High-pressure/high-temperature synthesis of transition metal oxide perovskites

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Zeitschrift fur naturforschung section b-A journal of chemical sciences

Publisher Rights Statement:
Copyright © 2006 Verlag der Zeitschrift fur Naturforschung, Tubingen. All rights reserved.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
High-pressure / High-temperature Synthesis of Transition Metal Oxide Perovskites

Jennifer A. Rodgers, Anthony J. Williams, and J. Paul Attfield

Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, United Kingdom

Reprint requests to J. P. Attfield. E-mail: j.p.attfield@ed.ac.uk

Z. Naturforsch. 61b, 1515 – 1526 (2006); received July 13, 2006

Perovskite and related Ruddlesden-Popper type transition metal oxides synthesised at high pressures and temperatures during the last decade are reviewed. More than 60 such new materials have been reported since 1995. Important developments have included perovskites with complex cation orderings on A and B sites, multiferroic bismuth-based perovskites, and new manganites showing colossal magnetoresistance (CMR) and charge ordering properties.

Key words: High-pressure Synthesis, Perovskites, Cation Ordering

Introduction

The ABO$_3$ perovskite structure is common among ternary transition metal oxides, with many derived compositions and structures based on chemical substitutions at the A or B sites, or variations in the oxygen content [1]. These perovskites are particularly important because of a wide range of notable chemical and physical properties [2] such as ferroelectricity [3], ionic conductivity [4], catalysis [5], colossal magnetoresistances (CMR) in doped manganese perovskites [6], and superconductivity in layered copper oxides [7].

The ideal ABO$_3$ perovskite oxide structure (Fig. 1a) is cubic, with $Pm\bar{3}m$ space group symmetry and a typical lattice parameter $a_p \sim 4 \, \AA$. The A and B cations have regular 6- (octahedral) and 12-fold coordinations. However, ordered tilts and rotations of the BO$_6$ octahedra frequently result in lower symmetry superstructures which have been analysed using group theory [8, 9]. Further superstructures are generated by ordering of cations; one of the most common is the elpasolite (K$_2$NaAlF$_6$) or ‘double perovskite’ structure (Fig. 1b) in which the B-site cations are ordered in a rocksalt-type substructure.

Several structural families are derived from the perovskite structure, a notable example is the Ruddlesden-Popper series (AO)$_{n+1}$(BO$_2$)$_n$ obtained by inserting an extra AO layer for every n BO$_2$ layer in the perovskite arrangement. For $n = 1$, this generates the K$_2$NiF$_4$-type

![Polyhedral representations of (a) the ideal cubic perovskite, (b) the cation ordered (elpasolite) double perovskite structure, and (c) $n = 1$ (A_3BO$_4$) and (d) $n = 2$ ($A_3B_2O_7$) members of the Ruddlesden-Popper family of compounds.](http://znaturforsch.com)
Table 1. Composition, reported synthesis pressures and temperatures, structure type, space group and references for materials containing scandium B-site cations.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Pressure (GPa)</th>
<th>Temperature (°C)</th>
<th>Structure type</th>
<th>Space group</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>La1−xKxTiO3</td>
<td>4</td>
<td>980</td>
<td>Pv, ss</td>
<td>Pn3m</td>
<td>[21]</td>
</tr>
<tr>
<td>Eu0.85K0.15TiO3</td>
<td>4</td>
<td>900</td>
<td>Pv, ss</td>
<td>Pn3m</td>
<td>[22]</td>
</tr>
<tr>
<td>K2/3Th1/3TiO3</td>
<td>6</td>
<td>1200</td>
<td>Pv, pA</td>
<td>P4/mmm</td>
<td>[23]</td>
</tr>
<tr>
<td>NdAgTi2O6</td>
<td>14–14.5</td>
<td>1000</td>
<td>Pv, pA</td>
<td>P4/nbm</td>
<td>[24]</td>
</tr>
<tr>
<td>Ca2–(NdAg)Ti2O12</td>
<td>14–14.5</td>
<td>1000</td>
<td>Pv, ss</td>
<td>Pnma</td>
<td>[24]</td>
</tr>
<tr>
<td>Ca2Ti3O7</td>
<td>14</td>
<td>1200</td>
<td>Pv, B</td>
<td>Fm3m</td>
<td>[25]</td>
</tr>
<tr>
<td>CaFeTi2O6</td>
<td>14–14.5</td>
<td>1000</td>
<td>Pv, A</td>
<td>P42/nmc</td>
<td>[26]</td>
</tr>
<tr>
<td>Bi4−xAg0.5TiO3</td>
<td>12–15</td>
<td>1200–1400</td>
<td>Pv, ss</td>
<td>Ibam</td>
<td>[27]</td>
</tr>
</tbody>
</table>

Table 2. Composition, reported synthesis pressures and temperatures, structure type, space group and references for materials containing titanium group B-site cations.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Pressure (GPa)</th>
<th>Temperature (°C)</th>
<th>Structure type</th>
<th>Space group</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiScO3</td>
<td>4</td>
<td>980</td>
<td>Pv, ss</td>
<td>Pn3m</td>
<td>[21]</td>
</tr>
<tr>
<td>BiScO3 – PbTiO3</td>
<td>6</td>
<td>700–1250</td>
<td>Pv, ss</td>
<td>-</td>
<td>[11]</td>
</tr>
</tbody>
</table>

structure (Fig. 1c) containing single layers of BO6 octahedra in which two-dimensional physical properties are found, e.g. superconductivity in doped La2CuO4.

