Catastrophic impact of extreme flood events on the morphology and evolution of the lower Jökulsá á Fjöllum (northeast Iceland) during the Holocene

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.geomorph.2015.05.009

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Geomorphology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Catastrophic impact of extreme flood events on the morphology and evolution of the lower Jökulsá á Fjöllum (northeast Iceland) during the Holocene

Edwin R.C. Baynes *, Mikaël Attal, Andrew J. Dugmore, Linda A. Kirstein, Kathryn A. Whaler

School of GeoSciences, University of Edinburgh, Edinburgh EH8 9XP, UK

A R T I C L E I N F O

Keywords:
Bedrock erosion
Extreme floods
Rivers
Gorges
Iceland
Electrical resistivity tomography

A B S T R A C T

The impact of extreme flood events is rarely considered in studies of long-term landscape evolution, despite the potential for catastrophic landscape change in a short period of time. Here, we use an integrated approach of geomorphological mapping, topographic analysis and geophysical surveys to identify and quantify the impact of extreme flood events (jökulhlaups) along the Jökulsá á Fjöllum, Iceland, where evidence for the action of such floods is widespread on microspatial to macrospatial scales. The apex of the 28-km-long Jökulsárgljúfur canyon is characterised by a complex network of palaeo-flood channels and large vertical knickpoints such as Dettifoss (54 m high) and Hafragilsfoss (20 m high). Downstream, the Forvoð valley contains large terraces of boulder-rich deposits (50 m thick, >3 km long). Near the outlet of the canyon is Ásbyrgi, a dry canyon (3 km long, 1 km wide, up to 90 m deep) with eroded cataracts and scabland morphology immediately upstream and ~90 m above the current river channel. Topographic analysis and electrical resistivity tomography surveys show that 0.144 km³ of rock was eroded from Ásbyrgi during its formation ~10,000 years ago, and just 4% of this eroded volume is currently filled with sediment deposits, up to 5 m thick. Deposited boulders across the canyon floor of Ásbyrgi demonstrate that the discharge of the jökulhlaup that formed the canyon was at least 39,000 m³ s⁻¹. We present a model for the evolution of the lower Jökulsá á Fjöllum and the Jökulsárgljúfur canyon during various stages of an extreme flood event. Reconstruction of the early Holocene flood event includes the initiation and development of different canyons before the capture of all floodwater within one canyon at the end. We tie the evolution of the lower Jökulsárgljúfur canyon to established chronology of flood events during the Holocene farther upstream and highlight the dominant impact of extreme flood events over background processes in this landscape.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Extreme flood events are characterised by the release of a large volume of water over the landscape in a short period of time. Such events occur in a range of environments and can be triggered by glacial lake outbursts (e.g., Baker et al., 1993), landslide or moraine dam failures (e.g., Dunning et al., 2006), or by subglacial volcanic eruptions (e.g., Björnsson, 2002; Dunning et al., 2013). Extreme flood events are common over geological timescales, and the potential for geomorphic change during such events is great owing to high peak discharges, potentially over 10⁶ m³ s⁻¹ (Baker, 2002). Previous work has identified the impact of extreme flood events in the evolution of a range of terrestrial environments such as the Channeled Scabland of northwestern USA following the draining of Glacial Lake Missoula (Bretz, 1923), the Tsango gorge of southeastern Tibet (Montgomery et al., 2004), and the Transbaikalia and Altai Mountains of Siberia (Carling et al., 2009a; Margold et al., 2011); it has also been suggested that such floods could have played a key role in the evolution of the Straits of Gibraltar (García-Castellanos et al., 2009), the English Channel (Gupta et al., 2007), and the surface of Mars (Warner et al., 2010, 2013). Despite this, current landscape evolution models do not consider the impact of extreme flood events in controlling bedrock landscape morphology (Carling et al., 2009b). Detailed quantitative studies of the impact of extreme flood events on the landscape are therefore required.

