and the source term vector, \(\mathbf{s}(\mathbf{u})\), are

\[
\mathbf{u} = \begin{bmatrix} \eta \\ U h \\ V h \end{bmatrix}, \quad \mathbf{f} = \begin{bmatrix} U h \\ U^2 h + \frac{1}{2} g (\eta^2 + 2 \eta h_s) - \nu h \frac{\partial U}{\partial x} \\ UV h \nu h \frac{\partial V}{\partial x} \end{bmatrix}, \quad \mathbf{g} = \begin{bmatrix} V h \\ UV h - \nu h \frac{\partial U}{\partial y} \\ V^2 h + \frac{1}{2} g (\eta^2 + 2 \eta h_s) - \nu h \frac{\partial V}{\partial y} \end{bmatrix},
\]

(2)

\[
\mathbf{s} = \begin{bmatrix} 0 \\ (\tau_{wx} - \tau_{bx}) / \rho - g \eta S_{ox} + hfV \\ (\tau_{wy} - \tau_{by}) / \rho - g \eta S_{oy} - hfU \end{bmatrix}.
\]

where \(\eta\) is the free surface elevation above the still water level, \(U\) and \(V\) are depth-averaged velocity components, \(h (= h_s + \eta)\) is the total water depth, \(h_s\) is the still water depth, \(f\) is the Coriolis parameter related to the Earth’s rotation, \(\tau_{wx}\) and \(\tau_{wy}\) are the surface stress components, \(\tau_{bx}\) and \(\tau_{by}\) are the bed stress components, \(S_{ox}\) and \(S_{oy}\) are the bed slope components, \(\nu\) is the eddy viscosity coefficient, \(g\) is the acceleration due to gravity, \(\rho\) is the
fluid density, \(t \) is time, and \(x \) and \(y \) are horizontal distances in the Cartesian system. The bed stress terms \(\tau_{bx} \) and \(\tau_{by} \) represent the energy dissipation influence of bed roughness on the flow and are estimated empirically from

\[
\tau_{bx} = \rho C_d U \sqrt{U^2 + V^2}, \quad \text{and} \quad \tau_{by} = \rho C_d V \sqrt{U^2 + V^2}
\]

(3)

When bed deformation is considered, the skin friction drag coefficient \(C_D = \left[\frac{0.40}{1 + \ln(z_o / h)} \right]^2 \) (Soulsby \(^{16}\)), in which \(z_0 \) is the bed roughness length.

The nonlinear shallow water equations (1) and (2) expressed in matrix hyperbolic conservation form are solved to give updated values for the dependent variables using a standard Godunov-type finite volume scheme. Interface fluxes are evaluated using either HLLC or Roe’s approximate Riemann solver (see Toro \(^{13}\) for a full description of these schemes). The hydrodynamic time step is \(\Delta t \), and is chosen to satisfy the Courant condition, such that

\[
\Delta t \leq \min \left(\frac{C_o \Delta x}{\sqrt{g h + U}} \right), \quad (0 < C_o \leq 1, \text{ normally } 0.6-0.8 \text{ is used}).
\]

(4)

2.2 Sediment Transport

The sediment transport equations described here apply to non-cohesive sediment at low concentration in liquid of constant density. In two horizontal dimensions, for the equilibrium (or near-equilibrium) condition, the sediment budget equation ignoring “storage” of suspended sediment can be written as (Soulsby \(^{16}\)),

\[
\frac{\partial h_b}{\partial t} = -\frac{1}{1-\varepsilon} \left(\frac{\partial q_{tx}}{\partial x} + \frac{\partial q_{ty}}{\partial y} \right),
\]

(5)

where \(h_b \) is the bed elevation, \(\varepsilon \) is the bed porosity, \(q_{tx}, q_{ty} \) are components of total volumetric sediment transport rate in the positive \(x \), \(y \) directions, and are the sum of suspended load \(q_{sx}, q_{sy} \), and bedload \(q_{bx}, q_{by} \). Only bedload transport is considered in the present problem, and so \(q_{tx} = q_{bx} \), and \(q_{ty} = q_{by} \).

