Capuchin monkeys with similar personalities have higher-quality relationships independent of age, sex, kinship, and rank

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.anbehav.2015.04.013

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Animal Behaviour

Publisher Rights Statement:
© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 licence
http://creativecommons.org/licenses/by-nc-nd/4.0/

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Capuchin monkeys with similar personalities have higher-quality relationships independent of age, sex, kinship, and rank

F. Blake Morton¹,³, Alexander Weiss²,³, Hannah M. Buchanan-Smith¹,³, Phyllis C. Lee¹,³

¹ Behaviour and Evolution Research Group, Psychology, School of Natural Sciences, University of Stirling, UK.
² School of Philosophy, Psychology and Language Sciences, Department of Psychology, University of Edinburgh, UK.
³ Scottish Primate Research Group, UK.

Word count (excluding references): 5,933

Correspondence:
Blake Morton, PhD
Psychology, School of Natural Sciences
University of Stirling, Stirling, UK FK94LA
Email: morton.blake@gmail.com
Abstract

Social relationships vary in content, quality, and patterning. Most researchers focus on whether and how non-dispositional factors, including age, sex, kinship, and rank predict variance in the content, quality, and patterning of relationships. However, within a species, these factors do not always predict partner choice. We examined whether similarity in any of five personality traits --- Assertiveness, Openness, Neuroticism, Sociability, and Attentiveness --- independently contributed to variation in the affiliative and agonistic relationships of pairs of brown capuchin monkeys. Capuchins that were more similar in Neuroticism had higher affiliative relationship scores, while capuchins that were more similar in Sociability shared overall higher-quality relationships (i.e. the difference between the dyad’s affiliative and agonistic scores). These effects were independent of age, sex, kinship, and rank, suggesting that certain aspects of the psychology of these animals may contribute uniquely to the quality of their social relationships.

Keywords: Cebus apella, homophily, partner compatibility, sociability, social rank, temperament
Introduction

Social relationships vary in content (e.g. sexual, parenting, affiliation or conflict), quality (e.g. the intensity of affiliation or aggression), and patterning (e.g. frequency and temporal stability) (Hinde, 1976). Studying how and why social relationships vary among interactants has implications for understanding theoretical and applied questions, such as gene flow (Morin et al., 1994; Pilot, Dahlheim, & Hoelzel, 2010), disease and information transfer (Allen, Weinrich, Hoppitt, & Rendell, 2013; Kuehl, Elzner, Moebius, Boesch, & Walsh, 2008; Zelner et al., 2012), health and well-being (Archie, Altmann, & Alberts, 2012; Kikusui, Winslow, & Mori, 2006), sexual selection (e.g. mate choice; DeVries, DeVries, Taymans, & Carter, 1995; Schülke, Bhagavatula, Vigilant, & Ostner, 2010), life history (Holt-Lunstad, Smith, & Layton, 2010; Seyfarth, Silk, & Cheney, 2012; Silk et al., 2010), and social decision-making (e.g. cooperation versus conflict; Clutton-Brock & Huchard, 2013; Clutton-Brock, 2009).

Differences in non-dispositional factors, including partners’ age, sex, rank, and kinship are commonly used to explain why relationships vary (e.g. Clutton-Brock & Huchard, 2013; MacCormick et al., 2012; Widdig, Nürnberg, Krawczak, Streich, & Bercovitch, 2001). This may be because such non-dispositional factors reflect differences in partners’ quality (e.g., health, fighting ability; Clutton-Brock & Huchard, 2013; Sapolsky, 2004), socioecological needs (e.g., food, sex, protection, and/or parental investment; Clutton-Brock & Huchard, 2013; Isbell & Young, 2015; Trivers, 1972), physiology (e.g., stress and reproductive hormones; Sapolsky, 2004; Zimmerberg & Farley, 1993), and developmental trajectories (Hollén & Radford, 2009; Loretto, Fraser, & Bugnyar, 2012). Identifying non-dispositional factors that contribute to
social relationship variance has helped researchers understand why animals are selective in their choice of social partners. For instance, females usually seek higher-quality relationships (i.e. those that are more affiliative than agonistic) with males, particularly alpha group members, as this affords them better protection and access to high-quality food (Clutton-Brock & Huchard, 2013).

However, the explanatory power of non-dispositional factors is not consistent across studies of social relationships. For example, in bottlenose dolphins (*Tursiops truncatus*), age and sex predict spatial affiliation in some populations (Lusseau & Newman, 2004), but not in others (Félix, 1997; Lusseau et al., 2006). In barnacle geese (*Branta leucopsis*), Kurvers et al. (2013) found that social rank was unrelated to social affiliation, whereas kinship had a significant effect. In brown (or “tufted”) capuchin monkeys (*Sapajus apella*, formerly *Cebus apella*; Alfaro, Silva, & Rylands, 2012), Tiddi, Aureli, Polizzi Di Sorrentino, Janson, & Schino (2011) reported that social tolerance was unrelated to kinship and rank, but weakly related to sex. Other factors may therefore contribute to social relationship variance beyond non-disposition factors.

Personality and social relationships

Personality is an umbrella term used to describe individual differences in behaviour, affect, and cognition that are consistent across time and contexts (Dingemanse & Réale, 2005; Gosling, 2008; Koski, 2014; Weiss & Adams, 2010). Measures of personality are associated with individual differences in social decision-making (Aplin, Farine, Mann, & Sheldon, 2014; Krause, James, & Croft, 2010), performance on cognitive and learning tasks (Carere & Locurto, 2011; Morton, Lee, &
Buchanan-Smith, 2013; Sih & Del Giudice, 2012), risk-taking (Dammhahn & Almeling, 2012), subjective well-being (Gartner & Weiss, 2013; King & Landau, 2003; Weiss et al., 2009; Weiss, King, & Perkins, 2006) and coping strategies (Coppens, de Boer, & Koolhaas, 2010; Martins et al., 2011). Personality traits are also heritable and reflect life history measures, including longevity and reproductive output (Biro & Stamps, 2008; Silk et al., 2010; van Oers, Drent, de Goede, & van Noordwijk, 2004; Weiss, Gartner, Gold, & Stoinski, 2013; Wolf, van Doorn, Leimar, & Weissing, 2007).

