[Cr(III) 8 M(II) 6](12+) Coordination Cubes (M(II) =Cu,Co)

Citation for published version:
Sanz, S, O’Connor, HM, Pineda, EM, Pedersen, KS, Nichol, GS, Mønsted, O, Weihe, H, Piligkos, S, McInnes, EJL, Lusby, PJ & Brechin, EK 2015, '[Cr(III) 8 M(II) 6](12+) Coordination Cubes (M(II) =Cu,Co)'

Digital Object Identifier (DOI):
10.1002/anie.201501041

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Angewandte Chemie International Edition

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Heterometallic Cages

$[\text{Cr}^{\text{III}}_{8}\text{M}^{\text{II}}_{6}]^{12+}$ Coordination Cubes ($\text{M}^{\text{II}} = \text{Cu, Co}$)**

Sergio Sanz, Helen M. O’Connor, Eufemio Moreno Pineda, Kasper S. Pedersen, Gary S. Nichol, Ole Mønsted, Høgni Weihe, Stergios Piligkos,* Eric J. L. McInnes,* Paul J. Lusby,* and Euan K. Brechin*

Abstract: $[\text{Cr}^{\text{III}}_{8}\text{M}^{\text{II}}_{6}]^{2+}$ ($\text{M}^{\text{II}} = \text{Cu, Co}$) coordination cubes were constructed from a simple $[\text{Cr}^{\text{III}}_{8}\text{L}_{6}]$ metalloligand and a “naked” M^{II} salt. The flexibility in the design provides the potential to tune the physical properties, as all the constituent parts of the cage can be changed without structural alteration. Computational techniques (known in theoretical nuclear physics as statistical spectroscopy) in tandem with EPR spectroscopy are used to interpret the magnetic behavior.

Molecules containing exchange-coupled paramagnetic metal ions represent a class of materials with potential applications across a breadth of scientific disciplines, with particular recent focus on information storage, quantum computation, and molecular spintronics.1–6 The bottom-up design of magnetic materials for such applications is attractive, as molecules are inherently monodisperse, reproducible, orientable, and chemically tuneable. Synthetic strategies that target magnetic coordination compounds span the entire spectrum from the serendipitous self-assembly of coordinatively flexible metal ions and organic ligands capable of bridging in multiple ways, through to the design of structurally predictable cages using rigid ligand linkers in combination with metal precursors that possess a limited number of coordination sites free for reaction.7 The rational design strategy has also been widely utilized for the preparation of numerous diamagnetic coordination capsules, the interest in these systems stemming from host–guest chemistry that has been exploited for catalysis, drug delivery, or the stabilization of reactive intermediates.8 Heterometallic coordination capsules have also been accessed using preprogrammed self-assembly approaches, occasionally using one-pot, self-sorting strategies with thermodynamically orthogonal metal–ligand motifs,9 or more commonly through a stepwise approach that takes advantage of kinetically robust intermediate complexes that possess pendant donor tectons, often referred to as metalloligands.10–15 However, only a handful of these heterometallic systems possess paramagnetic centers,13 and even fewer have been reported to display intramolecular magnetic exchange.15

Herein we discuss the structures and magnetic properties of the heterometallic cages $[\text{Cr}^{\text{III}}_{8}\text{Cu}^{\text{II}}_{6}(\text{H}_2\text{O})_{12}(\text{NO}_3)_{10}]^{2-}$ (1) and $[\text{Cr}^{\text{III}}_{8}\text{Co}^{\text{II}}_{6}(\text{H}_2\text{O})_{12}](\text{ClO}_4)_{12}^{-}$ (2), which were built using the simple metalloligand $[\text{Cr}^{\text{III}}_{8}\text{L}_{6}]$ (HL = 1-(4-pyridyl)butane-1,3-dione) and the metal salts Cu(NO$_3$)$_3$·3H$_2$O and Co(ClO$_4$)$_2$·6H$_2$O, respectively. The metal skeleton of both cages (Figure 1, see also Figures S1 and S2 in the Supporting Information) describes a simple $[\text{Cr}^{\text{III}}_{8}\text{M}^{\text{II}}_{6}]^{12+}$ cube with the Cr$_{8}$ ions of the $[\text{Cr}^{\text{III}}_{8}\text{L}_{6}]$ metalloligands occupying the corners of the cube, and the M$_{6}$ ions capping the square faces. The former are six-coordinate and in regular

