Non-equilibrium cobalt(III) "click" capsules

Citation for published version:
Symmers, PR, Burke, MJ, August, DP, Thomson, PIT, Nichol, GS, Warren, MR, Campbell, CJ & Lusby, PJ
2015, "Non-equilibrium cobalt(III) "click" capsules' Chemical Science, vol. 6, no. 1, pp. 756-760. DOI:
10.1039/c4sc03036b

Digital Object Identifier (DOI):
10.1039/c4sc03036b

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Chemical Science

Publisher Rights Statement:
This is an Open Access article published under a Creative Commons Attribution 3.0 Unported Licence.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Non-equilibrium cobalt(III) "click" capsules‡

P. R. Symmers,a M. J. Burke,a D. P. August,a P. I. T. Thomson,a G. S. Nichol,a M. R. Warren,b C. J. Campbella and P. J. Lusby*a

Cobalt(III) tetrahedral capsules have been prepared using an assembly-followed-by-oxidation protocol from a cobalt(II) precursor and a readily derivatizable pyridyl-triazole ligand system. Experiments designed to probe the constitutional dynamics show that these architectures are in a non-equilibrium state. A preliminary investigation into the host–guest chemistry of a water-soluble derivative shows it can bind and differentiate a range of different neutral organic molecules. The stability of this ensemble also permits the study of guest-binding at high salt concentrations.

Introduction

The chemistry of molecular container species continues to thrive, not least because of applications from storage, sensing and separation, through drug delivery to catalysis.¹ In the last twenty years, self-assembled systems have appeared, a few that rely on exclusively weak non-covalent interactions such as hydrogen bonding² and many which use metal–ligand interactions.³ Whilst using coordination complexes as structural elements greatly increases the palate of molecular building blocks, the real advantage of these systems is that the reversibility of these interactions facilitates thermodynamic self-assembly, often producing discrete architectures in quantitative yield. However, this same facet can be viewed as a double-edged sword, with the dynamics of these systems providing a hurdle to many potential applications.⁴ A strategy that has been used to generate inert coordination based systems is to use metal–ligand interactions that are substitutionally non-labile at room temperature and only become dynamic when heated.⁵ The problem with this method is that (a) longer reaction times and templates are often required,⁶ leading to lower yields and/or kinetically trapped intermediates⁷ and (b) it invariably requires the use of more expensive/more toxic third-row transition metals. An alternative way to circumvent these problems is to alter the characteristics of the transition metal center following self-assembly, most obviously through a change in the oxidation state. In this regard, cobalt would appear an ideal choice, because although Co(n) is labile, it can be readily oxidized without a change in the coordination geometry preference to give inert Co(m).⁷ Herein we report the synthesis of highly cationic Co(m)L₆₁₂⁺ tetrahedral capsules⁸ using an assembly-followed-by-oxidation protocol. These systems have the characteristics of fully covalent capsules⁹ in that they appear constitutionally non-dynamic, as evidenced by scrambling experiments. Host–guest studies with a water soluble derivative have revealed that the capsule can bind a range of neutral organic guests, and is further able to differentiate structurally similar molecules. The kinetic inertness of this system has also allowed the study of guest binding at high salt concentrations.

Results and discussion

Design strategy and synthesis

The ligand system, L, that we targeted to explore the assembly-followed-by-oxidation protocol is constructed in a modular fashion (see the ESI†), using the popular copper catalyzed azide-alkyne cycloaddition (Cu-AAC) reaction (Scheme 1).¹⁰ Our motives for targeting this system were multiple. Firstly, the resultant N,N-donor pyridyl-triazole units are more synthetically accessible than, for example, a classic 2,2’-bipy motif.¹¹ Secondly, this motif facilitatesexo-functionalization of the capsule with different chemical groups thus facilitating various applications.¹² Thirdly, the ligand itself is constitutionally robust, which is essential for creating non-equilibrium capsules based on substitutionally inert transition metal ions. In this regard, it can be viewed as an alternative approach to the very elegant work to recently come out of Jonathan Nitschke’s laboratory.¹³,14,15,16