Despite the popular notion that “opposites attract”, individuals with similar personalities form stronger, more affiliative social bonds compared to other dyads. Such findings have been reported across a range of phylogenetically distant taxa, suggesting that similarities in personality may be a fundamental component of animal sociality. For example, pair bonding in eastern bluebirds (Sialia sialis) occurs more often between mates that are similar in aggressiveness (Harris & Siefferman, 2014). In rhesus macaques (Macaca mulatta), individuals are more affiliative with group members that are similar in Equability (e.g., calm/slow) and Adaptability (e.g., flexible/gentle) (Weinstein & Capitanio, 2008).

Personality similarities may signal partner quality (e.g. fighting ability or genetic compatibility). In great tits (Parus major) and in zebra finches (Taeniopygia guttata), similarity in exploration and aggression are positive indicators of future offspring quality (e.g. body mass; Both, Dingemanse, Drent, & Tinbergen, 2005; Schuett, Dall, & Royle, 2011). In guppies (Poecilia reticulata), sexual partners that are similar in boldness have higher parturition success than more dissimilar partners (Ariyomo & Watt, 2013).
Personality similarity may also reflect emotional or behavioural compatibility and predictability between potential social partners. In humans, perceived personality similarity promotes friendship intensity (Selfhout, Denissen, Branje, & Meeus, 2009) while couples in which both members have lower neuroticism (a measure of negative affect) report greater relationship satisfaction (e.g. Caughlin, Huston, & Houts, 2000; Heller, Watson, & Hies, 2004; Karney & Bradbury, 1997).

To date, most of what is known about associations between personality similarity and social relationship variance comes from studies of affiliative behaviour (e.g., Massen & Koski, 2014; Schuett et al., 2011; Seyfarth, Silk, & Cheney, 2014; Weinstein & Capitanio, 2008). Few data are available on the role that personality similarities play in agonistic relationships and overall social relationship quality (i.e. the intensity of affiliative versus agonistic behaviour between partners). Also, in many studies, non-dispositional factors are usually not, or only partially, controlled for (e.g., Humbad, Donnellan, Iacono, McGue, & Burt, 2010; Massen & Koski, 2014; Schuett et al., 2011; Seyfarth et al., 2014; Weinstein & Capitanio, 2008; but see Seyfarth et al., 2014).

Controlling for non-dispositional factors is critical for several reasons. For instance, partner similarities in bold or aggressive personality traits may reflect attraction towards individuals that are similar in rank (e.g., Dahlbom, Lagman, Lundstedt-Enkel, Sundström, & Winberg, 2011). In addition, as these (and other) personality traits are heritable (Dochtermann, Schwab, Sih, & Dochtermann, 2015; Drent, van Oers, & van Noordwijk, 2003; Sinn, Apiolaza, & Moltschaniwskyj, 2006), partner similarities in personality may be proxies for the degree of relatedness between pair members. Controlling for non-dispositional factors therefore allows researchers to determine if
psychological factors other than those reflected by non-dispositional factors contribute to variation in social relationships.

The present study

Studies of wild and captive brown capuchin monkeys often report mixed results with regards to the role of non-dispositional factors in the social relationships of these animals. While Schino, Di Giuseppe, & Visalberghi (2009) and Tiddi, Aureli, & Schino (2012) found that brown capuchins preferentially give coalitionary support to kin, Ferreira, Izar, & Lee (2006) found no such preference within a different study population. Some studies report that brown capuchins groom “down” the hierarchy (Parr, Matheson, Bernstein, & De waal, 1997), while others report no significant association between grooming and rank (Schino et al., 2009), or report that their population grooms “up” the hierarchy (Tiddi et al., 2012). Therefore, personality may be an additional factor contributing to capuchin social relationships.

Brown capuchins, and the closely related white-faced capuchin (*Cebus capucinus*), exhibit pronounced individual differences in personality (Manson & Perry, 2013; Morton, Lee, Buchanan-Smith, et al., 2013; Uher, Addessi, & Visalberghi, 2013). These differences are stable over time (Manson & Perry, 2013; Uher et al., 2013) and ratings of these traits are consistent across observers (Manson & Perry, 2013; Morton, Lee, Buchanan-Smith, et al., 2013). Moreover, capuchin personality traits are associated with physiological measures (e.g. cortisol reactivity; Byrne & Suomi, 2002) and behavioural observations (Manson & Perry, 2013; Morton, Lee, & Buchanan-Smith, 2013; Morton, Lee, Buchanan-Smith, et al., 2013; Uher et al., 2013).
In the present study, we investigated associations between personality similarities and the affiliative and agonistic components of brown capuchin social relationships. We predicted that, controlling for age, sex, kinship, and rank, subjects with similar personalities would share higher-quality social relationships, defined here as relationships that were more affiliative than agonistic.

Methods and Materials

Study site and subjects

Eighteen brown capuchin monkeys (Sapajus sp.) were studied at the Living Links to Human Evolution Research Centre (LL), located within the Royal Zoological Society of Scotland (RZSS), Edinburgh Zoo, UK (Macdonald & Whiten, 2011). Subjects were from two breeding groups. At the time of study, the “East” group contained 4 adult males, 3 adult females, 1 juvenile male, and 5 infants (following age-sex categories in (Fragaszy, Visalberghi, & Fedigan, 2004). The “West” group contained 4 adult males, 3 adult females, 2 juvenile males, 1 juvenile female, and 5 infants. Infants dependent on their mothers (i.e., those less than a year old) were not included as study subjects.