The stability of perovskites is determined to a first approximation by the ratio of A–O to B–O bond lengths, expressed as the tolerance factor, \(t = \frac{(r_A + r_B)}{\sqrt{2}(r_A + r_B)} \) where \(r_A \) and \(r_B \) are the ionic radii. Materials with \(0.85 < t < 1 \) are usually stable. The different compressibilities of A–O and B–O bonds enable perovskites with lower (ambient pressure) tolerance factors to be stabilised at high pressure and quenched to ambient conditions. High-pressure reactions in the presence of an oxidant (e.g. KClO3) may be used to stabilise high transition metal oxidation states, and high pressures also increase the rates of the high-temperature solid state reactions in which perovskites are formed by ionic diffusion between component oxides. High-pressure (1–10 GPa) high-temperature (~1000 °C) (HPHT) reactions have been used to prepare perovskites since ca. 1970. In this review we survey new transition metal oxide perovskites prepared by HPHT synthesis during the last decade.

Review of New HPHT Transition Metal Oxide Perovskites

New HPHT perovskite oxides reported since 1995 are shown in Tables 1–9. Several materials that were reinvestigated following much earlier reports are also included. The phases have been classified according to the earliest transition metal group of the B-site cation(s). For each material, the composition (with A cations shown first), reported synthesis pressure and temperature, the structure type (Pv: perovskite, ss: solid solution, A: A-site order, pA: partial A site order, B: B-site order, RP1: \(n = 1 \) Ruddlesden-Popper, RP2: \(n = 2 \) Ruddlesden-Popper) and the space group are given.

Scandium

The perovskite BiScO3 [10] has been synthesised under high-pressure / high-temperature conditions, and is of interest due to the potential of the highly polarisable Bi3+ cation to yield technologically important ferroic properties, such as those observed in the magnetic analogues BiFeO3 [12–14] and BiMnO3 [15–20]. BiScO3, however, is reported to be centrosymmetric, crystallising in the monoclinic space group C2/c. The Bi–O bond lengths, obtained from Rietveld refinement, suggest that the Bi3+ lone pair is active in BiScO3, and that neighbouring Bi atoms exhibit an antiparallel displacement along the b direction.

The solid solutions xBiScO3 – (1–x)PbTiO3 [11] have also been prepared by HPHT techniques. Changes in the crystal symmetry are observed with increasing x, from tetragonal to rhombohedral to pseudo cubic, to monoclinic to triclinic. Dielectric measurements suggest ferroelectric behaviour in the tetragonal, rhombohedral and pseudo cubic phases, but not for the monoclinic one.

Titanium group

High-pressure / high-temperature synthesis is used to prepare many mixed valence perovskite oxides, including those containing a mixture of Ti3+/Ti4+ ions. The perovskite solid solution La1−xKxTiO3 [21] has recently been prepared, and has been shown by XPS and EPR measurements to contain mixed valence Ti, as well as A-cation vacancies, which both vary with the level of potassium doping, x. Similarly, the mixed valent titanate Eu0.62K0.38TiO3 has been prepared [22].
although in this instance it is the europium ions that exhibit a mixed $\text{Eu}^{2+}/\text{Eu}^{3+}$ valence. These perovskite systems are cubic, and are likely to be the subject of further study as their transport and magnetic properties are of potential interest.

Other HPHT syntheses of titanate perovskites have concentrated on the synthesis of Ti$^{4+}$ double perovskites and solid solutions with novel structural arrangements. K$_{2/3}$Th$_{1/3}$TiO$_3$ [23] contains K$^+$ and Th$^{4+}$ at the A site, which partially order along the [001] axis to yield a tetragonal $P4/mmm$ structure. A similar layered ordering was observed in NdAgTi$_2$O$_6$ (Fig. 2b) containing monovalent silver [24], although in this instance an additional octahedral tilting lowers the symmetry to $P4/nmb$.

These two structures represent the first examples of perovskites synthesised under high pressures that contain such a layered ordering of A-site cations – an arrangement which has yielded many interesting physical properties when observed in ambient pressure transition metal oxide systems [28–30]. The perovskite Ca$_2$NdAgTi$_4$O$_{12}$ has also been prepared using HPHT techniques [24], although it contains a random distribution of Ca$^{2+}$/Nd$^{3+}$/Ag$^+$ ions at the A site.