Glacial outburst floods, termed ‘jökulhlaups’, occur regularly in Iceland owing to the location of large ice caps atop active volcanoes (e.g., Björnsson, 2002), which makes Iceland a globally important place to study the impact of extreme flood events. Previous work on Icelandic jökulhlaups includes the interpretation of deposited sediments (e.g., Maizels, 1997; Duller et al., 2008; Marren et al., 2009), the reconstruction of the hydraulic conditions (e.g., Baker et al., 1993; Alho et al., 2005, 2010; Carrivick, 2006, 2007), and the geomorphic impact of jökulhlaups in proglacial areas close to the floodwater source...
Our current understanding of canyon formation and bedrock erosion processes during extreme flood events is limited, especially in distal areas, and is based on studies such as that of the Channeled Scabland in Washington, USA (e.g., Baker and Kale, 1998) and a small number of studies in Idaho, USA (Lamb et al., 2008, 2014; Lamb and Dietrich, 2009) where the main motivation was to use the terrestrial landscape to infer the formation mechanisms of morphologically similar canyons on Mars. Building on a recent work in the upper reaches of the Jökulsárgljúfur canyon, Iceland (Baynes et al., 2015), the aim of this study is to reconstruct the bedrock landscape evolution of the lower Jökulsá á Fjöllum, in particular the impact of extreme flood events that are known to have occurred since deglaciation (Thorarinson, 1950; Samundsson, 1973; Tómasson, 1973; Eliasson, 1974, 1977; Sigbjarnarson, 1996; Waitt, 2002; Kirkbride et al., 2006; Baynes et al., 2015). This objective is achieved through documenting an inventory of landscape features within the Jökulsá á Fjöllum that are characteristic of the work of extreme floods, establishment of the chronology of floods, and assessment of the geomorphic impact of these extreme flood events during the Holocene using topographic analysis and Electrical Resistivity Tomography (ERT) surveys.

2. Study area

The Jökulsá á Fjöllum is one of Iceland’s largest rivers, draining much of the 8100 km² Vatnajökull ice cap in the south of the island and flowing 206 km north across central Iceland to the Arctic Ocean (Fig. 1A). The Jökulsá á Fjöllum has experienced multiple jökulhlaups of varying magnitude since the Last Glacial Maximum, with peak discharge for the largest jökulhlaup estimated at 0.9 × 10⁶ m³ s⁻¹ (Alho et al., 2005; Carrivick et al., 2013). Jökulhlaups occur along the Jökulsá á Fjöllum as a result of either subglacial volcanism beneath Vatnajökull from one or more of the Kverkfjöll, Grimsvötn, or Bárðarbunga volcanic centres (Björnsson, 2009) or the release of meltwater from an ice-
outstanding preservation of large-scale fluvial landforms that have not undergone any alteration since their formation and therefore offer an excellent opportunity to quantify the impact of extreme floods. Downstream of this reach, the Jökulsá á Fjöllum flows for 18 km over a large depositional sandur plain to the coast. The geology of the area is characterised by young (~0.8 Ma) basalt lava flows stacked on top of each other, ranging in structure from regular, near-vertical columns with metre-scale joint spacing to blocky, rubbly lavas with a centimetre to decimetre scale jointing. The ages of abandoned bedrock surfaces