Figure 1. Molecular structure of the cation of 1. Color code: Cr = light blue, O = red, N = blue, C = black. The terminally bound oxygen atoms originate from both water and nitrate molecules (see text for details).
[CrO₄] octahedral geometry, with Cr–O distances between 1.88–2.04 Å, and trans angles in the range 175–179°. In 1, the Cuᴵᴵ ions are also six coordinate, but in Jahn–Teller distorted [CuNO₃] coordination geometries (Cu-N, ≈ 2 Å) with the O-Cu-O vector (Cu-O, ≈ 2.31–2.58 Å) describing the elongated axis \(d_{c} \), perpendicular to the equatorial CuN plane \(d_{c} \) in the face of the cube. Ten of these axial ligands are H₂O molecules, but two (on opposing sides of the cube) are NO₃⁻ anions. In the extended structure (Figure S2), these link to neighboring cages, which results in the formation of a square sheet of cubes in the \(b \) plane. The remaining ten, nonbonded, charge-balancing NO₃⁻ anions, and solvent molecules of crystallization, are located both within the cage cavity and in the void spaces between the cubes.

In complex 2 (Figure S1) the face-capping Coᴵᴵ ions possess the same, albeit regular, octahedral [CuNO₃] geometry with Co–O bonds in the range 2.04–2.12 Å. Here, all the terminally coordinated ligands are water molecules. In the solid state, the cations of 2 pack in a brickwork-like fashion (Figure S3) with the closest intercontact distances being between the corners of neighboring cubes through a plethora of close contacts, primarily mediated by the L ligands: CH⋯O, ≈ 3.1 Å; CH⋯N, ≈ 3.6 Å; CH⋯CH, ≈ 4.0 Å; O⋯O, 4.3 Å; CH⋯CH, 4.5 Å. The twelve charge-balancing ClO₄⁻ anions, and solvent molecules of the crystallization, are again located both within the cage cavity and in the void spaces between cubes. The Cr–Cr distance between nearest neighbors along each edge of the cubes measures approximately 12 Å, creating an internal cavity volume close to 1000 Å³ (Figure S4), thus suggesting that anions with a total volume of around 550 Å³ could be accommodated.¹¹ Future studies will examine potential host–guest chemistry as a means of creating multifunctionality and additional magnetic exchange. The analogous diamagnetic [Alᴵᴵ,Pdᴵᴵ]²⁺ cages has been reported previously¹² (though its lack of solubility precluded the investigation of any host–guest chemistry, while similar structure types, albeit with different ligands, have been observed in the complex [Cuᴵᴵ,F₆ᴵᴵ,Feᴵᴵ]₁₂ [(H₂L–tris[2-[(imidazol-4-yl)methylidene]amino]ethyl]amine] for which no magnetic data were reported, the spin crossover species \([Cu(Tppy)(CH₃CN)]_2[Fe(C₅H₄NCS)₂]_2[Fe(C₅H₄NCS)(CH₃CN)]_2]ClO₄_2\)₄CH₃CN \(\text{tetrakis(4-} \) (pyridyl)-pyrazol-1-yl)hydrazoborate,¹³² and in molecular Prussian blue species such as \([\text{Tp}][(\text{H}_2\text{O})\text{Cu}^{II}\text{Fe}^{III}(\text{CN})_6]_{11}\) (where Tp = hydrotris(pyrazolyl)borate).¹³³