Ca$_2$TiSiO$_6$ [25] is reported to be the first example of a double perovskite containing silicon as one of the B-site cations. X-ray diffraction studies show the B-site cations to be completely ordered in a rocksalt arrangement, giving a cubic $Fm3m$ cell, with cell parameter 2a_F.

A novel structural arrangement has been observed in HPHT-synthesised CaFeTi$_2$O$_6$ [26], which contains both calcium and iron on the perovskite A sites. These order into columns parallel to the c-axis, with a single Ca$^{2+}$ site and two Fe$^{3+}$ sites which alternate along the Fe column. Two independent tilts of the TiO$_6$ octahedra occur, reducing the symmetry of this system to $P42/nmc$, and yielding highly distorted A-cation environments – the effective coordination of the two iron sites becomes tetrahedral and square planar, respectively, the latter representing a very unusual geometry for Fe$^{3+}$ ions.

The bismuth-containing perovskite (Bi$_{1/2}$Ag$_{1/2}$)TiO$_3$ [27] has also been prepared under HPHT conditions. No A-site cation ordering was observed in this material, which exhibits an orthorhombic distortion to space group $Ibam$ at r. t.. High-temperature phase transitions are observed to tetragonal $I4/mcm$, and then to cubic $Pm3m$ symmetry above 673 K.

Vanadium group

The 3d^1 perovskites, A$^{2+}$V$^{4+}$O$_3$, have been widely studied due to their diverse electronic properties [36–38]. A new perovskite PbVO$_3$ has recently been prepared [31] using high-pressure and high-temperature conditions. Due to the influence of the lone pair of the Pb$^{2+}$ cation, the structure displays a strong tetragonal distortion ($c/a = 1.23$, space group $P4/mmm$), and...
the coordination of the vanadium atoms is best described as layers of corner-sharing square pyramids, rather than the normal octahedral perovskite framework. Resistivity measurements evidence semi-conducting behaviour in PbVO₃ down to 2 K. Similarly, the vanadates CdVO₃ and Cd₀.₅Na₀.₅VO₃ have been prepared by HPHT [32], and were shown to have the GdFeO₃-type Pnma perovskite structure. They display metallic resistivities and Pauli paramagnetism between 1.8 and 300 K, analogous to the alkaline earth vanadates CaVO₃ and SrVO₃.

Lead niobate materials, of general composition Pb(RE)₂₋ₓMₓO₃ (M = Nb, Ta), have been of interest owing to a variety of peculiarities in their crystal structure and physical properties [39–41], and the compounds with RE = Y and Ho have recently been prepared under HPHT conditions [33]. They revert to a cubic pyrochlore structure upon heating above 1000 K. The structure of the two materials is pseudo-rochlore structure upon heating above 1000 K. The structure changes from Pnma to cubic Pm3m at 440 K. This transition is accompanied by an anomaly in the dielectric permittivity, identifying a ferroelectric transition. A parasitic ferromagnetic ordering occurs at 114 K.

The solid solution between SrCrO₃ and SrRuO₃ has been synthesised over the full range using a number of HPHT techniques [43]. The structure changes from orthorhombic Pbnm at low x through to rhombohedral R3c at x = 0.4, to cubic Pm3m for 0.5 < x < 1, with no Cr/Ru order being observed at any doping level. Samples in the low Cr-doped regime are itinerant, and ferromagnetic, with the Curie temperature increasing with doping from 160 K up to a maximum TC = 188 K. This, along with a substantial volume discontinuity near x = 0.5, evidences a substantial Ru⁴⁺ → Ru⁴⁺ charge transfer. An insulating regime is observed for 0.3 < x < 0.7, and a G-type antiferromagnetic ordering with a high Néel temperature (TN ≈ 400 K) is observed for the rhombohedral x = 0.4 phase. The 0.7 < x < 1 samples are itinerant and Pauli paramagnetic.

CaCu₃Cr₂Sb₂O₁₂ [44] has been synthesised at high-temperatures and pressures, and has an analogous structure to the Ga/Ta system described earlier – crystallising in cubic space group Pn3m, and showing simultaneous cation ordering on both A and B sites. CaCu₃Cr₂Sb₂O₁₂ is insulating at all temperatures, but displays an abrupt increase in magnetisation below ~ 160 K, which is attributed to soft ferrimagnetic behaviour.

The phases RE₄Ca₃MoO₁₂ (RE = La, Pr, Nd and Sm) all crystallise in the rare-earth YMnO₃-type hexagonal structure at ambient pressure. Recent studies [45, 46] have shown that they can be transformed at high pressure to a perovskite phase, which remains metastable at ambient pressure – not transforming back to the hexagonal form below 1073 K. These perovskites adopt a layered structure, with alternating layers of CuO₆ and (Cu/Mo)O₆ octahedra. Mag-
netisation measurements evidence two magnetic transitions – $T_{N1} = 280 \text{ K}$ in La$_4$Cu$_3$MoO$_{12}$, which decreases linearly in the other compounds with A-cation size, and $T_{N2} = 25 \text{ K}$. The former is attributed to a two-dimensional antiferromagnetic ordering within the copper planes, whilst the latter is attributed to a weaker ordering within the mixed layers. Strontium can be substituted for lanthanum in La$_4$Cu$_3$MoO$_{12}$ up to 25%, changing the structure drastically from a layered monoclinic perovskite to an isotropic cubic perovskite. The resistivity of the sample also drops considerably on cooling; however it does not become metallic or superconducting.