Although L¹ showed poor solubility in all solvents, when it was reacted with Co(ClO₄)₂·6H₂O in CH₃CN, dissolution occurred over several hours at 323 K (Scheme 1, step (i)). When a small portion of this reaction was analyzed, the broadness and the position of the chemical shifts in the ¹H NMR spectrum were strongly indicative of a Co(n) species, while n-ESI-MS (nanoelectrospray mass spectrometry) showed predominant

†Electronic supplementary information (ESI) available: Synthetic details, X-ray crystallography results, CV, volume calculations, scrambling and guest-binding experiments. CCDC 1014311. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4sc03036b
peaks that could be ascribed to \([\text{Co}_{4}\text{L}_{12}\text{PF}_{6}]^{(4−n)^{−}}\) but, interestingly, no obvious indication of a \(\text{Co}[n]\) species. Subsequent slow addition of cerium ammonium nitrate (Scheme 1, step (ii)) resulted in an orange precipitate that was isolated by filtration. This intermediate mixed counteranion species was then treated with \(\text{NH}_{4}\text{PF}_{6}\) (Scheme 1, step (iii) (a)) to give an orange product in 97% from \(\text{L}^1\). The \(^1\text{H} \text{NMR}\) spectrum of this revealed the formation of a single, highly symmetric, diamagnetic species, while analysis by n-ESI-MS showed a series of highly charged species that matched the predicted isotopic distribution for \([\text{Co}_4\text{L}_{12}\text{PF}_{6}]^{(4−n)^{−}}\) (see the ESI†).

Single crystals of \([\text{Co}_4\text{L}_{12}\text{PF}_{6}]\), \(1\)-\(12\text{PF}_{6}\) suitable for XRD were grown from diisopropyl ether diffusion into saturated acetonitrile solutions. However, these crystals suffered severely from immediate and rapid solvent loss when removed from the mother liquor, such that early attempts to collect data resulted in only poorly resolved structures. Using the combination of capillary mounting in the mother liquor and a synchrotron radiation source (see the ESI†), we were able to obtain a single crystal that was isolated sufficiently to collect data. This intermediate mixed counteranion species was then treated with \(\text{NH}_{4}\text{PF}_{6}\) (Scheme 1, step (iii) (a)) to give an orange product in 97% from \(\text{L}^1\). The \(^1\text{H} \text{NMR}\) spectrum of this revealed the formation of a single, highly symmetric, diamagnetic species, while analysis by n-ESI-MS showed a series of highly charged species that matched the predicted isotopic distribution for \([\text{Co}_4\text{L}_{12}\text{PF}_{6}]^{(4−n)^{−}}\) (see the ESI†).

Single crystals of \([\text{Co}_4\text{L}_{12}\text{PF}_{6}]\), \(1\)-\(12\text{PF}_{6}\) suitable for XRD were grown from diisopropyl ether diffusion into saturated acetonitrile solutions. However, these crystals suffered severely from immediate and rapid solvent loss when removed from the mother liquor, such that early attempts to collect data resulted in only poorly resolved structures. Using the combination of capillary mounting in the mother liquor and a synchrotron radiation source (see the ESI†), we were able to obtain a single crystal that was isolated sufficiently to collect data. This intermediate mixed counteranion species was then treated with \(\text{NH}_{4}\text{PF}_{6}\) (Scheme 1, step (iii) (a)) to give an orange product in 97% from \(\text{L}^1\). The \(^1\text{H} \text{NMR}\) spectrum of this revealed the formation of a single, highly symmetric, diamagnetic species, while analysis by n-ESI-MS showed a series of highly charged species that matched the predicted isotopic distribution for \([\text{Co}_4\text{L}_{12}\text{PF}_{6}]^{(4−n)^{−}}\) (see the ESI†).

Single crystals of \([\text{Co}_4\text{L}_{12}\text{PF}_{6}]\), \(1\)-\(12\text{PF}_{6}\) suitable for XRD were grown from diisopropyl ether diffusion into saturated acetonitrile solutions. However, these crystals suffered severely from immediate and rapid solvent loss when removed from the mother liquor, such that early attempts to collect data resulted in only poorly resolved structures. Using the combination of capillary mounting in the mother liquor and a synchrotron radiation source (see the ESI†), we were able to obtain a single crystal that was isolated sufficiently to collect data. This intermediate mixed counteranion species was then treated with \(\text{NH}_{4}\text{PF}_{6}\) (Scheme 1, step (iii) (a)) to give an orange product in 97% from \(\text{L}^1\). The \(^1\text{H} \text{NMR}\) spectrum of this revealed the formation of a single, highly symmetric, diamagnetic species, while analysis by n-ESI-MS showed a series of highly charged species that matched the predicted isotopic distribution for \([\text{Co}_4\text{L}_{12}\text{PF}_{6}]^{(4−n)^{−}}\) (see the ESI†).