Table 1

<table>
<thead>
<tr>
<th>Scale</th>
<th>Geomorphological feature for distinguishing bedrock-channelled jökulhlus</th>
<th>Selected references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microforms</td>
<td>Potholes, flutes, furrows, obstacle marks, and grooves</td>
<td>Hancock et al. (1998); Whipple et al. (2000); Richardson and Carling (2005); Wilson and Lavé (2014)</td>
</tr>
<tr>
<td>Mesoforms</td>
<td>Streamlined residuals</td>
<td>Baker (1988); Komar (1984); Wiedmer et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Obstacle and iceblock marks</td>
<td>Baker (1973); Fay (2002)</td>
</tr>
<tr>
<td></td>
<td>Wash limits</td>
<td>Maizels (1995)</td>
</tr>
<tr>
<td></td>
<td>Boulder surfaces and boulder bars</td>
<td>Baker (1973); O’Conner (1993)</td>
</tr>
<tr>
<td></td>
<td>Dunes</td>
<td>Baker (1973); Maizels (1995); Carling (1996); Wiedmer et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Bars</td>
<td>Carling et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>Kettled surfaces</td>
<td>Fay (2002)</td>
</tr>
<tr>
<td></td>
<td>Slackwater deposits</td>
<td>Baker (1973); Baker and Bunker (1985)</td>
</tr>
<tr>
<td>Macroforms</td>
<td>Anastomosing channel pattern of valley-wide palaeo-channels cut into bedrock</td>
<td>Keohew and Lord (1986); Rudoy (2002); Baynes et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>Deep trench-shaped valleys</td>
<td>Keohew and Lord (1986); Lamb et al. (2008, 2014)</td>
</tr>
<tr>
<td></td>
<td>Cataracts</td>
<td>Baker (1973); Keohew and Lord (1986); Rudoy (2002); Lamb et al. (2008, 2014, 2015)</td>
</tr>
<tr>
<td></td>
<td>Flow overspilling previous drainage divides</td>
<td>Shakesley (1985); Keohew and Lord (1986)</td>
</tr>
<tr>
<td></td>
<td>Scoured surface</td>
<td>Keohew and Lord (1986); Lamb et al. (2008, 2014)</td>
</tr>
<tr>
<td></td>
<td>Boulder terraces</td>
<td>Baker (1973); O’Conner (1993)</td>
</tr>
<tr>
<td></td>
<td>Obstacle and iceblock marks</td>
<td>Baker (1988); Komar (1984); Wiedmer et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Wash limits</td>
<td>Maizels (1995)</td>
</tr>
<tr>
<td></td>
<td>Boulder surfaces and boulder bars</td>
<td>Baker (1973); O’Conner (1993)</td>
</tr>
<tr>
<td></td>
<td>Dunes</td>
<td>Baker (1973); Maizels (1995); Carling (1996); Wiedmer et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Bars</td>
<td>Carling et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>Kettled surfaces</td>
<td>Fay (2002)</td>
</tr>
<tr>
<td></td>
<td>Slackwater deposits</td>
<td>Baker (1973); Baker and Bunker (1985)</td>
</tr>
</tbody>
</table>

Three distinct reaches are identified within the Jökulsárgljúfur canyon, each exhibiting evidence for extreme flood events (Fig. 1C). The first reach is the main study area of Baynes et al. (2015) at the head of the canyon. There, the Jökulsá á Fjöllum becomes deeply incised into the surrounding terrain, with three large waterfalls over a 5-km-long reach: these are Selfoss (13 m high), Dettifoss (54 m high), and Hafragilsfoss (20 m high); the canyon was carved through the retreat of these waterfalls during extreme floods. Downstream of this reach is the Forvøð valley, where widespread evidence for deposition of large volumes of sediment during extreme floods is present. At the lower end of the Jökulsárgljúfur canyon, additional evidence is present for the erosive impact of extreme flood events with the Klappir scabland area and Ásbyrgi canyon, a large dry cataract now disconnected from the current course of the Jökulsá á Fjöllum. This area contains

Fig. 2. Aerial photograph showing the upper 5 km of the Jökulsárgljúfur canyon where the Jökulsá á Fjöllum is deeply incised with three vertical waterfalls: Selfoss (13 m in height), Dettifoss (54 m in height), and Hafragilsfoss (20 m in height) (adapted from Baynes et al., 2015). The dashed yellow lines indicate the areas where evidence for erosion during extreme flood events is clear. The 200-m-wide Sanddalur overspill channel contains a 20-m vertical cataract and a 50-m vertical cataract where it rejoins the main canyon. The fissure that erupted 8.5 ka ago (Elíasson, 1974) is highlighted with white circles, and a cross section of the gorge across the line from W to E is inset. With the exception of the 500 m of canyon immediately downstream of Dettifoss, the Jökulsá á Fjöllum does not fill the canyon, suggesting that the flow was much greater when the canyon was formed. Aerial photograph source: Landmælingar Íslands. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
show significant canyon formation occurred at Ásbyrgi ~10,000 years ago and at the head of the Jökulsárgljúfur canyon ~5000 and ~1500 years ago through the upstream migration of large knickpoints such as Dettifoss and Selfoss (Baynes et al., 2015).

3. Morphological and sedimentological evidence for extreme floods along the Jökulsá a Fjöllum downstream of Selfoss

Carrivick et al. (2004) created a list of key criteria to identify the occurrence of extreme floods in bedrock channels, from macroscale landforms such as cataracts and anastomosing channels to microforms such as potholes and flutes (Table 1). Notably, many of the landforms listed in Table 1 are not exclusive to the action of extreme flood events, and the presence of these landforms within a landscape should not necessarily lead to the conclusion that an extreme flood event has taken place (Carrivick et al., 2013). However, considering the landscape as a whole and how multiple landforms are ‘associated’ to each other across a range of spatial scales can give an insight into the magnitude of the events that formed them (Carling et al., 2009c). We use the criteria in Table 1 to document erosional and depositional landforms in the study landscape using field observations and aerial photographs.