The direct current (d.c.) molar magnetic susceptibility \(\chi_m \), of polycrystalline samples of complexes 1 and 2 were measured in an applied magnetic field, \(B \), of 0.1 T, from the 5–280 K temperature, \(T \), range (Figure 2, where \(\chi = \chi/B \), and \(M \) is the magnetization). At 280 K, the \(\chi_m \) product of 1 and 2 have values of 17.7 and 26.3 cm³ mol⁻¹ K⁻¹, respectively. These values are in excellent agreement with those expected from the spin-only contributions to the magnetism of a [Crᴵᴵ,Cuᴵᴵ] unit (17.6 cm³ mol⁻¹ K⁻¹), with \(g_{Cu} = 2.00 \) and \(g_{Cu} = 2.15 \), and of a [Crᴵᴵ,Cuᴵᴵ] unit (26.3 cm³ mol⁻¹ K⁻¹), with \(g_{Cu} = 2.00 \) and \(g_{Cu} = 2.15 \). The experimental data are shown as open circles. The curves obtained by traditional matrix diagonalization are shown as solid lines. The lines of the Curie constants of uncorrelated ions in 1 and 2 are shown as dotted lines. The results from matrix diagonalization of the blocked spin-Hamiltonian (1) for 1 and the best fit curve for “isolated Co”¹⁹, as explained in the text, for 2, are shown as thick dashed lines.

indicative of weak ferromagnetic exchange interactions. Upon cooling, the \(\chi_m \) product of 2 decreases continuously, reaching a plateau value of 21.5 cm³ mol⁻¹ K⁻¹ at 8 K, before slightly increasing upon further cooling to 21.7 cm³ mol⁻¹ K⁻¹ at 5 K. The analysis of this behavior is complicated by the combination of the ligand-field splitting of the Coᴵᴵ ion and weak exchange interactions. The tetragonal symmetry ligand field of the [Co(py)(H₂O)] site removes the degeneracy of the \(^{3}T_2 \) term, breaking it into \(^{4}E_g \) and \(^{4}A_{2g} \) terms, with the latter lower in energy.¹⁶ Spin-orbit coupling (SOC) then further removes the degeneracy of the \(^4A_{2g}\) term, breaking it into two Kramers doublets, the energy splitting of which can be parametrized as a zero-field splitting (D) of the \(^4A_{2g}\) term. The fact that the high temperature \(\chi_m \) product of 2 agrees well with the expected spin-only value supports the dominance of the axial ligand field splitting over SOC.

For the quantitative interpretation of the magnetic properties of 1 and 2, we used two limiting models: 1) with \(D_{M} = 0 \) and \(D_{M} \neq 0 \) (an isotropic model) and 2) with \(D_{M} = 0 \) and \(D_{M} \neq 0 \), where \(M = Cu^{II} \) or \(Co^{II} \), and \(J_{Cu-M} \) is the isotropic exchange parameter between Cr and M centers (where \(M = Cu \) for 1 and \(Co \) for 2). In both limiting models, we neglected the single-ion anisotropy of \(Cr^{III} \), \(D_{Cu} \), as this is usually of the order of 1 cm⁻¹.¹⁷ Given that \(D_{Cu} = 0 \), we only applied the isotropic model for the analysis of 1. We started with the isotropic model for both 1 and 2. To describe the magnetic properties we used the following isotropic spin-Hamiltonian (1)

\[
H_{iso} = J_{Cu-M} \sum_{M \text{-pair}} \hat{S}_{Cu} \cdot \hat{S}_{M} + \mu_B B \sum_{i} \hat{S}_i \tag{1}
\]

with \(i \) running over all constitutive metal centers, \(\hat{S} \) a spin operator, \(\mu_B \) the Bohr magneton, \(B \) the applied magnetic field, and \(g \) the isotropic \(g \)-factor common to both Cr and M. Modelling the data using traditional matrix diagonalization is impractical for 1 and impossible for 2, because of the large
determined blocking of the spin-Hamiltonian matrix with respect to the total spin value, S. To model the magnetic properties of 1 and 2, we have adapted computational techniques known in theoretical nuclear physics as statistical spectroscopy,[18] which exploit the moments of the Hamiltonian to calculate relevant thermodynamic properties. We calculated the temperature-dependent magnetic susceptibility of 1 and 2 by use of the van Vleck equation (2), derived from (1)

$$\chi = \frac{N_A g^2 \mu_B^2}{k_B T} \sum_{\nu} \frac{(2S+1)\delta_{\nu,1} E_{\nu}}{(2S+1) \exp(-\frac{E_{\nu}}{k_B T})}$$

