Quantity-quality interactions in Welsh vowels: Phonologization across dialects

Citation for published version:
Iosad, P 2015, 'Quantity-quality interactions in Welsh vowels: Phonologization across dialects' Paper presented at 23rd Manchester Phonology Meeting, Manchester, United Kingdom, 28/05/15 - 30/05/15, .

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Quantity-quality interactions in Welsh

Phonologization across dialects

Pavel Iosad
University of Edinburgh
pavel.iosad@ed.ac.uk

23rd Manchester Phonology Meeting Prifysgol Manceinion 30th May 2015

1 Quantity and quality in Welsh

1.1 A contrastivist conundrum

The Contrastivist Hypothesis
The phonological component of a language \(L \) operates only on those features which are necessary to distinguish the phonemes of \(L \) from one another (D. C. Hall 2007, p. 20)

- Question here: how do you decide the set of phonemes to be distinguished by features?
- A well-known problem for phonemic theory: mutually predictable distributions
- North Germanic, e. g. Norwegian: [taːk] ‘roof’ vs [takː] ‘thanks’
- If vowel length is phonemic, then consonant length is allophonic
- If consonant length is phonemic, then vowel length is allophonic
- English key: /kiː/ or /ki/?
- English kit: /kit/ or /kt/?
- Or even syllable cuts?

The problem
Any contrastivist approach appears forced to make a choice, even when purely empirical adjudication is difficult

- See, for example, and among many others:
1.2 Quantity and quality in Welsh

The received view

- Descriptions of Welsh argue it to be essentially like English
- Mutually predictable distribution of length and quality
 - Long vowels are tense [iː uː eː oː]
 - Short vowels are lax [ə i o ɛ ɔ]
 - Disagreement about [a]/[ɑː]

The evidence: quality is phonemic

- English borrowings like ['brɔːn] brawn: length does not predictably lead to tenseness
 - Unclear status in the grammar
 - Not empirically shown that borrowed [ɛːɔː] qualitatively identical to native [ɛ ɔ]
 - Unclear whether [a]/[ɑː] are distinct qualitatively
- Difficult to account for patterning

The evidence: quantity is phonemic

For the details of this analysis, see Iosad (2012b)

- Distribution within ‘short-long’ or ‘lax-tense’ pairs is largely predictable
 - Long before [b d ɡ f ɔ ɣ v ð]
 - Short before (most) clusters (but always predictable in any case)
 - Short before [p t k s j l m ɲ]
 - [ə] is always short
 - Lexical contrast before [n l r]

(1) South Welsh

a. ['tʰoˑne] tonau ‘tunes’
b. ['tʰɔnˑe] tonnau ‘waves’

- Partially predictable distribution of quantity driven by quality of surrounding vowels: mix of coerced and distinctive weight (Morén 2001)
- Analysis: general bimoraicity requirement moderated by lexical moraicity and constraints on what can and can’t acquire a mora
 - Metropolitan New York English (Morén 2001)
 - Latvian (Bye & de Lacy 2008)
 - Friulian (Iosad 2012a, Torres-Tamarit forthcoming[a],[b])
Dialect variation in length

- All dialects: long and short vowels in stressed monosyllables
 - *ton* 'wave' [tʰɔnˑ] ≠ *tôn* [tʰoːn] 'tune'
- South Welsh: long and short vowels in stressed penults
 - [tʰɔnˑɛ] *tonnau* 'waves' ≠ [tʰɔˑnɛ] *tonau* 'tunes'
- North Welsh: only short vowels in penults
 - [tʰɔnˑa] *tonnau* = [tʰɔnˑa] *tonau*
- Mid Welsh and NE (Awbery 1984): ‘free variation’ in penults

1.3 South-West Welsh

A different pattern

- Description: mid long vowels are lax before a high vowel

(2) a. [ˈɛːdɛ] edau ‘thread’
 b. [ˈoːɡɔv] ogof ‘cave’

(3) a. [tʰɛːbɪɡ] tebyg ‘similar’
 b. [ˈkʰɔːdi] codi ‘rise’

(4) Alternations [kʰoːdɔð] cododd ‘((s)he) rose’

- This could be construed along the same lines as the borrowing argument
- But the distribution is still predictable!