The following sections describe this evidence in each of the three study reaches (Fig. 1C): (i) Selfoss to Hafragilsfoss, (ii) the Forvoð valley, and (iii) Ásbyrgi and the Klappir scablands.

3.1. Selfoss to Hafragilsfoss

From the apex of the Jökulsárgljúfur canyon at Selfoss to ~5 km farther downstream, the Jökulsá á Fjöllum becomes deeply incised into the surrounding terrain (Fig. 2). Exposed in the canyon wall ~4 km downstream of its head is a volcanic conduit that brought lava to the surface in a fissure eruption about 8.5 ka BP (Eliasson, 1974). This event provides an independent constraint on the maximum age for the formation of the canyon upstream of the fissure and indicates that at least 4 km of the canyon was cut in the last 8.5 ka. In this section, a clear pattern of multiple palaeo-channels has been cut into bedrock, including the Sanddalur overspill channel (200 m wide) that contains a 20-m-high cataract, a dry vertical waterfall characteristic of erosion during jökulhlaups (Carrivick et al., 2004; Lamb et al., 2008, 2014) (Fig. 3A), and a 50-m-high cataract where the channel rejoins the western wall of the main canyon. The vertical headwalls of the three waterfalls in the active channel are also characteristic of the migration
of knickpoints in columnar basalt environments during large floods (Lamb and Dietrich, 2009; Baynes et al., 2015) (Fig. 3B). Further macroscale evidence for the action of extreme flooding is the relative size of the contemporary river compared to the size of the canyon. With the exception of the 500-m reach immediately downstream of Dettifoss, the Jökulsá á Fjöllum does not fill the canyon floor, even during regular annual spate stages (peak annual discharge from 1973–1979 was ~500 m³ s⁻¹ at Grimsstadir, 25 km upstream of Selfoss; Schunke, 1985) (Fig. 3C). This underfit suggests that the canyon was formed when the flow in the river was significantly greater. Three distinct strath terrace levels are present within the canyon, indicating the palaeo-location of the river bed (Baynes et al., 2015). All of these terraces, and the contemporary river bed, correspond to the top of lava flows. Despite small-scale fluting (on the scale of tens of centimetres) and submeter scale scouring on the strath terraces, evidence is limited for widespread vertical incision of the channel into the lava flows through abrasion. This fact demonstrates that the dominant mechanism of canyon erosion is the upstream propagation of knickpoints through the toppling and subsequent transportation of bedrock columns, once the flow depth has surpassed a threshold value (Baynes et al., 2015).

3.2. Forvoð valley to Vesturdalur

Nine kilometres downstream of the apex of the Jökulsárgljúfur canyon is the Forvoð valley, which contains landforms that testify to the action of extreme flood events in erosional and depositional contexts (Fig. 4A). Downstream of the Rettarfoss waterfall, the river is incised in a relatively narrow valley (20 m wide); 48 m above the current river channel on the eastern side of the valley is an extensive, heavily scoured bedrock surface with relief of up to a few metres (Fig. 4B); this surface was likely formed and then abandoned during an extreme flood (Waitt, 2002), and the high amplitude relief may be the result of efficient plucking promoted by the small size of the basaltic columns and intense fracturing, making blocks with size rarely exceeding 30 cm available for transport. Downstream of the slot canyon, the valley widens and landforms associated with deposition rather than erosion.