The bed deformation equation is discretised spatially at cell \(i, j \) using finite differences on a locally uniform grid template, such that
Because the central difference method tends to create spurious (and possibly unstable) bed undulations (see e.g. Huang et al.\(^{17}\)), the discretised values of \(\frac{\partial q_{x}}{\partial x} \) and \(\frac{\partial q_{y}}{\partial y} \) of cell \(i, j \) are computed by a first order upwind difference method (e.g. Callaghan et al.\(^{18}\)) as

\[
\frac{\partial q_{x}}{\partial x} \bigg|_{i,j} = \frac{q_{x(i,j)} - q_{x(i-1,j)}}{2\Delta x}, \quad \text{if} \quad q_{x(i,j)} \geq 0
\]

and

\[
\frac{\partial q_{x}}{\partial x} \bigg|_{i,j} = \frac{-q_{x(i,j)} + q_{x(i+1,j)}}{\Delta x}, \quad \text{if} \quad q_{x(i,j)} < 0
\]

where \(\Delta x \) and \(\Delta y \) are cell widths in the \(x \)-direction, and similar in \(y \)-direction. A second order Adams-Bashforth time-stepping numerical solver is applied to integrate the discretised bed deformation equation (6) in time. Because the bed level changes slowly compared to the hydrodynamic time step, the bed deformation model is not invoked at every time step of the hydrodynamic model. This is in order to provide sufficient time for the flow velocity to reach a near-equilibrium state and hence to reduce oscillations in the flow field, as well as for computational efficiency. The morphodynamic time step \(\Delta T \) for the bed deformation model is taken to be between 100 and 500 times the hydrodynamic time step \(\Delta t \) in the cases considered herein. Given that the time is \(t = n\Delta T \) where the superscript \(n \) represents the time index, the updated bed level is given by

\[
h_{b(i,j)}^{n+1} = h_{b(i,j)}^{n} + \Delta T \left(\frac{3}{2} \frac{\partial h_{b}}{\partial t} \bigg|_{i,j}^{n} - \frac{1}{2} \frac{\partial h_{b}}{\partial t} \bigg|_{i,j}^{n-1} \right)
\]

Predictions of the flow and bed changes are made using a decoupled approach, whereby the nonlinear shallow water equations are solved separately from the bed deformation equation. The hydrodynamic module predicts velocities and water depth at each cell, using centre and face values. The sediment module utilises values of \(q_{t} \) at each cell centre. Then the new bed level \(h_{b} \) is computed from (9) and (6). The still water datum is constant, and so \(h_{s} \) is calculated according to the new bed level from,
\[h_{s(i,j)}^{n+1} = h_{s(i,j)}^n + h_{b(i,j)}^n - h_{b(i,j)}^{n+1} \] (10)

in which \(h_{s(i,j)}^{n+1} \) and \(h_{b(i,j)}^{n+1} \) are the updated still water depth and bed level values at the cell \((i, j)\) centre. Hence, \(h_{s(i,j)}^{n+1} \) provides feedback to the hydrodynamic model. At first, the combined model switches on solely the hydrodynamic part. Later when the flow is steady, the bed deformation part is also implemented and the bed changes are computed every \(\Delta T \).

The following simple transmissive relations are used for inflow and outflow hydrodynamic and morphodynamic boundary conditions (Toro,13),

\[h_0 = h_1, \quad U_0 = U_1, \quad h_{b0} = h_{b1}, \quad h_M = h_{M-1}, \quad U_M = U_{M-1}, \quad h_{bM} = h_{bM-1} \] (11)

In the above, subscripts 0 and 1 refer to the grid points aligned normal to the inflow boundary, such that 0 is immediately outside the boundary, and 1 is immediately inside the flow domain. Subscripts \(M \) and \(M-1 \) have similar meaning, and apply at the outlet.

3. DYNAMICALLY ADAPTIVE QUADTREE GRID

The shallow water equations and bed deformation equation are discretised using finite volumes on dynamically adaptive structured quadtree grids. The first step in quadtree grid generation is definition of the computational domain using seeding points based on the initial bathymetry. Next, the cell is successively divided according to seeding point density and boundary identification. If more than one seeding point is located within a cell, the cell is subdivided into four quadrant cells unless the cell is already at the maximum specified subdivision level. The resulting grid is highly resolved in the vicinity of the seeding points, and may have very large differences in cell size and configurations of neighbouring cells.