Manganese group

The observation of colossal magnetoresistances (CMR) in manganese oxide perovskites has given rise to much research to understand and improve their properties [2, 6]. A wide variety of electronic and magnetic states has been observed in these compounds, and can be tuned by variations in chemical composition. The vast majority of manganites can be synthesised under ambient pressures, however in some specific cases, where small cations are situated on the perovskite A site yielding highly distorted structures, for example YMnO$_3$ [53], high-pressure synthesis conditions are essential. Stoichiometric La$_{1-x}$Pb$_x$MnO$_3$ ($x = 0.6$) solid solutions have been prepared under high-pressure conditions [47]. All samples have a slightly rhombohedrally distorted unit cell, and are ferromagnetic in the range $0.2 \leq x \leq 0.6$ with Curie temperatures up to 350 K. The sample with $x = 0.4$ exhibits metallic behaviour below $T_m = 250 \text{ K}$, but samples with higher levels of Pb$^{2+}$ doping are reported to be semiconducting.

The complex perovskite CaCu$_3$Mn$_2$O$_{12}$ has been of interest for some years, as it exhibits a considerable low field magnetoresistance at r. t., which is not coupled to the Curie temperature, $T_C = 355 \text{ K}$. More recently, a series of analogous manganites have been prepared in which the Ca$^{2+}$ cations are replaced by the trivalent rare earths La [49], Pr, Sm, Eu, Gd, Dy, Ho, Tm and Yb [48], with HPHT conditions being necessary for the synthesis in order to stabilise the small Cu$^{2+}$ cations in the A position. In every case, the A cations are 3:1 ordered in a 2$p_a\times2p_a\times2p_a$ cell of Im3 symmetry. The r. t. magnetic structure of all the REC$_3$Mn$_4$O$_{12}$ compounds involves a ferrimagnetic coupling between Mn$^{3+}$/Mn$^{4+}$ and Cu$^{2+}$ spins, and T_c increases with respect to the Ca analogue up to a value of approximately 400 K. LaCu$_3$Mn$_4$O$_{12}$ is shown to be metallic, in contrast to the Ca analogue, consistent with the carrier injection that results from replacement of Ca$^{2+}$ by La$^{3+}$, and this effect also gives rise to an enhanced low field magnetoresistance.

The mixed valent manganite (NaMn$^{3+}$)(Mn$^{3+}_x$Mn$^{4+}_{1-x}$)$_{12}$, first synthesised under HPHT conditions in 1973 [54], has been reinvestigated recently [50] in order to understand the structural and magnetic properties of this complex perovskite. At r. t., it has a cubic structure, space group Im3, with only one B-site manganese position. There is a region of phase coexistence between 176 and 168 K, and below 168 K it adopts a monoclinic $I2/m$ superstructure with an almost complete ordering of Mn$^{3+}$ and Mn$^{4+}$ charge states at the B sites, and an orbital ordering of the Mn$^{3+}$ cations. At 125 K, the B site manganese moments order in a CE-type structure, whilst at around 92 K, the A site Mn moments order antiferromagnetically with an anti body-centred arrangement of spins. Resistivity measurements show a sudden increase in resistivity as temperature decreases through the charge ordering transition.

BiMnO$_3$, which requires high pressure for bulk synthesis, was first made in 1968 [15] and was shown to be ferromagnetic below 103 K. It has been the subject of more intense study in the last few years since theoretical predictions suggested it should be a multiferroic material [17]. Permittivity measurements have confirmed ferroelectricity [18] that persists below the ferromagnetic transition. BiMnO$_3$ adopts a highly distorted monoclinic structure [16], space group C2, with a transition to the centrosymmetric Pnma orthorhombic structure at $\sim 770 \text{ K}$. Recent measurements have also demonstrated a magnetocapaci-

The new ferroelectric and ferromagnetic compound Bi$_2$NiMnO$_6$ has been prepared by high-pressure synthesis [51]. The crystal structure is a heavily distorted double perovskite, space group C2, with Ni$^{2+}$ and Mn$^{4+}$ ions ordered in a rocksalt coordination on the B site. The presence of the Bi$^{3+}$ lone pair gives rise to ferroelectric properties with $T_{CE} = 485$ K, whilst magnetic measurements evidence a ferromagnetic transition at 140 K.

The novel perovskite phase Sr$_x$CaRe$_2$Cu$_2$O$_{2x}$ has been prepared under HPHHT conditions [52]. This phase has a cubic $Pm\bar{3}m$ structure with a doubled periodicity along all three axes and complete ordering of the B-site Ca/Re/Cu cations onto crystallographically distinct sites, although the Re/Cu oxidation states are not known. The sample was shown to be ferromagnetic, with a transition temperature of around 440 K, and a spontaneous magnetisation of $\sim 1\mu_B$/f.u. Resistivity measurements showed insulating behaviour.