with N_A Avogadro's number, k_B the Boltzmann constant, and T the temperature. We approximated the energy dependence of the $(2S+1)$ factor in the denominator by a continuous density of states, $\rho(E)$. Similarly, we approximated the energy dependence of the $(2S+1)\delta_{\nu,1} E_{\nu}$ factor on the denominator, by a continuous density, $\rho_C(E)$, which we designated the Curie-constant density. These two densities may be obtained from moments of an appropriate Hamiltonian.[19] Here (1). The moments are related to the traces of powers of the Hamiltonian.[19] The density $\rho(E)$ is determined from the moments of a Hamiltonian containing only the Heisenberg terms of (1), whereas the density $\rho_C(E)$ is determined from the bivariate moments of (1), that is, those obtained from a Hamiltonian containing both Heisenberg and Zeeman terms. Once these moments, up to order 14 in our case, had been computed, the densities were conveniently determined following the method described in references [20,21]. Using this approach, and by successive simulations of the temperature dependence of the χM product of 1 and 2, we determined $J_{\text{Cr-Co}} = -0.18 \text{ cm}^{-1}$ with a common isotropic g factor $g_1 = 2.021$, for 1, and $J_{\text{Co-Co}} = +1.10 \text{ cm}^{-1}$ with a common isotropic g-factor $g_2 = 2.0$, for 2. In our analysis, we neglected all Cr–Cr and M–M exchange interactions, because these centers are not connected as first neighbors. The results were in excellent agreement with experiment in the case of 1 (Figure 2). For 2, they agreed well with the experimental data down to approximately 45 K. The observed deviation below this temperature could be attributed to the lack of anisotropy terms in (1). With these parameters, the ground spin state of 1 is an $S = 1$ state and the ground spin state of 2 would be an $S = 3$ state. To verify the validity of our theoretical approach, we calculated the χM product of 1 by full matrix diagonalization of the blocked spin-Hamiltonian matrix of 1, by use of the determined spin-Hamiltonian parameters. The resulting curve (Figure 2, thick dashed line) is in excellent agreement with the one obtained with the theoretical approach based on the moments of the spin-Hamiltonian.

In the analysis using model (2) for 2, we assumed $J_{\text{Cr-Co}} = 0$. From the experimental χM product of 2, we subtracted the calculated χM value (15 cm$^{-1}$ mol$^{-1}$ K) for eight uncoupled CrIII ions (the small D_{Cr} parameter made no difference to the high temperature data), and divided the result by six, to generate the χM curve for an “isolated” CoII site (Figure 2).

$$\tilde{H}_{\text{in}} = D_{\text{Cr}} \left(S_{\text{Cr}} - S_{\text{Co}}(S_{\text{Co}} + 1)/3 \right) + \mu_B B_{\text{G}}, S_{\text{Co}}$$

with $S_{\text{Co}} = 3/2$, reflecting the A_{2g} ground term of CoII. A reasonable, but not perfect, agreement was found for $g_{\text{Co}} = 2.0$ and $D_{\text{Cr}} = +80 \text{ cm}^{-1}$ (Figure 2). With these parameters, only the ground ($|m| = 1/2$) Kramers doublet would be populated at low temperatures. Given that the observed low-temperature χM value for an “isolated” CoII is of the order of 1.1 cm$^{-1}$ mol$^{-1}$, the calculated low-temperature paramagnetic χM limit for 2 would be about 21.6 cm$^{-1}$ mol$^{-1}$, in good agreement with the observed low-temperature plateau value of 21.5 cm$^{-1}$ mol$^{-1}$ K, at 8 K.

The nature of the weak exchange interactions in 1 and 2 was further probed by Q- and W-band EPR spectroscopy (34 and 94 GHz, respectively). Spectra of [CrIIIL$_2$], that is, the isolated corner fragment of 1 and 2 at 5 K are those of an $S_{\text{Cr}} = 3/2$ ($g = 1.97$) with near axial ZFS parameters of $D_{\text{Cr}} = -0.55$ and $E_{\text{Cr}} = 0.025 \text{ cm}^{-1}$, in the range found for other [Cr(diketonato)$_2$] complexes.[17] (Figures S5 and S3; simulated[22] with a Gaussian linewidth of 60 mT and a 10% D-strain).