Single crystals of \([\text{Co}_4\text{L}_{12}\text{PF}_{6}]\), \(1\)-\(12\text{PF}_{6}\) suitable for XRD were grown from diisopropyl ether diffusion into saturated acetonitrile solutions. However, these crystals suffered severely from immediate and rapid solvent loss when removed from the mother liquor, such that early attempts to collect data resulted in only poorly resolved structures. Using the combination of capillary mounting in the mother liquor and a synchrotron radiation source (see the ESI†), we were able to obtain a single crystal that was isolated sufficiently to collect data. This intermediate mixed counteranion species was then treated with \(\text{NH}_{4}\text{PF}_{6}\) (Scheme 1, step (iii) (a)) to give an orange product in 97% from \(\text{L}^1\). The \(^1\text{H} \text{NMR}\) spectrum of this revealed the formation of a single, highly symmetric, diamagnetic species, while analysis by n-ESI-MS showed a series of highly charged species that matched the predicted isotopic distribution for \([\text{Co}_4\text{L}_{12}\text{PF}_{6}]^{(4−n)^{−}}\) (see the ESI†).

Single crystals of \([\text{Co}_4\text{L}_{12}\text{PF}_{6}]\), \(1\)-\(12\text{PF}_{6}\) suitable for XRD were grown from diisopropyl ether diffusion into saturated acetonitrile solutions. However, these crystals suffered severely from immediate and rapid solvent loss when removed from the mother liquor, such that early attempts to collect data resulted in only poorly resolved structures. Using the combination of capillary mounting in the mother liquor and a synchrotron radiation source (see the ESI†), we were able to obtain a single crystal that was isolated sufficiently to collect data. This intermediate mixed counteranion species was then treated with \(\text{NH}_{4}\text{PF}_{6}\) (Scheme 1, step (iii) (a)) to give an orange product in 97% from \(\text{L}^1\). The \(^1\text{H} \text{NMR}\) spectrum of this revealed the formation of a single, highly symmetric, diamagnetic species, while analysis by n-ESI-MS showed a series of highly charged species that matched the predicted isotopic distribution for \([\text{Co}_4\text{L}_{12}\text{PF}_{6}]^{(4−n)^{−}}\) (see the ESI†).
Host–guest chemistry

Water-soluble systems have featured prominently as solution container compounds,1,2,6,8,9,11,17 principally because the hydrophobic effect is a powerful driving force for the encapsulation of a wide range of molecules. For charged metallosupramolecular capsules, dissolution in water or other polar media also results in solvation of the associated counteranions (or countercations in the case of Raymond’s anionic Ga(m) tetrahedral14,15,16), which can occupy the cavity and block different guests from binding. While 2-12PF6 is insoluble in water, we were encouraged that the intermediate 212+ with mixed ClO4−NO3− counteranions (i.e. the species obtained directly from step (iii)) is soluble in 1:1 CD3CN:D2O. To further increase aqueous solubility, this species was first treated with CG-400 resin and then with AgNO3 to give 2-12NO3 (Scheme 1, step (iii) (b)). All the spectroscopic evidence (MS, 1H NMR, DOSY, see the ESI†) indicates that anion exchange takes place without perturbation to the tetrahedral framework, and furthermore, the resulting compound is soluble in water at 2.5 mM. It is interesting to note that the use of nitrate counteranions to water-solubilize coordination capsules has largely been limited to those systems which possess 2nd and 3rd row transition metals (most commonly Pd and Pt), probably a reflection of the softer bonding characteristics in comparison to the 1st row elements, which (in addition to nitrate-hydration) ensures outer-sphere coordination is thermodynamically preferred. Despite the oxophilic nature of Co(m), 2-12NO3 appears indefinitely stable as a 2.5 mM solution in D2O, further highlighting that these species exist in an out-of-equilibrium state.9