Iron group

The solid solution Ca$_{1-x}$Sr$_x$FeO$_3$ has been synthesised under HPHHT conditions [53]. With increasing Sr content, the structure type is shown to change from orthorhombic, space group $Pnma$, to cubic, $Pm\bar{3}m$, with a possible phase coexistence being observed at $x \sim 0.6$. Within the orthorhombic regime, a metal-semiconductor transition is observed in the resistivity data, with the transition temperature dropping from 290 K for $x = 0.0$ to 200 K for $x = 0.4$. Neutron diffraction measurements on Ca$_0.8$Sr$_0.2$FeO$_3$ show this electronic transition to be coincident with a change in structural symmetry from orthorhombic to monoclinic $P2_1/m$. Comparison of the Fe–O bond lengths, and results from Mössbauer studies suggest that this is due to a charge disproportionation, $2\text{Fe}^{4+} \rightarrow \text{Fe}^{3+}\delta^+ + \text{Fe}^{4+\delta^+}$, as previously observed for the end member CaFeO$_3$ [61], with δ increasing towards unity with decreasing temperature. Co-substitution studies of CaFeO$_3$ have also recently been conducted under high pressure, with CaFe$_{1-x}$Co$_x$O$_3$ crystallising in the GdFeO$_3$-type orthorhombic structure up to a solubility limit of $x = 0.5$ [56]. With increasing Co content, the insulating, antiferromagnetic, charge-disproportionated CaFeO$_3$ is seen to switch to a ferromagnetic, metallic phase with average Fe valences. A similar effect is observed for the Sr$_2$La$_{1/3}$Fe$_{1-x}$Co$_x$O$_3$ perovskite system [56].

A new Pb-analogue of the metallic ferromagnet Sr$_2$FeMoO$_6$ has recently been synthesised under high pressures [57]. X-ray diffraction measurements suggest that Pb$_2$FeMoO$_6$ has a partial ordering of B-site cations, while resistivity measurements show it to be semiconducting without appreciable magnetoresistance. A magnetic ordering is observed, but it is much weaker than in the strontium analogue, disappearing at $T_N = 280$ K.

In recent years, there has been considerable research interest in the ruthenate perovskites, due to the observation of a variety of interesting physical properties, including superconductivity in Sr$_2$RuO$_4$ [62]. The simple strontium ruthenate perovskite, SrRuO$_3$, which has an orthorhombic $Pbnm$ perovskite structure has been of particular interest as it represents a rare example of a ferromagnetic 4d-transition metal oxide [63]. The solid solution SrRu$_{1-x}$Rh$_x$O$_3$ has been prepared using high-pressure techniques, substituting 4d^5 Rh$^{4+}$ for the 4d^5 Ru$^{4+}$. As expected, considering the small difference in cation size, orthorhombic symmetry is maintained across the whole solid solution series. The ferromagnetic order is gradually suppressed with increasing rhodium doping, disappearing at $x \sim 0.6$, while resistivity measurements evidence metallicity for both end members, but semiconductor behaviour for the intermediate dopings, reaching a maximum at $x = 0.6$.

Double perovskite systems containing Ru$^{5+}$ have been of interest due to the observation of unusual magnetic and transport properties [64–69], and in some cases, high-pressure synthetic techniques have been employed. CaCu$_3$Ga$_2$Ru$_2$O$_{12}$ [59] crystallises in space group $Im\bar{3}$, however the Ga$^{3+}$ and Ru$^{5+}$ cations re-

Table 6. Composition, reported synthesis pressures and temperatures, structure type, space group and references for materials containing iron group B-site cations.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Pressure (GPa)</th>
<th>Temperature (°C)</th>
<th>Structure type</th>
<th>Space group</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca$_{1-x}$Sr$_x$FeO$_3$</td>
<td>2</td>
<td>750–900</td>
<td>$Pnma$, $Pm\bar{3}m$</td>
<td>[55]</td>
<td></td>
</tr>
<tr>
<td>CaFe$_{1-x}$Co$_x$O$_3$</td>
<td>6</td>
<td>600–650</td>
<td>$Pnma$</td>
<td>[56]</td>
<td></td>
</tr>
<tr>
<td>Sr2La${1/3}$Fe$_{1-x}$Co$_x$O$_3$</td>
<td>6</td>
<td>600–650</td>
<td>rhombohedral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb$_2$FeMoO$_6$</td>
<td>4</td>
<td>800</td>
<td>$Pnma$</td>
<td>–</td>
<td>[58]</td>
</tr>
<tr>
<td>SrRu$_{1-x}$Rh$_x$O$_3$</td>
<td>6</td>
<td>1500–1600</td>
<td>$Pnma$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaCu$_3$Ga$_2$Ru2O${12}$</td>
<td>12.5</td>
<td>1200</td>
<td>$Pnma$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr$_{1-x}$Ba$_x$CaRu$_2$O$_3$</td>
<td>8</td>
<td>1400</td>
<td>$P\bar{3}m$</td>
<td>[60]</td>
<td></td>
</tr>
</tbody>
</table>
main disordered over the perovskite B-sites. Transport measurements show it to be a Pauli paramagnetic conductor, and this behaviour is thought to originate from a $\text{Cu}^{2+} + \text{Ru}^{5+} \rightarrow \text{Cu}^{3+} + \text{Ru}^{4+}$ valence degeneracy. The solid solution $\text{Sr}_{1-x}\text{Ba}_x\text{CaRu}_2\text{O}_6$ has also been stabilised over the full substitution range $0 < x < 3$ [60], with the Ba end member adopting a $1:2$ B-site cation ordered structure with no tilting of the (Ca/Ru) octahedra.