Subjects’ ages ranged from 2 to 40 years for males (mean ± SD = 10.79 ± 8.55 years, N = 11), and 3 to 14 years for females (mean ± SD = 8.86 ± 3.63 years, N = 7). All group members were captive born except an adult male from East group, who was hand-reared, and the original wild-caught alpha male of West group; both individuals came to LL as established members of their groups.

Both breeding groups were housed separately in identically designed 189 m³ indoor enclosures with natural light and near-permanent access to a 900 m² outdoor
enclosure containing trees and other vegetation, providing ample opportunity to engage
in natural behaviours. All monkeys received commercial TrioMunch pellets
supplemented with fresh fruits and vegetables three times daily and were given cooked
chicken and hardboiled eggs once a week. Water was available *ad libitum* at all times.
Further details of housing and husbandry are provided in (Leonardi, Buchanan-Smith,
Dufour, MacDonald, & Whiten, 2010).

Ethical note

This study was entirely observational except for one aspect of data collection
involving puzzle feeders, which were placed within the monkeys’ outdoor enclosures
(see “Behavioural sampling”). Subjects could interact freely with the puzzle feeders,
which were made entirely of non-hazardous material. The feeders provided a source of
food snacks (raisins) and enrichment to subjects. This study was approved by
Edinburgh Zoo, the ethics committee of the Psychology Department at the University of
Stirling, and complied with regulations of the Association for the Study of Animal
Behaviour (2012).

Personality

Details on data collection and analyses of our subjects’ personalities are provided in
Morton, Lee, Buchanan-Smith, et al. (2013). Briefly, subjects in the present study were
part of a study of 127 brown capuchin monkeys housed at 7 sites who were rated by
3.24 ± 1.61 knowledgeable informants on the 54 traits contained in the Hominoid
Personality Questionnaire (Weiss et al., 2009). Capuchins at Living Links were rated in
August 2010. Principal components of mean ratings across all sites and observers for the 54 reliable traits revealed five personality dimensions. These dimensions were: Assertiveness, Openness, Attentiveness, Neuroticism, and Sociability (Table 1). These personality dimensions showed good inter-rater reliabilities and were associated with relevant behaviours recorded up to a year later (Table 1; Morton, Lee, & Buchanan-Smith, 2013; Morton, Lee, Buchanan-Smith, et al., 2013), thereby demonstrating the validity and temporal stability of subjects’ personality scores. Data used to assess social relationship quality come from the same time period as the behaviours used to validate our personality scores (see “Behavioural sampling”).

In the present study, personality similarities between partners were calculated for each personality dimension by subtracting one partner’s personality z-score on that dimension from the other partner’s z-score on that dimension, and taking the absolute value. To make the results more interpretable, this value was then transformed into a z-score.

Behavioural sampling

Fifty-four hours of focal observations were recorded between May and August of 2011, totalling 3 hours per individual. Data were collected one year after subjects’ personalities were assessed. Behaviours (Table 2) were recorded daily per focal monkey for 10 minutes. Monkeys were sampled evenly between 9:00 and 17:30. Incidences of aggression, coalitions, scrounging, and food sharing were recorded continuously; all other behaviours were recorded at 1-min intervals using point sampling (Martin & Bateson, 2007). In each point sample, group members within two body
lengths from the focal were recorded. The total number of sampling points was the same for all subjects. Between 15 May 2011 and 8 June 2011 five puzzle feeders were introduced to the outdoor enclosures of the East and West groups. All group members could freely interact with the feeders. Each feeder was made out of a cylindrical piece of white piping (length: 76.2cm, diameter: 5.08cm), with approximately 8-10 holes drilled into it (Fig. A1). Each hole was 2.5 cm in diameter. Feeders were attached vertically to trees and spaced 2-10 meters from each other. For each feeder, the bottom of the pipe was left open while the top of the pipe was closed. Ten paper packets, each containing five raisins, were placed in the top portion of each feeder, and wooden sticks were inserted into the holes of the pipes to prevent the packets from falling out from the bottom. This prevented subjects from accessing the paper packets in the top portion of the pipe, but allowed the packets to drop freely from the pipe once all the wooden sticks had been removed. Feeders were introduced four days a week for approximately 30 minutes each day or until all of the puzzle feeders had been solved. During sessions, all instances were recorded in which a monkey approached another monkey at a feeding site, noting whether the receiving monkey responded to their approach by avoiding or staying at the feeder within the first 10 seconds of being approached. East group underwent 8 sessions, and West group underwent 10 sessions. These data were used to calculate avoid-stay symmetries in calculations of relationship quality.

Data reduction and computing social relationship quality
Measures of relationship quality were calculated per subject interacting with all other available partners, resulting in a total of 73 dyads. Following previous studies of social relationship quality (e.g. Fraser, Schino, & Aureli, 2008; Koski, de Vries, van de Kraats, & Sterck, 2012; Majolo, Ventura, & Schino, 2010; McFarland & Majolo, 2011; Rebecchini, Schaffner, & Aureli, 2011), 10 behavioural measures (Table 3) were calculated as events per monkey dyad and subjected to a principal components analysis (PCA) with varimax and promax rotation. A scree plot and parallel analysis were used to determine the number of components to extract from the PCA (Horn 1965; Zwick & Velicer, 1986). Components were considered robust if they contained absolute loadings that were greater than or equal to |0.7| and/or were greater than |0.4| on 4 or more items (Guadagnoli & Velicer, 1988). For each component, we computed unit-weighted scores (Gorsuch, 1983) and converted these into z-scores.

Overall mean number of social dyadic interactions are provided in Table A2; the values are low because they reflect behaviour per dyad, not per individual and therefore contain zeros for non-interacting dyads. These values are within the range of values reported by other studies using similar methods (e.g. Majolo et al., 2010; McFarland & Majolo, 2011; Rebecchini et al., 2011). We used means instead of medians because there would otherwise be zero for some contexts.