Outline of argument

- Are there criteria we can use beyond surface predictability?
 - Yes: modularity
 - If a distinction participates in a pattern that involves proprietary phonological information, it should be phonological
 - ‘Tenseness’ is likely phonologized both in SW Welsh and other varieties
 - Predictable distribution of distinct categories is an expected result of the life cycle, not a problem for the Contrastivist Hypothesis
 - Contrastivity is defined as non-redundancy in feature assignment along the lines of the contrastive hierarchy
Quantity-quality interactions in Welsh

2 Dialect variation

2.1 South-West Welsh

Acoustic study

- 8 speakers in study: 6 show the system described for the south-west
- Carmarthen, rural W Carmarthenshire, Pembrokeshire
- 149 items × 3 repetitions, controlled for consonantal context, vowel length, height of following vowel
- Carrier phrase Glywes i'r gair ... dde 'I heard the word ... yesterday'
- Basically: descriptions are correct

- Figure 2a: robust durational distinction, as expected for South Welsh
- Figure 2b: clearly bimodal pattern in the mid long vowels but not in high vowels
- ‘Lax’ long vowels seem fairly similar to short vowels
- Quantitative results: generalized additive hierarchical models using R package mgcv (Wood 2006), speaker and word as random effects
- Improved fit with three-way interaction between vowel quality, vowel length and height of following vowel
- In this model, the height of the following vowel has a significant effect (95% CI excludes zero) only on long /eːoː/, again as expected from descriptions
The ‘tense-lax’ distinction in *mid* vowels is sensitive to the ‘high-nonhigh’ distinction among *all* vowels.

- The height specification of vowels is a proprietary phonological feature.
- Hence, the ‘tense-lax’ distinction in mid vowels is phonological.
- Emergent/substance-free feature theory (e.g., Mielke 2007, Morén 2007): these two distinctions pattern together, so they are encoded by the same feature.
- Important fact: patterning of vowels in unstressed (post-tonic) syllables
 - [i u] in open syllables, [i o] in closed syllables
 - Only [ɛ ɔ] for mid vowels

- Parallel Structures Model of feature geometry (e.g., Morén 2003, 2006, 2007, Youssef 2010)
- Different implementation of ‘tenseness’ in high and mid vowels
 - High vowels: ‘lax’ [i o] are more marked, pattern with [ə] in that this is the class of vowels that can never be long
 - Mid vowels: ‘tense’ [e o] are more marked
 * Only [ɛ ɔ] in post-tonic syllables
 * Tense [e o] phonologically active: targeted by dissimilation process
 * The feature V-manner[closed] covers both high vowels and tense mid vowels
 * Dissimilation within the final disyllabic domain responsible for alternations

Figure 3: Contrastive hierarchy for South-West Welsh
Table 1: Featural specifications for vowels: South-West Welsh

<table>
<thead>
<tr>
<th>Segment</th>
<th>V-place</th>
<th>V-manner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[coronal]</td>
<td>[labial]</td>
</tr>
<tr>
<td>/i/</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>/ɪ/</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>/u/</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>/o/</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>/a/</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>/ɛ/</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>/ɛ/</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>/a/</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Phonologization in South-West Welsh

- The ‘tenseness’ distinction shows signs of *phonologization* (Hyman 1976, 2013) or *stabilization* (Bermúdez-Otero & Trousdale 2012, Bermúdez-Otero 2014, Ramsammy 2015): reference to phonological information
 - Distribution in high vowels is sensitive to the presence of a coda
 - Modelling shows this is not a durational effect
 - Distribution in mid vowels is sensitive to contrastive phonological specification
 - We return to possible continuous effects below

- Most speakers consistently show unexpected [ɛː] in *ffenestr* [ˈfɛːnɛst] ‘window’

2.2 Standard system

- This system is exemplified in the data by a single speaker
- Figure 6a: robust distinction in duration
- Figure 6b: ‘tense’ when long and ‘lax’ when short
- Similar to findings for monosyllables in Mayr & Davies (2011)
- Post-tonic syllables
 - Lax [ɪ o] when closed, tense [i u] when open
 - Lax [ɛ ɔ] in all contexts

- Overall distribution:
 - High vowels: lax in closed syllables (unstressed or short before moraic coda), tense in open syllables
 - Mid vowels: lax when monomoraic, tense when bimoraic
Summary on standard system

- ‘Tenseness’ probably phonologized: sensitive to phonological information
 - High vowels: presence of codas
 - Mid vowels: moraic structure
 - Not a duration effect
- The features used for the ‘tenseness’ distinction do not interact with anything else or with each other
- No evidence this is the same feature