Fig. 4. (A) Aerial photograph of the Forvoð valley. Rettarfoss, the waterfall in the upstream part of a narrow, actively incising slot canyon, is highlighted. The dashed yellow lines indicate the heavily scoured bedrock surface 48 m above the current river channel and a lower bedrock terrace abandoned in the 1950s (Vatnajökulsþjóðgarður National Park Tourist Information). The yellow-shaded areas identify the large boulder terraces, thought to have been deposited during an extreme flood event, possibly owing to a backwater effect as a result of water ponding up behind the narrow bedrock constriction at Kjálfandi (also highlighted). Aerial photograph source: Landmælingar Islands. (B) Looking upstream toward Rettarfoss waterfall, showing the upper part of the Forvoð valley and the strath terraces identified in (A). The surface is heavily scoured owing to the rubbly nature of the bedrock. The columns are thin, not well developed, and fractured such that joint spacing between blocks rarely exceed 30 cm, making blocks easily plucked and transported. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
are evident. Boulder surfaces and boulder bars are defined by Carrivick et al. (2004) as ‘mesoform’ evidence for the action of extreme floods (Table 1), although they should also be considered on the macroscale here as they extend on both sides of the Forvöð valley for ~3 km and some of the deposits are up to 50 m thick (Fig. 5). On the western side of the river, boulder-rich deposits up to 47 m thick (some blocks >1 m in diameter) are found above the current river level; and two clear boulder-rich terraces are located on the eastern side of the valley, 5 m and 21 m above the river bed, respectively (Fig. 5). Such extensive, thick, and coarse deposits are likely associated with extreme palaeo-flow conditions (Wohl, 1992). We suggest that the boulder-rich sediment deposited in the Forvöð valley is a result of floodwaters losing energy as they pond behind the forced narrowing caused by the bedrock constriction at Kjaffbjarg (Fig. 4A). Subsequent stages of the flood, or subsequent floods, have reworked the boulder-rich deposits in the valley, incising through them but preserving the terrace surfaces high on the valley sides.

Downstream of the Kjaffbjarg bedrock constriction, the Jökulsá á Fjöllum flows within a deeply incised scabland area at Vesturdalur (Fig. 1C) before flowing along the eastern edge of another post-glacial volcanic fissure at Hljóðaklettar (Eliasson, 1974; Waitt, 2002). Vesturdalur is a key location of previous studies that have identified extreme flood events along the Jökulsá a Fjöllum. Waitt (2002) and Kirkbride et al. (2006) identified sedimentary sequences containing sandy flood deposits from this location (Fig. 1C). Waitt (2002) identified up to 16 sandy flood layers high above the west side of the Jökulsá á Fjöllum thought to have been laid down between 8000 and 4000 years ago, constrained by the presence of H4 and H3 tephra layers in the sequence that were deposited following eruptions of Hekla volcano ~3800 YBP and ~2900 YBP, respectively (Kirkbride et al., 2006). Two flood layers in a sequence on the eastern side of the valley, corresponding to the layers at the top of the sequence identified by Waitt (2002), were dated by Kirkbride et al. (2006) to 5020 and 4610 cal. YBP. This sedimentary evidence suggests that multiple large flood events affected this part of the canyon during the mid-Holocene.

3.3. Ásbyrgi and Klappir scablands

Perhaps the most striking evidence for erosion during extreme floods along the Jökulsá á Fjöllum can be found at Ásbyrgi canyon and the Klappir scablands. Ásbyrgi is a horseshoe-shaped canyon (3 km long, 1 km wide, up to 90 m deep), which is disconnected from the current river that now flows in a deeply incised canyon at Landsbjörg to the east (Figs. 1C, 6). Between Ásbyrgi and the main Jökulsárgljúfur canyon is Lake Ástjörn, a small cataract now filled with water, that exhibits the same amphitheatre shape as Ásbyrgi albeit on a smaller scale (250 m wide). Upstream of Ástjörn is a narrow scabland tract leading from the main Jökulsárgljúfur canyon to the head of Ásbyrgi (Figs. 6/7B). At the ‘upstream’ (southern) end of the area are four smaller (100 m wide, 10 m high) amphitheatre-shaped cataracts that also open toward
the north (indicating flow direction from the south), which are located high (~90 m) above the current course of the river (Fig. 7). These cataracts include plunge pools at the base of the headwall featuring sediment ridges that could be interpreted as push-bars (Carling et al., 2009c); these bars show no obvious reworking since their formation (Fig. 7A). At the rim of Ásbyrgi, large-scale potholes (up to 10 m in depth) and flutes are clearly visible (Fig. 7C), and several notches (3–5 m in height) have been cut into the rim of the vertical headwall of the canyon (Fig. 8A). The exposure age of bedrock in one of these notches has been put at between 7.2 and 12.5 ka, indicating that Ásbyrgi and the Klappir scablands were formed during an extreme flood event in the early Holocene, shortly after deglaciation (Baynes et al., 2015).