To predict the size of guest molecules that 212+ could bind, calculations were carried out using atomistic coordinates from the X-ray structure of 112+20 which revealed the volume of the empty cavity is 358 Å3 (see the ESI†). Application of the guidelines for suitable guests laid down by Rebek21 would indicate that molecules with volumes of 164–229 Å3 should likely be ideal. However, an initial exploration of hydrocarbons close to this size range (2-methylnaphthalene, 168 Å3; biphenyl, 183 Å3; fluorene, 189 Å3; phenanthrene, 201 Å3; anthracene, 201 Å3; pyrene, 220 Å3, n-dodecane, 235 Å3) showed no evidence for encapsulation. Instead, when excess triisopropylsilyl alcohol (TIPSOH) was added to a sample of 2-12NO3, 1H NMR spectroscopy revealed the appearance of a new set of capsule signals (Fig. 2b) alongside those of free 212+ (Fig. 2a). In addition, a set of upfield-shifted signals relative to free TIPSOH with equimolar intensity relative to the new capsule resonances, strongly suggest that one silyl guest is encapsulated within 212+, and that exchange in and out of the cavity is slow on the NMR timescale. Further evidence for this encapsulation is provided by 1H NMR DOSY, which shows that the encapsulated TIPSOH species diffuses at the same rate as both the free and bound cage. Based on the molar ratios at equilibrium, the Kd of TIPSOH for 212+ has been calculated to be ca. 1400 M−1, while EXSY gives the activation barrier for exchange of this guest as 17.3 kcal mol−1 (see the ESI†). Interestingly, the volume of TIPSOH (220 Å3) is quite a lot larger than 55% of the empty cavity, however, this could quite easily be a result of the relatively large portals into which the guest can protrude.

The effect of ionic strength on hydrophobically-driven guest encapsulation within synthetic host systems has been rarely studied,22 with respect to metallosupramolecular systems, this may be a result of instability towards high concentrations of salt. However, 2-12NO3 is stable even in solutions of 5 M NaNO3 in D2O. Furthermore, an increasing affinity of the guest in 0.1 M, 1 M and 5 M NaNO3 D2O solutions is clearly observed through the decrease in % unbound species, such that at the highest salt concentration, free 212+ is beyond the spectroscopic detection limit (see the ESI†). Through dilution experiments, it has been calculated that the affinity of the TIPSOH guest increases nearly four-fold in 5 M NaNO3 solution to 4700 M−1.

In addition to TIPSOH, we have also found that a range of other organic molecules act as guests for 212+ (Fig. 3). In contrast, these exhibit exchange fast on the NMR timescale, such that a single set of resonances are observed for both guest and host, for example, Fig. 2c and d, shows the 1H NMR spectra of 2-12NO3 in the presence of excess nitrobenzene and chromanone. In these examples, the guest’s signals are significantly upfield shifted with respect to the free species in the same
Coordinating capsules almost always provide an opportunity to explore chemical equilibria, both at the level of the architecture self-assembly process and also due to their reversible interactions with guest molecules. Here we have reported a rare example of a coordination capsule which is not in equilibrium with its disassembled state. Similarly rare are coordination capsules which exhibit non-equilibrium guest binding properties. The development of metal-based (and fully organic) assemblies that are both constitutionally non-dynamic and also possess non-reversible guest binding properties, coupled with stimuli-responsive release mechanisms, could lead to improved function for a range of applications. As is the case in the field of synthetic molecular machines, we envisage that systems able to operate far away from equilibrium will be able to perform tasks not currently possible for their thermodynamic equivalents.

Acknowledgements

This work was supported by the EPSRC and the Royal Society. P.J.L. is a Royal Society University Research Fellow.

Notes and references

Excluding those that possess dynamic covalent bonds.

Making the assumption that the peripheral groups do not substantially alter the size of the cavity.

Were 2'-12NO$_3$ constitutionally dynamic, the affinity of nitrate anions for Co(III) and the low-aqueous solubility of L$_2$ would drive the equilibrium towards the disassembled state.