Non-dispositional factors

Age (in years) was determined for the time period when data on subjects’ social relationships was collected. Win/loss outcomes from agonistic interactions were used to calculate David’s scores, a continuous measure of rank, for each subject (Gammell &
Vries, 2003). Then, for each of these non-dispositional factors, similarity was calculated for each dyad by subtracting one partner's value from the other partner's value, and taking the absolute value. These values were then transformed into z-scores.

In addition to age and rank similarity, we recorded for each dyad whether they were a same or opposite sex. We also recorded their genetic relatedness based on pedigrees and expressed this using Wright's coefficient of relatedness: \(r = 0.5 \) for parent-offspring and full sibling pairs relations, \(r = 0.375 \) for \(\frac{3}{4} \) siblings (e.g. cases of inbreeding), \(r = 0.25 \) for grandparent-grandchild relations, \(r = 0.25 \) for aunt/uncle-nephew/niece relations, \(r = 0.125 \) for half siblings, and \(r = 0.125 \) for first cousins. Thus, in all cases except for relatedness, lower values indicate higher degrees of similarity between the members of a dyad.

Statistical analyses

We assessed the affiliative and agonistic components of capuchins' social relationships by entering the behavioural calculations listed in Table 3 into a PCA using SPSS 19 (IBM Corp., Chicago, IL, USA). For this analysis we determined the number of components to extract using both the scree plot and a parallel analysis (Field, 2009; Horn 1965).

For our tests of associations between partner similarities in non-dispositional factors and personality and relationship quality, we used robust analyses to reduce the impact of potential outliers. Furthermore, because each subject would be represented in multiple dyads, and observations were therefore not independent, we used
bootstrapping to generate 95% confidence intervals in these analyses. All of the
association tests were conducted using R version 3.1.2 (R Core Team, 2014).

We used Spearman rank-order correlations to examine bivariate associations
between relationship scores and similarity in age, kinship, rank, and the five personality
dimensions. For these analyses we used the boot function (Canty & Ripley, 2012) to
generate confidence intervals using the bias-corrected and accelerated bootstrap
(Davison & Hinkley, 1997; Efron, 1987).

To test whether similarity in sex was associated with each of the three
relationship scores we used the FRBhotellingMM function (Van Aelst & Willems, 2009)
to conduct robust Hotelling tests using the MM-estimator. To test whether the effects of
personality similarity contributed to each of the three relationship scores over and above
the contribution of non-dispositional factors, we used the FRBmultiregMM function (Van
Aelst & Willems, 2009) to conduct three robust multiple regressions using the MM-
estimator. The 95% confidence intervals for these analyses were generated using the
bias-corrected and accelerated bootstrap (Davison & Hinkley, 1997; Efron, 1987).

Results

Principal Components Analyses

Both the scree plot (Fig. A2) and parallel analysis (Table A1) suggested that two
components should be retained. These two components explained 55.0% of the
variance and were weakly correlated ($r = -0.072$). A comparison between the varimax-
and promax-rotated solutions revealed little difference in structure (Table 4 and Table
A3). Thus, interpretation of the components was based on the varimax-rotated solution.
Component 1 was characterized by moderate to high loadings on behaviours related to social affiliation (e.g. proximity, grooming), and was therefore labelled “Affiliative”. Component 2 was characterized by high loadings on conflict and conflict symmetry and was therefore labelled “Agonistic”.

Monkey dyads with higher scores on Component 1 and 2 thus engaged in more affiliative and agonistic behaviours, respectively. Therefore, for remaining analyses, relationship quality was defined as the difference between the affiliative score and agonistic score for each dyad, whereby “higher-quality” relationships were those that were more affiliative than agonistic.

Social relationships and similarities in personality and non-dispositional factors

Dyads similar in Sociability had significantly higher affiliative scores (Table 5). Dyads similar in age, rank, and Openness had significantly lower agonistic scores. In terms of relationship quality, dyads similar in rank, Openness, and Sociability had higher-quality relationships than did other dyads. Kinship, sex, and the other three personality traits were not significantly related to affiliative scores, agonistic scores, or overall relationship quality.

The results of the robust Hotelling tests revealed that same-sex dyads did not differ significantly from opposite-sex dyads in their affiliative scores (4979 bootstrap samples, $T_R^2 = 1.65, P = 0.26$), in their agonistic scores (4549 bootstrap samples, $T_R^2 = 3.29, P = 0.19$), or in their overall relationship quality (4959 bootstrap samples, $T_R^2 = 0.49, P = 0.55$).
The results of the multiple regression analysis are presented in Table 6. The sole predictor of affiliative scores was Neuroticism; monkeys that were more similar in Neuroticism were more affiliative. None of the personality traits or non-dispositional factors were independently related to agonistic scores. The sole predictor of overall relationship quality was Sociability; higher relationship quality was associated with dyads who were more similar in Sociability.

Discussion

When non-disposition factors were not controlled for, similarities in Openness and Sociability were positively related to subjects’ affiliative scores and overall relationship quality. When controlling for non-dispositional factors, the unique effects of similarities in Neuroticism and Sociability were independently related to higher affiliative scores and overall relationship quality, respectively. Our findings therefore support the hypothesis that capuchin dyads with similar personalities, regardless of whether both partners scored high, low, or somewhere in between on those traits, share higher-quality social relationships, and that for some traits those effects are independent of non-dispositional factors.