Co cobalt group

BiCoO_3, considered a candidate material for multiferroic behaviour owing to its combination of the polarisable Bi^{3+} cation, and the magnetic high spin Co^{3+} ion, has recently been synthesised for the first time under high-pressure conditions [70]. The r.t. crystal structure is tetragonal, $P4mm$, with a very large c/a ratio = 1.27. Magnetic measurements and neutron diffraction studies evidence a magnetic transition at 470 K, and a C-type antiferromagnetic structure is proposed with the magnetic moments of Co^{3+} aligning antiferromagnetically in the ab plane, but stacking ferromagnetically along the c axis. Resistivity measurements suggest that BiCoO_3 is an insulator at all temperatures.

The solid solution series $\text{Sr}_{1-x}\text{Ca}_x\text{CoO}_3$ has been prepared under HPHT conditions [71] for $0 \leq x \leq 0.8$, and all the samples were found to be cubic perovskites. The end member, SrCoO_3, exhibits a ferromagnetic transition with a Curie temperature of $T_C \sim 266$ K, which increases slightly to 286 K at $x = 0.2$ before rapidly falling off at higher doping levels. Resistivity measurements evidence metallic behaviour at $x = 0.1$, and semiconducting behaviour for $0.2 \leq x \leq 0.4$, before almost reverting to metallic behaviour above $x = 0.6$. A negative magnetoresistance of $\sim 5.5\%$ was observed in the region of T_C for $x = 0$ and 0.2.

The K_2NiO_4-type (Fig. 1c) cobalt oxide, Sr_2CoO_4, containing only Co^{3+} ions has been synthesised by HPHT [72], and is shown to crystallise in space group $I4/mmm$. A ferromagnetic transition has been observed in this material with $T_C = 255$ K, while resistivity measurements evidence semiconductor behaviour and a negative magnetoresistance effect. Electron doping, by means of substitution of Y^{3+} for Sr^{2+}, suppresses the ferromagnetism, with T_C dropping to 150 K for $x = 0.5$, and then no ferromagnetism being observed above $x = 0.67$. Sample resistivity is also seen to increase with yttrium doping.

The rhodium(IV) oxide perovskite SrRhO_3 was recently obtained by high-pressure synthesis [73], and was found to adopt the distorted GdFeO$_3$-type $Pnma$ structure. Resistivity measurements suggest Fermi liquid behaviour, with no long range magnetic order being observed above 1.8 K. Isovalent doping of Sr^{2+} by Ca^{2+} was also achieved [74], with no change in structure type and no remarkable change in the magnetic or electrical properties. The $n = 2$ (Fig. 1d) and $n = 3$ Rudder-Linden-Popper phases $\text{Sr}_3\text{Rh}_2\text{O}_7$ and $\text{Sr}_4\text{Rh}_3\text{O}_{10}$ have also recently been prepared for the first time under analogous conditions [75, 76], but again no clear signs of magnetic or electrical transitions were observed above 2 K.

Nickel group

The nickelate perovskites RENiO_3, first reported 35 years ago [81], require increasingly high pressures to stabilise Ni^{3+} for progressively smaller rare earths, RE^{3+}, in the perovskite structure. These materials show metal-to-insulator (MI) transitions as a function of temperature that vary systematically with the rare-earth size, RE. Research prior to 1996 is reviewed in [82], while more recent studies [83–90] have shown that a transition to a monoclinic charge disproportionated phase $(2\text{Ni}^{3+} \rightarrow \text{Ni}^{3+\delta} + \text{Ni}^{3-\delta})$ occurs below the MI transition. Two new nickelates have been reported using high-pressure synthesis techniques – TiNiO_3 [77, 91] and BiNiO_3 [78].