Spectra of 1 at 5 K are severely broadened compared with [CrIIL$_2$], with linewidths approaching 400 mT (Figure S6), consistent with $|J_{\text{Cr-Co}}| < |D_{\text{Cr}}|$ and with an upper bound given by the linewidth; also consistent with $J_{\text{Cr-Co}}$ as determined from statistical spectroscopy methods. The lack of structure prevents any further analysis. Spectra of 2 are also broadened but structured (Figure 3), resembling those of [CrIIL$_2$] with noticeable shifts in resonance fields and new resonances at around 1400 mT (at W-band) because of the CoIII sites. This implies $|J_{\text{Cr-Co}}| < |D_{\text{Co}}|$. The matrix dimension of 2 is far too large for simulation using the full CrIIICoII spin system, while the weak exchange limit precludes handling the problem by low-energy subspace methods.[23] Hence, we attempted to model the spectra of 2 as a simple CrIIICoII dimer, of which the parameters for CrIII are defined experimentally from [CrIIIL$_2$], and those for CoIII are fixed from the “isolated” $S_{\text{Co}} = 3/2$ CoII model (Figure 2). We also fixed the relative orientation of the principal axes of the D_{Cr} and D_{Co} ZFS tensors to 54.7°, which is the angle between the C_4 (face-normal, defining the unique axis of CoIII in 2 and C_3 (body-diagonal, defining the unique axis of CrIII in 2) axes of a cube. Thus, the only variable is $J_{\text{Cr-Co}}$. The calculated spectra were very sensitive to small $J_{\text{Cr-Co}}$ (e.g. Figure S7), and we could reproduce the experimental resonances reasonably with $J_{\text{Cr-Co}} = -0.3 \text{ cm}^{-1}$ (Figure 3, bottom, and S7). Note that the determined $J_{\text{Cr-Co}}$ value is not that of 2 but for the fictitious CrIIICoII dimer. The isotropic exchange parameter, $J_{\text{Cr-Co}}$ of 2 is likely smaller in magnitude.

Variable-temperature-and-variable-field (VTVB) magnetization studies on complexes 1 and 2 (Figure S8) were consistent with weak exchange in both cases. For 1, the saturation magnetic moment of 30.8 μ$_B$ at 5 T and 2 K, was as expected for full spin alignment. In the case of 2, the magnetic moment was also 30.8 μ$_B$ at 5 T and 2 K. If only the lower Kramers doublet of CoII (which has $g_{\text{eff},z} = 4, g_{\text{eff},x} = 4, g_{\text{eff},y} = 2$)
MIII ion, as long as the precursor ML₃ can be prepared; the physical properties. The corner ions can potentially be any magnetometry · molecular magnetism · transition metals EPR spectroscopy · heterometallic cages · Keywords: solubility, reactivity, stability, and substrate specificity. properties, but additionally can be manipulated to tune design will also allow the modification of the magnetic exohedral functionalization and simple changes to ligand and/or redox-active guests, exerting control over (switching to different species, and indeed one can imagine constructing The large internal cavity suggests that the cage could play host and/or the assembly of the cubes into higher-order structures. The large internal cavity suggests that the cage could play host to different species, and indeed one can imagine constructing magnetic coordination capsules capable of hosting magnetic and/or redox-active guests, exerting control over (switching on and off) magnetic exchange between metal ions in the host framework and between the host and guest(s). Post-synthetic exohedral functionalization and simple changes to ligand design will also allow the modification of the magnetic properties, but additionally can be manipulated to tune solubility, reactivity, stability, and substrate specificity.

Keywords: EPR spectroscopy · heterometallic cages · magnetometry · molecular magnetism · transition metals

How to cite: Angew. Chem. Int. Ed. 2015, 54, 6761–6764 Angew. Chem. 2015, 127, 6865–6868

Received: February 3, 2015
Published online: April 20, 2015