2.3 The non-enhanced system

- Again, just a single speaker: notably, this speaker is from Aberystwyth in the Mid Wales area
- Figure 8a: small but robust difference in duration by vowel category
 - This contradicts the descriptions claiming ‘free variation between “short” and “long” vowels’
- Figure 8b: no difference in formant values by length category: all stressed vowels are ‘lax’
- Figure 10: longer duration does lead to some gradient tensing in stressed vowels
- Same post-tonic system as elsewhere
Figure 7: Contrastive hierarchy for the standard system

<table>
<thead>
<tr>
<th>Segment</th>
<th>V-manner</th>
<th>V-place</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[closed]</td>
<td>[open]</td>
</tr>
<tr>
<td>/i/</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>/ɪ/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/a/</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>/ʊ/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/e/</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>/ɛ/</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>/o/</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>/ɔ/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/a/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Featural representations for the standard system
Figure 8: Duration and vowel quality for Sp8

Figure 10: Effect of vowel duration on F1, Sp8
Summary for non-enhanced system

- No evidence for a phonological ‘tenseness’ distinction in mid vowels
- Some evidence for a distinction in high vowels sensitive to codas, but only apparent word-finally
- Note the broader domain of the requirement compared to the standard system
- No analysis here due to lack of data from stressed monosyllables
- Potentially: ‘free variation’ in quantity really means ‘(some) continuous variation in quality’
- Some descriptive literature can be interpreted to agree with this (Wmffre 2003, Rees 2013)

3 Phonologization across dialects

3.1 Diachronic interpretation

- Suggested diachronic interpretation for stressed vowels
 - No difference in quality within vowel categories
 - Length is enhanced by (continuous) tensing (Stevens & Keyser 1989, 2010, Keyser & Stevens 2006) ≈ non-enhanced system
 - All short-long pairs are interpreted as featurally distinct, but the features are inert otherwise ≈ standard system
 - Features used for the tenseness distinction participate in alternations involving other segments ≈ south-western system
 - Tenseness becomes phonemicized (see also Iosad 2014 for another scenario)

Where does contrast come from?

- If features are emergent, they must be extracted from categorical distributions in the data
- Categorical distributions arise from phonetic processes with predictable outcomes via the life cycle
- At early stages of the life cycle, the categories will be in predictable (‘complementary’) distribution
- Some learning models are biased to collapse such distinctions (e.g. Peperkamp et al. 2006, Dillon, Dunbar & Idsardi 2012)
- But the distribution may also be interpreted to be driven by the grammar (K. C. Hall 2013, Kiparsky 2014)

3.2 Rule scattering in South-West Welsh

The origin of height dissimilation
· Height dissimilation: phonologization of a trade-off in inherent length
· Irish: synchronically (Munster; Ó Sé 1989) and diachronically (Connacht; Ó Sé 1984) ⇒ categorical (?)
· East Slavic: categorical (Crosswhite 2000) or continuous (Kasatkina & Ščigel’ 1996, Kniazev & Shaulskiy 2007), potentially coexisting
· Kera: continuous? (Pearce 2007)

· The following model was used to estimate the effect of post-tonic vowel duration on the ratio between the duration of the stressed and post-tonic vowel

```r
fit <- gam(v1h.v2h.ratio ~ s(v2h.dur, by=v1, k=5) + v1 + v1.is.long + s(speaker, bs='re') + s(word, bs='re'), data=sw.data)
```

· Figure 11 shows that the relationship is consistent with the existence of a trade-off
· The coexistence of a continuous pattern and its categorical congener in the grammar is major prediction of the theory of the life cycle: rule scattering
· South-West Welsh is an interesting example of rule scattering, since the cognate processes are rather different in nature (unlike t/d-deletion, [l]-darkening etc.)