Powder X-ray refinements suggested that TiNiO_3 adopts an orthorhombic GdFeO$_3$-type structure, with no evidence of nickel charge disproportionation. The coordination polyhedron around the thallium cations...
is, however, somewhat unusual with the twelve Tl–O bonds appearing to fall into three distinct groups (four short, four medium, and four long distances) – an effect attributed to the relatively covalent nature of the Tl–O bonds, in comparison with those of the rare earth elements. This covalency effect is also thought to be responsible for the lower than expected Néel temperature in TlNiO3 (TN = 145 K), as the strongly covalent Tl–O bonds weaken the Ni–O bonds, leading to a relatively weak orbital overlap. A subsequent neutron diffraction study [77] however yielded better structural refinements in the monoclinic space group P21/m, with two crystallographic Ni sites. Mössbauer measurements on a 57Fe-doped sample confirmed the existence of two octahedral sites in TlNiO3, and this is consistent with the Ni3+ disproportionation observed in other RNiO3 perovskites.

BiNiO3 by contrast was shown to have a heavily distorted triclinic unit cell, space group P1. Precise structural analysis from a synchrotron XRD study revealed that the Bi atoms were disproportionated to Bi3+ and Bi5+, and therefore that the oxidation states were Bi3+1/2Bi5+1/2Ni5+O3 rather than Bi3+Ni5+O3. Electrical resistivity measurements showed BiNiO3 to be insulating, consistent with the presence of Ni3+, whilst magnetic measurements suggested weak ferromagnetic behaviour. Further study [79] showed that a melting of this A-site charge disproportionation, yielding a metallic, orthorhombic Pnma phase, could be achieved either by replacement of Bi with 7.5% La3+, or by application of high pressures (3 GPa) or high temperatures (near 340 K for x = 0.05).

LaPdO3 has been prepared by HPHT synthesis [80]. EXAFS and XANES studies show that LaPdO3 is the first perovskite oxide to stabilise trivalent palladium, despite the tendency of the Pd3+ ion to disproportionate into Pd3+ and Pd4+.

Copper group

Layered high-temperature superconducting cuprates are a large class of materials including many HPHT phases that are not reviewed here; several review papers can be found elsewhere [7, 96 – 100]. A related series of five new oxygen-deficient NdCuO3−δ perovskites has been prepared by high-pressure synthesis [92]. Each displays a distinct oxygen vacancy ordering, dependent on both δ and the synthetic conditions. For example NdCuO2.5 crystallises in an orthorhombic $\sqrt{2}a_p \times 2\sqrt{2}a_p \times a_p$ subcell, consisting entirely of corner-sharing CuO6 square pyramids. While the phases are metallic for $\delta < 0.5$, superconductivity was not observed in this system down to 4.2 K.

A series of Cu-containing double perovskites have been prepared by high-pressure synthesis – RE_2CuSnO_6 ($RE = Pr, Nd, Sm$) [93], La$_2$CuZrO$_6$ [93] and Ba$_2$CuTeO$_6$ [94]. Ba$_2$CuTeO$_6$ crystallises in tetragonal space group I4/m, with the Cu$^{2+}$ and Te$^{6+}$ ions fully ordered in a rocksalt arrangement. Magnetisation measurements evidence two-dimensional antiferromagnetism below 100 K, due to superexchange interactions between Cu$^{2+}$ ions in the ab plane, mediated by the nonmagnetic ions. The other double perovskites, however, adopt a layered configuration of B cations, as previously observed for La$_2$CuSnO$_6$ [101]. Replacement of La by smaller lanthanides, or indeed replacement of Sn$^{4+}$ by the larger Zr$^{4+}$, leads to an increased buckling in the Cu–O–Cu bonds in the CuO$_2$ layers of this structure, with a resulting decrease of the antiferromagnetic ordering temperature of this system.

SeCuO$_3$ [102, 103] and the SeMO$_3$ analogues ($M = Mn, Co, Ni$) [102, 104, 105] represent a class of

Table 8. Composition, reported synthesis pressures and temperatures, structure type, space group and references for materials containing nickel group B-site cations.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Pressure (GPa)</th>
<th>Temperature (°C)</th>
<th>Structure type</th>
<th>Space group</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiNiO$_3$</td>
<td>7.5</td>
<td>650−780</td>
<td>Pn</td>
<td>P21/m</td>
<td>[77]</td>
</tr>
<tr>
<td>Bi$_{1−x}$La$_x$NiO$_3$</td>
<td>6</td>
<td>1000</td>
<td>Pn, ss</td>
<td>P1, Pnma</td>
<td>[79]</td>
</tr>
<tr>
<td>LaPdO$_3$</td>
<td>5</td>
<td>1100−1150</td>
<td>Pn</td>
<td>Pnma</td>
<td>[80]</td>
</tr>
</tbody>
</table>