At the individual level, previous studies have shown that Openness is negatively associated with the amount of time that brown capuchins behave aggressively towards others (Morton, Lee, Buchanan-Smith, et al., 2013), and that less aggressive capuchins typically avoid more aggressive individuals (Janson, 1990). Thus capuchins more similar in Openness may share higher-quality relationships because they are more socially compatible. Since capuchins that scored high on Openness were also more
playful and curious (Morton, Lee, Buchanan-Smith, et al., 2013), these capuchins may also have been attracted to one another due to their general playfulness and interest in each others’ activities. Individual differences in Openness are inversely related to differences in age and social rank (Morton 2014), which may explain why this personality trait did not contribute to dyadic differences in relationship quality independent of non-dispositional factors.

Previous work has shown that individual differences in capuchin Sociability are positively related to the amount of time subjects spend in close proximity to others in general (Morton, Lee, Buchanan-Smith, et al., 2013). Across a range of taxa, individuals that score highly on neurotic traits (e.g. shyness, reactivity) show greater levels of stress and emotional instability (Gunthert, Cohen, & Armeli, 1999; Millot et al., 2014; Raoult, Brown, Zuberi, & Williamson, 2012). Among our study subjects, individuals that score highly on Neuroticism typically show greater signs of agitation (e.g. greater movement within their main enclosures, and poorer attention span during cognitive testing; Morton, Lee, & Buchanan-Smith, 2013; Morton, Lee, Buchanan-Smith, et al., 2013; Morton 2014). Thus, individuals that are similar in Sociability and Neuroticism may establish higher-quality social relationships with one another because they are more emotionally and/or socially compatible.

The association between social relationship quality and similarity in Openness, Sociability, and Neuroticism is not unique to capuchins. In chimpanzees (Pan troglodytes), similarities in Sociability are positively related to the amount of time partners spend in close proximity to each other (Massen & Koski, 2014). In humans, similarities in Openness, Extraversion, and Neuroticism, which are analogous to
capuchin Openness, Sociability, and Neuroticism, respectively (Morton, Lee, Buchanan-Smith, et al., 2013), are associated with lower levels of aggression and higher rates of affiliation in relationships (Barlett & Anderson, 2012; Dijkstra & Barelds, 2007; Jones, Miller, & Lynam, 2011). Such striking overlap between phylogenetically distant species (Steiper & Young, 2006) suggests that the importance of these personality traits to relationship quality has a long evolutionary history.

In addition to personality, individuals that were similar in age and rank were less aggressive towards one another, and monkeys that were similar in rank shared higher-quality relationships. The effect of age similarity on agonistic scores may be related to the fact that capuchin rank is associated with age in this sample (Lefevre et al., 2014; Morton 2014). These findings are also consistent with previous work in other capuchin populations: higher-ranking individuals (particularly the alpha male) tend to direct aggression towards younger, lower-ranking individuals, which in turn may impact the overall quality of their social relationships (Fragaszy et al., 2004; Janson, 1990).

Future Directions

One remaining question concerns the mechanism(s) that bring about associations between personality similarities and relationship quality in capuchin dyads. One possibility is that capuchins seek social partners with similar personalities. A second possibility is that partners’ personalities converge over time as a result of conditioning or sharing social experiences. To determine whether our findings are the result of “attraction” and/or “convergence” will require a longitudinal study in which personality and social relationship quality are measured at multiple time points.
Further research is also needed to determine why similarities in Sociability and Neuroticism were related to social relationship quality independent of non-dispositional factors. Considering the kinds of behaviours associated with these personality traits (e.g. a propensity for social affiliation and agitation, respectively; Morton, Lee, Buchanan-Smith, et al., 2013), one intriguing possibility is that individual differences in Sociability and Neuroticism reflect differences in the emotional and/or socio-cognitive traits that capuchin use to make social decisions that are not simply reflected by non-dispositional factors.

Irrespective of whether non-dispositional factors were controlled for, similarity in Assertiveness and Attentiveness were not associated with differences in partners’ affiliative scores, agonistic scores, or overall relationship quality despite previous work showing that both traits correlate with individual differences in subjects’ affiliative and agonistic behaviour (Morton, Lee, Buchanan-Smith, et al., 2013). It is unlikely that these results are due to changes in the stability of subjects’ scores on Assertiveness and Attentiveness. Previous studies of capuchins have found good evidence for rank-order stability of personality measures (Manson & Perry, 2013; Uher et al., 2013), and, as previously noted, our subjects’ scores on Assertiveness and Attentiveness predicted relevant behaviours up to a year later, including behaviours used to assess relationship quality in the current study. Similarities in specific personality traits (i.e. Sociability, Openness, Neuroticism), rather than personality similarities in general, may therefore play a greater role in defining the quality of capuchin social relationships. Alternatively, the relatively small number of dyads may have resulted in statistical power being too low to detect effects from particular personality traits. Although we guarded against
Type I errors by means of robust analyses and bootstrapping procedures, further work with larger samples is needed to determine whether these findings generalize to other capuchin populations.

Kinship and sex were not related to relationship quality. Previous work has reported mixed results with regards to the role that kinship and sex play within capuchin societies (Ferreira et al., 2006; Tiddi et al., 2011, 2012; Welker, Höhmann, & Schäfer-Witt, 1990). It may be that these non-dispositional factors impact relationship quality only under certain socioecological conditions, such as differences in group composition or the number of matrilines within groups (Perry, Manson, Muniz, Gros-Louis, & Vigilant, 2008). Alternatively, as noted before, the small number of dyads within our study may have precluded our ability to detect significant effects from these variables. Finally, given our concerns about statistical power, we did not examine interaction effects in our analyses. Therefore a fruitful avenue for future research would be to determine whether, for example, kin and non-kin dyads differ with regards to what personality traits contribute to their relationship quality.

