Comment on "How to observe coherent electron dynamics directly" Reply

Citation for published version:
Suominen, HJ & Kirrander, A 2014, 'Comment on "How to observe coherent electron dynamics directly" Reply' Physical Review Letters, vol 113, no. 18, 189302. DOI: 10.1103/PhysRevLett.113.189302

Digital Object Identifier (DOI):
10.1103/PhysRevLett.113.189302

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Physical Review Letters

Publisher Rights Statement:
Copyright © 2014 American Physical Society. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Physical Society.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Comment on “How to observe coherent electron dynamics directly”

The main results of Ref. [1] rely on the assumption of the validity of Eq. (1) in Ref. [1]. In essence, that equation is meant to establish a connection between the time-dependent electron density of a nonstationary electronic system and the observable x-ray scattering pattern associated with that system. The authors of Ref. [1] claim that their Eq. (1) rests exclusively on the assumption that the electronic dynamics to be imaged are much slower than the duration of the x-ray pulse employed to probe those dynamics. (This is in addition to the assumption of nonresonant x-ray probe conditions.) The purpose of this Comment is to point out that Eq. (1) in Ref. [1] is generally invalid; a short pulse duration is in addition to the assumption of nonresonant x-ray probe time delay), and the constant \(\zeta \) depends, among other things, on the spectrum of the incoming x-ray beam and on the spectral response of the x-ray scattering detector. Equation (2) may be easily verified by using the results of Ref. [2]. (One may arrive at the same conclusion by applying the analyses of Refs. [3] and [4].) The key point here is that the right-hand side of Eq. (2) cannot be written in the form

\[
\int d^3x \int d^3x' \langle \Psi, t_d | \hat{n}(x) \rangle \langle \Psi, t_d | \hat{n}(x') \rangle | \Psi, t_d \rangle e^{iQ \cdot (x-x')},
\]

which, up to a prefactor, is Eq. (1) from Ref. [1] in the notation employed here. In other words, the requirement of a short pulse—or slow electronic dynamics—does not ensure that the final state reached in the photon collision process equals the electronic wave-packet state right before the collision. Finally, we would like to mention that analogous considerations have been shown to apply to time-resolved electron scattering [5].

R. Santra,1,2 G. Dixit3 and J. M. Slowik1,2
1Center for Free-Electron Laser Science
DESY, Notkestraße 85, 22607 Hamburg, Germany
2Department of Physics, University of Hamburg
Jungiusstraße 9, 20355 Hamburg, Germany
3Max Born Institute
Max-Born-Straße 2 A, 12489 Berlin, Germany

Received 4 March 2014; published 28 October 2014
DOI: 10.1103/PhysRevLett.113.189301
PACS numbers: 32.30.-r, 32.80.Ee, 34.80.Qb, 82.53.Hn