The third step is grid regularisation and minimum division in order to control the local variation in grid density. Starting from the second highest level, each parent cell is examined in turn and subdivided if any of its adjacent and corner neighbour cells is less than half the size. This is undertaken in a single sweep through the quadtree. It helps to reduce the complexity of the local cell layout, thus improving computational efficiency. Furthermore, an extra function (if required) can be implemented to check that there is minimum division in certain areas of interest within the flow domain to provide sufficient computational accuracy.
When the mesh is generated, cell information (e.g. neighbour references, parent and child cell pointers) is automatically stored using a hierarchical data structure, which can be interrogated to locate neighbour cells during grid regularisation and adaptation during the whole simulation. The size of a cell is calculated via

\[ds = \frac{L}{2^{lev}}, \]

(12)

where \(ds \) is the side length of the cell, \(L \) is the dimension of the square domain, and \(lev \) is the subdivision level of the cell. The data structure is updated when implementing dynamic refinement and removal of grid cells according to specified adaptation criteria during the simulation, thus providing a locally high resolution, dynamically adaptive evolving grid. Greaves and Borthwick \(^{19}\), Liang \textit{et al.} \(^{20}\), and Huang \(^{21}\) give a full description of the quadtree grid generation procedure.

4. **2-D BED EVOLUTION TEST RESULTS**

4.1 **Sandbar**

This case is simply the 2-D analogue of Hudson and Sweby’s \(^{2}\) 1-D bed deformation test, which has an approximate analytical solution. We define \(x, y \) as distances along the open channel in the stream-wise and transverse directions respectively, with the origin at the inflow boundary. The channel initially has a flat, horizontal bed except for a bar of apex height \(H \) located between \(x_1 \) and \(x_2 \). The initial water depth, and flow velocity conditions are set as,

\[h(x, y)\big|_{t=0} = D - h_b(x, y)\big|_{t=0}, \]

(13)

and

\[U(x, y)\big|_{t=0} = \frac{q_o}{h(x, y)\big|_{t=0}}, \]

(14)

where \(q_o \) is a constant inflow flux, \(D \) is the water depth at the inflow boundary (thus defining the datum), \(h(x, y) \) is the water depth, \(U(x, y) \) is the flow velocity, and \(h_b(x, y) \) is the bed elevation above the given datum, and \(t \) is time. We make the same rigid-lid assumption as
Hudson and Sweby \(^2\) used, which is only valid for \(U\) small, \(H \ll D\), and \(h_b\) slowly changing. For a given bed elevation, the velocity is determined as,

\[
U(x, y)_{|t} \approx \frac{q_o}{D - h_b(x, y)_{|t}}. \tag{15}
\]

In this paper, \(q_o > 0\), and \(U(x, y) > 0\), and the sediment transport is purely by bed load, with the volumetric bed-load sediment transport flux given by (see e.g. Chesher et al. \(^{22}\))

\[
q_b(x, y) = A[U(x, y)_{|t}]^m. \tag{16}
\]

The coefficient \(A\) has dimensions \(m^{-2} \cdot s^{-m+1}\); in which \(m\) is a power (whose range \(3 \leq m \leq 5\) corresponds to experimental data). Utilising the rigid lid assumption, (16) becomes

\[
q_b(x, y)_{|t} \approx A q_o^m(D - h_b(x, y)_{|t})^m. \tag{17}
\]

The 2-D sandbar has the same profile as the 1-D case considered by Hudson and Sweby \(^2,4\) with initial bed elevation given by

\[
h_b(x_0, y_0)_{|t=0} = \begin{cases}
H \sin^2 \left(\frac{\pi(x_0 - x_1)}{x_2 - x_1} \right) & \text{if } x_1 \leq x_0 \leq x_2 \\
0 & \text{otherwise}
\end{cases} \tag{18}
\]