Seyfarth et al. (2014) studied wild baboons (Papio ursinus) and reported that similarities in personality were positively associated with partners’ affiliative relationship quality. As in our study, these effects were independent of age, sex, kinship, and rank. To our knowledge, similar analyses (i.e. those that adequately control for all possible effects from non-dispositional factors) are notably lacking in other studies. Also, as previously noted, few studies on any species have tested for independent effects of personality on both the affiliative and agonistic components of social relationship quality for their subjects. Further data on a range of primate and non-primate taxa are therefore
needed in order to fill these literary gaps. An integrated comparative approach will allow researchers to better understand the adaptive function and evolutionary history of personality-relationship associations.

Conclusions

Similarities in personality (Openness, Sociability, Neuroticism) were significantly related to the affiliative and agonistic components of capuchins’ social relationships. More importantly, some of these effects (Sociability/Neuroticism) were independent of non-dispositional factors. Such findings suggest that certain aspects of personality (e.g. emotional and/or social compatibility) may contribute to the quality of capuchins’ social relationships beyond what is reflected by age, sex, kinship, and rank.

References

marriage? An examination of trait anxiety, interpersonal negativity, and marital

51–57.

Clutton-Brock, T., & Huchard, E. (2013). Social competition and its consequences in

Coppens, C. M., de Boer, S. F., & Koolhaas, J. M. (2010). Coping styles and
behavioural flexibility: towards underlying mechanisms. *Philosophical Transactions

8.

Dammhahn, M., & Almeling, L. (2012). Is risk taking during foraging a personality trait?
A field test for cross-context consistency in boldness. *Animal Behaviour, 84*, 131–
1139.

Engineering, 42, 216.

Dijkstra, P., & Barelds, D. P. H. (2007). Do people know what they want: A similar or

contribution of additive genetic variation to personality variation: heritability of

Drent, P. J., van Oers, K., & van Noordwijk, A. J. (2003). Realized heritability of
personalities in the great tit (*Parus major*). *Proceedings of the Royal Society B*,
270, 45–51.

Sih, a., & Del Giudice, M. (2012). Linking behavioural syndromes and cognition: a
behavioural ecology perspective. *Philosophical Transactions of the Royal Society
B: Biological Sciences, 367, 2762–2772.

Silk, J. B., Beehner, J. C., Bergman, T. J., Crockford, C., Engh, A. L., Moscovice, L. R.,
... Cheney, D. L. (2010). Strong and consistent social bonds enhance the longevity

Sinn, D. L., Apiolaza, L. a., & Moltschaniwskyj, N. a. (2006). Heritability and fitness-
related consequences of squid personality traits. *Journal of Evolutionary Biology,
19*, 1437–1447.

Grooming for tolerance? Two mechanisms of exchange in wild tufted capuchin

Tiddi, B., Aureli, F., & Schino, G. (2012). Grooming up the hierarchy: The exchange of

Sexual Selection and the Descent of Man, 1871-1971 (pp. 136–179).

measurements of personality differences obtained in behavioural tests and social

Table 1. Highest item loadings and examples of positive correlations with behavioural codings for capuchin personality dimensions.

<table>
<thead>
<tr>
<th>Personality Dimensions</th>
<th>Assertiveness</th>
<th>Openness</th>
<th>Neuroticism</th>
<th>Sociability</th>
<th>Attentiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest Loadings</td>
<td>+ Aggressive</td>
<td>+ Inventive</td>
<td>– Cool</td>
<td>+ Sociability</td>
<td>– Disorganized</td>
</tr>
<tr>
<td></td>
<td>+ Bullying</td>
<td>+ Innovative</td>
<td>– Stable</td>
<td>+ Affectionate</td>
<td>– Unperceptive</td>
</tr>
<tr>
<td></td>
<td>– Submissive</td>
<td>+ Inquisitive</td>
<td>+ Excitable</td>
<td>– Solitary</td>
<td>– Thoughtless</td>
</tr>
<tr>
<td>Examples of Positive Correlations with Behaviour</td>
<td>Rates of aggression b</td>
<td>Task participation and learning performance a</td>
<td>Social avoidance and lack of focus on tasks b,c</td>
<td>Time spent in close proximity to others b</td>
<td>Longer attention span during cognitive testing b</td>
</tr>
</tbody>
</table>

Note: + and – refer to the direction of trait loadings. For example, “+ Excitable” means that subjects high in Neuroticism are excitable and “- Solitary” indicates that subjects high on Sociability are not solitary. aMorton, Lee, Buchanan-Smith, et al., 2013, bMorton, Lee, Buchanan-Smith, et al., 2013, cMorton (2014).
<table>
<thead>
<tr>
<th>Behaviour</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggression</td>
<td>Open-mouth threats, vocal threats, lunging, chasing, hitting, and/or biting.</td>
</tr>
<tr>
<td>Coalitionary support</td>
<td>Another individual intervenes during a conflict between two parties, directing aggression towards only one of the combatants.</td>
</tr>
<tr>
<td>Feeding</td>
<td>Searching for, or ingesting food.</td>
</tr>
<tr>
<td>Food sharing</td>
<td>One individual allows another individual to take pieces of its food (from hands or mouth).</td>
</tr>
<tr>
<td>Grooming</td>
<td>Picking through the hair of another individual.</td>
</tr>
<tr>
<td>Scrounging</td>
<td>Exploiting food found by others; successful begging or stealing food from others.</td>
</tr>
<tr>
<td>Solitary</td>
<td>No monkey within two body lengths away from the focal.</td>
</tr>
<tr>
<td>Social Behaviour</td>
<td>Definition</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Avoid/Stay Symmetry</td>
<td>Symmetry in number of times a monkey avoided/stayed at monopolizeable food source as they were approached by other member of the dyad.</td>
</tr>
<tr>
<td>Coalitions</td>
<td>Number of aggressive events in which one member of the dyad supports the other.</td>
</tr>
<tr>
<td>Aggression</td>
<td>Number of aggressive events within dyad.</td>
</tr>
<tr>
<td>Aggression Symmetry</td>
<td>Symmetry in conflict within dyad.</td>
</tr>
<tr>
<td>Food Sharing</td>
<td>Number of food sharing events within dyad.</td>
</tr>
<tr>
<td>Food Sharing Symmetry</td>
<td>Symmetry in food sharing within dyad.</td>
</tr>
<tr>
<td>Grooming</td>
<td>Number of focal minutes spent grooming each other.</td>
</tr>
<tr>
<td>Grooming Symmetry</td>
<td>Symmetry in grooming within dyad.</td>
</tr>
<tr>
<td>Social Foraging</td>
<td>Number of focal minutes spent in close proximity (<2 body lengths) from each other while at least one member of dyad is engaged in foraging.</td>
</tr>
<tr>
<td>Spatial Proximity</td>
<td>Number of focal minutes spent in close proximity (<2 body lengths) to each other.</td>
</tr>
</tbody>
</table>
Note. Proximity calculations do not include time spent grooming or time spent social foraging (both of which were analysed as separate variables).
Table 4. Varimax-rotated structure of PCA for behavioural measures calculated per monkey dyad.