3.3 Emergent features and phonologization
Phonologization and labelling
Quantity-quality interactions in Welsh

- Emergent/substance-free feature theory is compatible with theories of the life cycle
- Entities to be labelled emerge from categorical distributions in the data
- Categorical distributions in behaviour may be generated by underlyingly non-categorical processes (cf. Ladd 2006)
- Phonologized distinctions participate in ‘narrowly phonological’ patterns even when the evidence for their exact nature is weak

Emergent features and contrast

- Phonologization in this sense is an alternative to surface contrast as a criterion for ‘redundancy’
- Features like ‘tenseness’ in systems like Welsh are not ‘redundant’ even if they may be predictable on the surface from the context
- The Contrastivist Hypothesis is worth pursuing with a revised definition of ‘redundancy’
- Consistency with the Successive Division Algorithm (Dresher 2009) is a good candidate criterion (cf. Dresher 2014)

References

Iosad, Pavel. 2014. The ATR/Laryngeal connection and emergent features. MS., University of Edinbrgh. in preparation.

Quantity-quality interactions in Welsh

Torres-Tamarit, Francesc. Forthcoming(b). Length and voicing in Friulian and Milanese. *Natural Language & Linguistic Theory*.

14

AIC 2098.91 2091.54 2074.06
BIC 2762.91 2753.46 2672.18
Log Likelihood -931.50 -928.18 -930.77
R^2 0.79 0.79 0.79

<table>
<thead>
<tr>
<th></th>
<th>No height effect</th>
<th>No interaction</th>
<th>Model with interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-1.01* ([-1.24; -0.77])</td>
<td>-1.06* ([-1.29; -0.83])</td>
<td>-1.00* ([-1.18; -0.82])</td>
</tr>
<tr>
<td>//a//</td>
<td>0.71* (0.44; 0.98)</td>
<td>0.65* (0.39; 0.90)</td>
<td>0.79* (0.57; 1.00)</td>
</tr>
<tr>
<td>//e//</td>
<td>1.55* (1.28; 1.82)</td>
<td>1.42* (1.17; 1.68)</td>
<td>1.58* (1.34; 1.82)</td>
</tr>
<tr>
<td>//o//</td>
<td>1.59* (1.26; 1.91)</td>
<td>1.50* (1.19; 1.82)</td>
<td>1.54* (1.26; 1.81)</td>
</tr>
<tr>
<td>//u//</td>
<td>0.26</td>
<td>0.14</td>
<td>0.29</td>
</tr>
<tr>
<td>Long vowel</td>
<td>-0.22</td>
<td>-0.29* ([-0.09; 0.61])</td>
<td>-0.29* ([-0.20; 0.48])</td>
</tr>
<tr>
<td>Long /e/</td>
<td>-0.26</td>
<td>-0.16</td>
<td>-0.83* ([-0.50; 0.06])</td>
</tr>
<tr>
<td>Long /o/</td>
<td>0.00</td>
<td>0.08</td>
<td>-0.38* ([-0.36; 0.37])</td>
</tr>
<tr>
<td>Long /u/</td>
<td>0.34</td>
<td>0.34</td>
<td>0.35</td>
</tr>
<tr>
<td>Duration smooth</td>
<td>1.86</td>
<td>2.37</td>
<td>2.13</td>
</tr>
<tr>
<td>F2 smooth</td>
<td>3.33</td>
<td>3.50</td>
<td>3.79</td>
</tr>
<tr>
<td>Speaker (random)</td>
<td>4.41</td>
<td>4.43</td>
<td>4.35</td>
</tr>
<tr>
<td>Word (random)</td>
<td>98.37</td>
<td>96.29</td>
<td>76.98</td>
</tr>
<tr>
<td>High post-tonic vowel</td>
<td>0.27* ([-0.10; 0.77])</td>
<td>0.27* ([-0.07; 0.75])</td>
<td>-0.16; 0.85</td>
</tr>
<tr>
<td>//e// before high</td>
<td>-0.08</td>
<td>-0.08</td>
<td></td>
</tr>
<tr>
<td>//o// before high</td>
<td>-0.02</td>
<td>-0.02</td>
<td></td>
</tr>
<tr>
<td>//u// before high</td>
<td>-0.18</td>
<td>-0.18</td>
<td></td>
</tr>
<tr>
<td>Long vowel before high</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Long //e// before high</td>
<td>1.06* ([-4.04; 10.70])</td>
<td>1.06* ([-4.06; 11.05])</td>
<td>-0.35; 0.42</td>
</tr>
<tr>
<td>Long //o// before high</td>
<td>0.82* ([-5.39; 14.21])</td>
<td>0.82* ([-5.37; 14.23])</td>
<td>0.34; 1.30</td>
</tr>
<tr>
<td>Long //u// before high</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

* o outside the confidence interval

Table 3: Models for normalized F1, south-western speakers