The flow domain is of length \(1000 \times 1000\) m, \(x_1 = 300\) m, \(x_2 = 500\) m, \(D = 10\) m, \(H = 1\) m, \(m = 3\), \(q_o = 10 \text{ m}^2/\text{s}\), and \(\varepsilon = 0.4\). According to Hudson and Sweby \(^2,4\) and Huang et al. \(^{17}\), the bed deformation equation can be treated as a \textit{quasi-linear wave equation}, and so the movement of the sand bar is given by:

\[
h_b(x, y)_{|t} = h_b(x_0, y_0)_{|t=0} \tag{19}
\]

with

\[
x = x_0 + \frac{t}{T} \left[\begin{cases}
1 - \frac{H}{D} \sin^2 \left(\frac{\pi(x_0 - x_1)}{(x_2 - x_1)} \right) & \text{if } x_1 \leq x_0 \leq x_2 \\
1 & \text{otherwise}
\end{cases} \right]^{-(m+1)} \tag{20}
\]

and \(T\) is defined as the morphodynamic time-scale (Huang et al. \(^{17}\)),

\[
T = \frac{(1 - \varepsilon) D^{m+2}}{A m q_o^m} = \frac{(1 - \varepsilon) D^2}{A m U_0^m}. \tag{21}
\]

where \(U_0 = q_o / D\). The approximate solution of the bed deformation \(h_b\) is valid until \(t/T\) reaches a maximum value of \(t/T \leq 11.9\). Hudson and Sweby expressed this in terms of \(A\) as \(t \leq 238/A\).
A comparison is made between the numerical model predictions of morphodynamic change and the corresponding approximate analytical solutions using dynamically adaptive quadtree grids and uniform grids. The hydrodynamics are computed using the Godunov-type finite volume scheme with an HLLC approximate Riemann solver. The hydrodynamic time step is $\Delta t = 0.1 \text{s}$. The bed deformation equation is solved using upwind differences. In this case, the coefficient $A = 0.01 \text{s}^{-2}/\text{m}$. The bed level update time step $\Delta T = 50\Delta t$ in this case. In order to be consistent with the analytical model, bed friction, surface, and (viscous) effective stresses are not included. The Coriolis force is also neglected. The numerical simulation is first run for an initial 1000 s with the bed and mesh fixed in order to reach a steady hydrodynamic state, at which point the time is set to $t = 0 \text{s}$. The bed deformation model is then switched on.

The initial quadtree grid is divided between 5 and 8 levels ($\Delta x = 31.25$ and 3.91 m respectively). Figure 1(a) shows the initial quadtree grid. The quadtree grid is dynamically adapted according to the magnitude of the bed level gradient,

$$\Delta = \sqrt{\left(\frac{\partial h_b}{\partial x}\right)^2 + \left(\frac{\partial h_b}{\partial y}\right)^2}.$$ \hspace{1cm} (22)

If Δ exceeds or is equal to 0.0003, a cell is divided into four. If all four cells sharing the same parent satisfy $\Delta < 0.0001$, the four cells are removed. The maximum division level is 8 and minimum level is 5. Linear interpolation is used to create a local discretisation template with the same level for each cell. Renewal of the mesh is only implemented whenever the bed level is calculated and updated, and only one level more or less allowed for coarsening or refining. Figure 1(b) shows the adapted quadtree grid at $t = 238/A$.

The 2-D sandbar case was run on a fixed uniform grid of 8-level division until $t = 238/A$ using the first-order upwind difference scheme. Figure 2 shows the bed level profiles obtained by the approximate analytical solution, fixed grid and adaptive grid. The prediction obtained on the adapted quadtree grid is very close to that from the fixed grids using the highest level. Use of the adapted quadtree grid improves the computational time by 60\%
while retaining accuracy. It should be noted that the predictions by the first order upwind method introduce artificial diffusion, causing the noticeable reduction in amplitude of the sand wave. In practice, this could be improved by using second order upwind method.

4.2 Sand-Dune

The second 2-D case involves the evolution of a sediment bank resembling a dune on an otherwise horizontal erodible bed (Hudson and Sweby ⁴). For this problem no approximate analytical solution is available. The overall plan dimensions of the domain are 1500 m longitudinal by 1000 m transverse, with respect to the channel. All other initial conditions are set the same as the 1-D case. The numerical model is first run to hydrodynamic steady state for a fixed bed from the following initial water depth, flow velocity and bed profile conditions:

\[
h_b(x, y)|_{t=0} = \begin{cases}
\sin^2 \left(\frac{\pi (x - 500)}{200} \right) \sin^2 \left(\frac{\pi (y - 400)}{200} \right) & \text{if } 500 \leq x \leq 700, 400 \leq y \leq 600 \\
0 & \text{otherwise}
\end{cases}
\]

(23)

Figure 3 (a) shows the initial bed level contours and 3-D view of the bed surface.