<table>
<thead>
<tr>
<th>Behaviour Index</th>
<th>Varimax Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PC1</td>
</tr>
<tr>
<td>Social Foraging</td>
<td>0.846</td>
</tr>
<tr>
<td>Spatial Proximity</td>
<td>0.803</td>
</tr>
<tr>
<td>Grooming</td>
<td>0.772</td>
</tr>
<tr>
<td>Coalitions</td>
<td>0.771</td>
</tr>
<tr>
<td>Food Sharing</td>
<td>0.651</td>
</tr>
<tr>
<td>Food Sharing Symmetry</td>
<td>0.532</td>
</tr>
<tr>
<td>Conflict</td>
<td>-0.053</td>
</tr>
<tr>
<td>Conflict Symmetry</td>
<td>0.049</td>
</tr>
</tbody>
</table>

Note. Salient loadings (>0.4) for each behaviour in boldface; PC=principal component.
Table 5. Spearman correlations (ρ) between similarities in age, kinship, rank, and personality traits and affiliative/agonistic scores and overall relationship quality (i.e. difference between affiliative and agonistic scores).

<table>
<thead>
<tr>
<th></th>
<th>Affiliative</th>
<th></th>
<th></th>
<th>Agonistic</th>
<th></th>
<th></th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ρ</td>
<td>95% CI</td>
<td>ρ</td>
<td>95% CI</td>
<td>ρ</td>
<td>95% CI</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.17</td>
<td>[-0.05 to 0.38]</td>
<td>0.45</td>
<td>[0.22 to 0.61]</td>
<td>-0.26</td>
<td>[-0.46 to -0.01]</td>
<td></td>
</tr>
<tr>
<td>Kinship</td>
<td>0.04</td>
<td>[-0.22 to 0.27]</td>
<td>-0.19</td>
<td>[-0.40 to 0.03]</td>
<td>0.15</td>
<td>[-0.09 to 0.37]</td>
<td></td>
</tr>
<tr>
<td>Rank</td>
<td>-0.11</td>
<td>[-0.32 to 0.10]</td>
<td>0.33</td>
<td>[0.09 to 0.54]</td>
<td>-0.37</td>
<td>[-0.57 to -0.14]</td>
<td></td>
</tr>
<tr>
<td>Assertiveness</td>
<td>0.00</td>
<td>[-0.26 to 0.25]</td>
<td>0.16</td>
<td>[-0.08 to 0.37]</td>
<td>-0.12</td>
<td>[-0.33 to 0.11]</td>
<td></td>
</tr>
<tr>
<td>Openness</td>
<td>-0.10</td>
<td>[-0.32 to 0.15]</td>
<td>0.29</td>
<td>[0.07 to 0.50]</td>
<td>-0.42</td>
<td>[-0.61 to -0.20]</td>
<td></td>
</tr>
<tr>
<td>Neuroticism</td>
<td>-0.18</td>
<td>[-0.40 to 0.07]</td>
<td>0.09</td>
<td>[-0.15 to 0.32]</td>
<td>-0.12</td>
<td>[-0.36 to 0.13]</td>
<td></td>
</tr>
<tr>
<td>Sociability</td>
<td>-0.39</td>
<td>[-0.58 to -0.14]</td>
<td>0.10</td>
<td>[-0.14 to 0.33]</td>
<td>-0.33</td>
<td>[-0.52 to -0.11]</td>
<td></td>
</tr>
<tr>
<td>Attentiveness</td>
<td>0.05</td>
<td>[-0.22 to 0.29]</td>
<td>0.12</td>
<td>[-0.10 to 0.33]</td>
<td>-0.14</td>
<td>[-0.37 to 0.09]</td>
<td></td>
</tr>
</tbody>
</table>

Note. 95% CI = bootstrapped 95% confidence intervals. $df = 63$. “Quality” = difference between affiliative and agonistic component scores per dyad. Spearman correlations with confidence limits that did not include 0 are presented in boldface. Confidence intervals and P-values generated by fast and robust bootstraps with 5000 samples in all analyses.
Table 6. Independent effects of non-dispositional factors and personality variables on affiliative scores, agonistic scores, and overall relationship quality (i.e. difference between affiliative and agonistic scores).