Table 9. Composition, reported synthesis pressures and temperatures, structure type, space group and references for materials containing copper group B-site cations.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Pressure (GPa)</th>
<th>Temperature (°C)</th>
<th>Structure type</th>
<th>Space group</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nd$_3$CuO$_4$</td>
<td>10</td>
<td>1000</td>
<td>Pn</td>
<td>Pbn, P2/m, Pnma</td>
<td>[92]</td>
</tr>
<tr>
<td>La$_2$CuMO$_6$ ($Ln = La, Pr, Nd, Sm; M = Sn, Zr$)</td>
<td>6−8</td>
<td>1000−1200</td>
<td>Pn, B</td>
<td>P2/m</td>
<td>[93]</td>
</tr>
<tr>
<td>Ba$_2$CuTeO$_6$</td>
<td>5</td>
<td>900</td>
<td>Pn, B</td>
<td>P4/m</td>
<td>[94]</td>
</tr>
<tr>
<td>Sr2Cu${1−x}$Zn$_x$O$_3$</td>
<td>6</td>
<td>900−1000</td>
<td>Pn, ss</td>
<td>Pnma</td>
<td>[95]</td>
</tr>
</tbody>
</table>

Table 1522. J. A. Rodgers et al. - High-pressure / High-temperature Synthesis of Transition Metal Oxide Perovskites
perovskites that can only be made at high pressure. The small size of the Se$^{4-}$ cation, coupled with high polarisability due to the non-bonded s-electron pair, leads to very distorted perovskite structures. SeCuO$_3$ is ferromagnetic below $T_C = 25$ K, and a large magnetocapacitance has been measured close to the transition temperature [102]. New solid solutions SeCu$_{1-x}$Zn$_x$O$_3$ have been prepared under HPHT conditions [95]. They have a distorted orthorhombic GdFeO$_3$-type structure, space group $Pnma$, at all doping levels. The Weiss constant and T_C both decrease progressively as Cu$^{2+}$ is replaced by non-magnetic Zn$^{2+}$.

Discussion

The above results demonstrate that HPHT synthesis remains an important and popular method for discovery of transition metal oxide perovskites, with over 60 new materials reported during the last decade. Both cation ordered and disordered perovskites have been prepared. Continuous solid solutions were found e.g. for the BiScO$_3$ – PbTiO$_3$ system, but cation ordering on the A (e.g. CaFeTi$_2$O$_6$) or B (e.g. Bi$_2$MnNiO$_6$) or both (e.g. CaCu$_3$Cr$_2$Sb$_2$O$_{12}$) sites is observed in many systems. The prevalence of partial or complete A site ordering (even of cations having the same charge, such as Ca$^{2+}$ and Fe$^{2+}$ in the former example) is particularly notable as it is rare in perovskites prepared at ambient pressure. This reflects the accentuation of A cation size differences at high pressures. Ca$^{2+}$/Cu$^{2+}$ order is assisted by crystal field effects that stabilise Cu$^{2+}$ in a square planar environment.

In contrast to the preparation of mixed cation materials, HPHT syntheses of oxygen-deficient perovskites are rare, perhaps because of the difficulty in controlling oxygen fugacities at high pressure. However, the series of new oxygen-vacancy ordered NdCuO$_3$ phases characterised by electron microscopy shows that there is considerable scope for other oxygen-deficient structures to be prepared.

The syntheses of many perovskite phases have been driven by the search for specific materials properties. Sc$^{3+}$ and Ti$^{4+}$ perovskites are of continuing importance for ferroelectric properties. In addition, the search for multiferroic materials, having both ferroelectric and ferromagnetic order, has led to the (re)investigation of many Bi$^{3+}$ and Se$^{4+}$ perovskites. Significant magnetocapacitances have been found at low temperatures in BiMnO$_3$ and SeCuO$_3$. B$_2$MnNiO$_6$ is notable as a successful design of a multiferroic prepared at HPHT.

Mixed or unusual oxidation states can give rise to interesting electronic properties such as metal-insulator transitions. LaPdO$_3$ provides the first example of a perovskite containing Pd$^{3+}$, while charge transfer between Cr and Ru leads to two composition-driven metal-insulator transitions in the SrCr$_x$Ru$_{1-x}$O$_3$ system, and an unusual charge ordering of Bi$^{3+}$ and Bi$^{5+}$ states over perovskite A sites is observed in BiNiO$_3$. Investigation of CMR and associated properties in manganese oxide perovskites has led to the synthesis of several high-pressure analogues. CMR and high Curie temperatures were discovered in the new high-pressure LnCu$_2$Mn$_4$O$_{12}$ phases, while NaMn$_3$Mn$_4$O$_{12}$ shows a robust Mn$^{3+}$/Mn$^{4+}$ charge ordering. High pressure continues to yield new superconducting layered cuprates (reviewed elsewhere), and both rocksalt and layered cation orderings are found within double perovskites of Cu$^{2+}$.

In conclusion, it is evident that HPHT synthesis remains an important source of new transition metal oxide perovskites. Important developments from the last decade have included complex cation orderings on A and B sites, multiferroic Bi perovskites, and new manganites showing CMR and charge ordering properties.

Acknowledgements

We thank the EPSRC and the Leverhulme Trust for support.

High-pressure / High-temperature Synthesis of Transition Metal Oxide Perovskites

[55] T. Takeda, R. Kanno, Y. Kawamoto, M. Takano,