The simulation is undertaken on a uniform grid with a maximum of 8-level division. The coefficient \(A \) is set equal to 0.01 s²/m, \(m = 3 \), with morphodynamic time-scale \(T = 2000s \). The simulation run time is until \(t = 20 \) hours. This case should be exactly equivalent to a simulation period of \(t = 200 \) hours with \(A = 0.001 \) s²/m \((T = 20000s) \) used by Hudson and Sweby ⁴). Figure 3(b) shows the bed level contours and 3-D view at \(t = 20 \) hours.

Convergence of the numerical solution is examined for grid division levels 4, 5, 6, and 7 against level 8. Figure 4 illustrates the bed level contours obtained on the different grids. It is obvious that the level 4 and 5 grids give too coarse a representation of the evolved bedform. The results on the level 6 and 7 grids indicate that the plan shape has the lateral wings usually associated with the migrating dune. The contour plot for the level 8 grid includes the rear indent in agreement with Hudson and Sweby ⁴.
The 2-D sand dune case has been modelled on a dynamically adaptive quadtree grid where cell refinement is according to bed gradient (expressed by Eq. (22) with the same criteria for the enrichment and coarsening). The maximum division is 8- and the minimum is 5- level. Figure 5 shows the adapted quadtree grids, bed level contours and 3-D views at $t = 1h$ and $2h$. The dune evolves to have an arrow-head or chevron like shape in plan, with a steep upstream front, shallower sloped tail and sideways protrusions. The result is very similar to the prediction obtained on the reference uniform grid.

The CPU time for the simulation on the adapted grid using the first-order upwind method and 5 to 8 level division is around 20% of the time and 30% of storage required by an 8-level uniform grid. Use of the adapted quadtree grid therefore speeds up the computational process while retaining accuracy. Obviously the smaller the cell dimension the better the accuracy of the predictions in the range of grid convergence (Huang et al. 17). This advantage becomes more significant when the computational domain is large and the simulation time is long. Figure 6 shows the error (expressed as deviation from the solution on the level 8 uniform grid) against relative CPU time for the sand dune case at $t = 20h$ ($A = 0.01 s^2/m$) for level 4, 5, 6, and 7 uniform grids and the adaptive quadtree grid. (The CPU time is relative to that on the reference level 8 uniform grid). By inspecting Figure 6, it can be seen that there is a substantial gain in accuracy at a given CPU time if one uses a dynamically adaptive quadtree grid instead of the corresponding resolution uniform grid. The improved computational efficiency means that the present quadtree approach is useful at fast simulation of bed morphodynamics. Moreover, by coarsening the grid in areas of little interest, the local constraint of the Courant condition on the time step is of course reduced.

By comparing Figure 5 to Figure 3, it can be seen that the adaptive quadtree scheme provides a smoother prediction in the region beyond the dune (i.e. no depression in the bed in the lee of the crest of the dune). Numerical stability is improved and uncontrolled dispersion is avoided by using the dynamically adapted quadtree grid.

Hudson and Sweby 4 investigated the sand dune evolution case by considering two approaches, a decoupled approach similar to that used here and a coupled approach with
\[\Delta x = \Delta y = 20 \text{ m}. \]

Hudson and Sweby declared that in 2D the decoupled approach seemed to provide an inaccurate prediction due to the presence of kinks and the difference in position and shape of the pulse. In the present paper, 8 level divisions are utilised with \(\Delta x = 5.86 \text{ m}, \Delta y = 3.91 \text{ m} \); however, an accurate prediction is obtained using the decoupled approach herein. This example confirms the need for grid resolution.