<table>
<thead>
<tr>
<th>Effect</th>
<th>Affiliative</th>
<th>Agonistic</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
<td>95% CI</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.39</td>
<td>0.13</td>
<td>[-0.63 to -0.14]</td>
</tr>
<tr>
<td>Sex</td>
<td>0.14</td>
<td>0.11</td>
<td>[-0.08 to 0.34]</td>
</tr>
<tr>
<td>Age</td>
<td>0.01</td>
<td>0.01</td>
<td>[0.00 to 0.03]</td>
</tr>
<tr>
<td>Rank</td>
<td>-0.01</td>
<td>0.05</td>
<td>[-0.11 to 0.10]</td>
</tr>
<tr>
<td>Kinship</td>
<td>-0.09</td>
<td>0.37</td>
<td>[-0.80 to 0.62]</td>
</tr>
<tr>
<td>Assertiveness</td>
<td>-0.11</td>
<td>0.07</td>
<td>[-0.24 to 0.02]</td>
</tr>
<tr>
<td>Openness</td>
<td>-0.04</td>
<td>0.08</td>
<td>[-0.20 to 0.12]</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>-0.19</td>
<td>0.07</td>
<td>[-0.35 to -0.08]</td>
</tr>
<tr>
<td>Sociability</td>
<td>-0.12</td>
<td>0.06</td>
<td>[-0.24 to 0.01]</td>
</tr>
<tr>
<td>Attentiveness</td>
<td>0.14</td>
<td>0.08</td>
<td>[-0.03 to 0.27]</td>
</tr>
</tbody>
</table>

Note. Significant results ($P < 0.05$) in boldface. df in all cases = 63. Standard errors (SE), 95% confidence intervals (95% CI), and P-values generated by fast and robust bootstraps with 5000 samples in all three analyses.
Table A1. Results of Horn's (1965) Parallel Analysis for Component Retention.

<table>
<thead>
<tr>
<th>Component</th>
<th>Adjusted Eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.920683</td>
</tr>
<tr>
<td>2</td>
<td>1.202033</td>
</tr>
<tr>
<td>3</td>
<td>0.858408</td>
</tr>
<tr>
<td>4</td>
<td>0.708558</td>
</tr>
<tr>
<td>5</td>
<td>0.549795</td>
</tr>
<tr>
<td>6</td>
<td>0.568731</td>
</tr>
<tr>
<td>7</td>
<td>0.533918</td>
</tr>
<tr>
<td>8</td>
<td>0.527448</td>
</tr>
<tr>
<td>9</td>
<td>0.549315</td>
</tr>
<tr>
<td>10</td>
<td>0.568179</td>
</tr>
</tbody>
</table>

Note. 1,000 iterations, using the 95th percentile estimate; adjusted eigenvalues >1.0 indicate dimensions to retain; 2 components retained (boldface). Unadjusted eigenvalues are those used for the scree test (Fig 2A).
Table A2. Mean ± SE social behaviour per monkey dyad.

<table>
<thead>
<tr>
<th>Social Behaviour</th>
<th>Mean ± SE per dyad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid/Stay Symmetry</td>
<td>-7.32 ± 1.3*</td>
</tr>
<tr>
<td>Coalitions</td>
<td>0.21 ± 0.07</td>
</tr>
<tr>
<td>Conflict</td>
<td>1.01 ± 0.18</td>
</tr>
<tr>
<td>Conflict Symmetry</td>
<td>0.49 ± 0.19</td>
</tr>
<tr>
<td>Food Sharing</td>
<td>0.44 ± 0.11</td>
</tr>
<tr>
<td>Food Sharing Symmetry</td>
<td>0.001 ± 0.1</td>
</tr>
<tr>
<td>Grooming</td>
<td>1.82 ± 0.41</td>
</tr>
<tr>
<td>Grooming Symmetry</td>
<td>0.03 ± 0.35</td>
</tr>
<tr>
<td>Spatial Proximity</td>
<td>12.16 ± 1.63</td>
</tr>
<tr>
<td>Social Foraging</td>
<td>4.74 ± 0.64</td>
</tr>
</tbody>
</table>

Note. N = 73. Negative values indicate that one monkey within the dyad stayed more than retreated when approached by the other monkey.
Table A3. Promax-rotated structure of PCA for behavioural measures calculated per monkey dyad.

<table>
<thead>
<tr>
<th>Behaviour Index</th>
<th>Promax Rotation</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PC1</td>
<td>PC2</td>
<td>h²</td>
</tr>
<tr>
<td>Social Foraging</td>
<td>0.847</td>
<td>0.010</td>
<td>0.321</td>
</tr>
<tr>
<td>Spatial Proximity</td>
<td>0.802</td>
<td>-0.078</td>
<td>0.293</td>
</tr>
<tr>
<td>Grooming</td>
<td>0.771</td>
<td>-0.044</td>
<td>0.438</td>
</tr>
<tr>
<td>Coalitions</td>
<td>0.771</td>
<td>0.000</td>
<td>0.658</td>
</tr>
<tr>
<td>Food Sharing</td>
<td>0.649</td>
<td>-0.092</td>
<td>0.602</td>
</tr>
<tr>
<td>Food Sharing Symmetry</td>
<td>0.541</td>
<td>0.295</td>
<td>0.716</td>
</tr>
<tr>
<td>Conflict</td>
<td>-0.027</td>
<td>0.875</td>
<td>0.357</td>
</tr>
<tr>
<td>Conflict Symmetry</td>
<td>0.075</td>
<td>0.869</td>
<td>0.751</td>
</tr>
</tbody>
</table>

Note. Salient loadings (>0.4) for each behaviour in boldface; PC=principal component.
Figure A1. Diagram illustrating the design of each puzzle feeder introduced to the outdoor enclosure of East and West groups.

Figure A2. Scree test for component retention. Black circles indicate components that were retained; clear circles indicate components that were discarded.
Acknowledgements

Special thanks go to Prof. Andrew Whiten, Director of Living Links, for permission to conduct research at LL, and to the LL students and staff for support and assistance during data collection. Thanks also go to our collaborators and the many raters involved in the original capuchin personality study, and to Sarah Vick, Nicola Koyama, and the two anonymous reviewers for providing useful comments on earlier versions of the manuscript. F.B.M. thanks the University of Stirling and the Primate Society of Great Britain for funding. The authors declare they have no conflict of interest.
Closed End of Pipe

Food Rewards

Wooden Sticks

Drilled Holes

Open End of Pipe