4.3 Sand Pit

The evolution of a sand pit with an horizontal erodible bed is considered as the third case. The initial bed profile is the mirror image of the dune profile. Again no approximate analytical solution is available. The domain is \(1500 \times 1000 \text{ m} \). The numerical model is first run to hydrodynamic steady state for a fixed bed using the same initial flow conditions as in the previous test. However, the bed profile is:

\[
h_b(x, y)_{t=0} = \begin{cases}
-\sin^2 \left(\frac{\pi(x-500)}{200} \right) \sin^2 \left(\frac{\pi(y-400)}{200} \right) & \text{if } 500 \leq x \leq 700, 400 \leq y \leq 600 \\
0 & \text{otherwise}
\end{cases}
\]

(24)

The simulation is undertaken on an adaptive quadtree grid with the same criteria as the sand dune evolution. The simulation run time is until \(t = 20 \text{ hours} \). Figure 7 shows the adapted quadtree grid, bed level contours and 3-D view at \(t = 10 \text{ h} \) and \(20 \text{ h} \); it can be seen that the pit evolves to have a very similar (but mirrored) shape to that of the sand dune. The bed centreline profiles given in Figure 8 indicate that the dune crest migrates at a slightly faster rate than the trough of the pit. This is to be expected because of feedback between the overlying flow speed and the local depth through continuity. It should be noted that there is no account taken in the present bed load equation of the gravitational effects of bed slope. Inclusion of this effect would lead to additional differences between the dune and pit cases.

5. CONCLUSIONS

This paper has introduced a decoupled 2-D sediment transport model based on a Godunov-type finite volume solver of the shallow water equations and a finite difference solver of the bed deformation equation, with empirical formulae used to estimate the sediment bed load. Validation was undertaken by comparison against an approximate analytical solution for a
benchmark case of the evolution of a sand bar, and reasonable agreement achieved, although the simulated crest was lower than the analytical solution due to the diffusivity of the first order upwind scheme. Further simulations have been presented of the morphodynamic evolution of a sand dune and a sand pit; it is found that the trough of the sand pit migrates at a slightly lower speed than the crest of a corresponding sand wave. The use of dynamically adapted quadtree grids has led to a significant improvement in computational time while retaining accuracy (by comparison with simulations undertaken on a fixed uniform grid of corresponding resolution). As would be expected, use of finer resolution (i.e. higher level) adaptive quadtree grids has enhanced the accuracy and detail of the solutions. The present approach is particularly well suited to applications involving long simulations in large shallow domains. It is recommended that future work be undertaken to enhance the numerical solver to include a higher-order upwind scheme (which will involve further cells in the discretisation template).

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support provided by the U.K. Engineering and Physical Sciences Research Council through EPSRC Grant GR/S73402, and jointly managed by Dr P H Taylor (Oxford University) and Professor P K Stansby (Manchester University). Dr J G Zhou (Liverpool University) and Professor S Wieprecht (Stuttgart University) gave useful advice that informed the work presented here. The authors are indebted to Jane Palmer and Horace Palmer of IBEX Geotech Ltd, the Oxford Hong Kong Scholarship Fund, the Henry Lester Trust and St Hugh’s College Oxford for their support.

REFERENCES

Figure 1 2-D quadtree grids of sand bar initial state and at $t = 238/A$ ($A = 0.01$)

Figure 2 2-D sand bar evolution case: bed level profiles at $t = 238/A$ ($A = 0.01$)
Figure 3 2-D sand dune case: contour and 3d view of initial bed state and bed evolution using upwind method at $t = 20$ h ($A = 0.01$)
Figure 4 2-D sand dune case: evolved bed contours at $t = 20$ h ($A = 0.01$) for different uniform grid division levels.
Figure 5 2-D sand dune case: adapted quadtree grids, bed level contour and 3-D view at $t = 10$ h and $t = 20$h (5 to 8 grid levels)

Figure 6 Error and CPU time for 2-D sand dune case at $t = 20$ h ($A = 0.01$) for uniform grids at level 4, 5, 6, 7 and adaptive quadtree relative to a uniform grid at level 8
Figure 7 2-D sand hole case: adapted quadtree grids, bed level contour and 3-D view at $t = 10h$ and $t = 20h$ (5 to 8 grid levels)

Figure 8 Sand dune and sand hole evolution case: bed level profiles at $t = 20h$