The horseshoe of Ásbyrgi is made up of two parallel channels that have eroded back and coalesced (Fig. 6). Between the two parallel channels is ‘Eyjan’, or ‘Island’, a bedrock outcrop rising to the same elevation as the lava surface around the main rim of Ásbyrgi. The western canyon retreated farther south, and its headwall marks the location of the highest cliffs (90 m) in Ásbyrgi. At the base of the headwalls of the western and eastern canyons are large relict plunge pools (Fig. 8B). The floor of Ásbyrgi is covered in sediment, with many large boulders (some >3 m in diameter) found on the surface of the deposits (Fig. 8B). The maximum measured boulder size can be used to calculate the minimum discharge of the palaeo-flood that transported them (e.g., Costa, 1983; Clarke, 1996; Stokes et al., 2012). Caution should be employed when using such a method as different equations can give different estimates of flood discharge, and there are issues with the collection of the boulder size data and the interpretation of the resulting estimates (see discussion in Stokes et al., 2012). Within these caveats, we used the method described by Stokes et al. (2012) to calculate a rough estimate of the minimum flood discharge that would be required to transport the largest boulders in Ásbyrgi. The largest measured boulder in the eastern Ásbyrgi channel (diameter = 1.49 m) gives a minimum palaeo-discharge estimate of 12,000 m3 s$^{-1}$. In the western channel, where the diameter of the largest measured boulder is 3.75 m, the minimum discharge estimate is 39,000 m3 s$^{-1}$ (see Supplementary information for sensitivity analysis and full list of parameters used).

Small-scale fluvially sculpted bedforms on the top surface of the Island between the two eroded channels that make up the Ásbyrgi ‘horseshoe’ provide evidence that, pre-flood, the river flowed over the lava surface into which Ásbyrgi has been eroded (Fig. 9). Surveys from across the Island indicate a palaeo-flow direction that is consistently from the south (Fig. 9). These surfaces were formed before Ásbyrgi was eroded as the canyon walls cut straight across some of the landforms (Fig. 9B), and we propose that they were not formed during the flood as they are substantially smaller in scale (relief in the order of a few tens of centimetres) than the flutes, furrows, and potholes found at the rim of Ásbyrgi (relief in the order of a few metres, up to 10 m; Fig. 7C; Richardson and Carling, 2005). Similar-scale fluviatile surfaces to those found on the Island are found on the eastern rim of Ásbyrgi and on the western rim of the modern canyon to the east (Fig. 6). During the last glacial period, the Icelandic ice sheet extended beyond the north coast of Iceland, covering the area containing Ásbyrgi and the Jökulsárgljúfur canyon (Norddahl, 1990; Hubbard et al., 2006; Licciardi et al., 2007). During the retreat of the ice sheet across the central highlands, the discharge of the proto-Jökulsá á Fjöllum was likely greater owing to enhanced glacial ablation during deglaciation. Upstream of the Jökulsárgljúfur canyon, the Jökulsá á Fjöllum is at present a large braided river system (sometimes ~1 km in width) flowing on a bedrock substratum; it is possible that the river developed such morphology all the way to the coast before the canyons were eroded. The fluval surfaces on Ásbyrgi Island, on the eastern rim of Ásbyrgi and the western rim of the main canyon, indicate the palaeo-course of this system. Fluval sediment is lacking on these surfaces, possibly because the sediment would have been entrained and transported during the early stages of the jökulhaup before the surfaces were abandoned by the upstream propagation of the canyon headwalls.

4. Volume of rock eroded from Ásbyrgi and sediment depth

As demonstrated in Section 3.3, the evidence for extreme flood events at Ásbyrgi and the Klappir scabland area immediately upstream is clear. The landscape is disconnected from the course of the present day Jökulsá á Fjöllum, which now flows in a deeply incised canyon to the east at Landsbjörg (Fig. 6). The Klappir scablands and Ásbyrgi contain landforms preserved in pristine condition, unburied and with no evidence for fluval modification through erosion since their formation, suggesting abandonment following the event that carved Ásbyrgi. Klappir and Ásbyrgi therefore provide an unusually good opportunity to examine the impact of a single extreme flood event in eroding bedrock and then in depositing sediment. Combined topographic analysis and near-surface geophysics surveys were used to evaluate the volume of bedrock eroded from Ásbyrgi and the thickness of sediment deposited during the waning stages of the flood.

Please cite this article as: Baynes, E.R.C., et al., Catastrophic impact of extreme flood events on the morphology and evolution of the lower Jökulsá á Fjöllum (northeast Iceland)., Geomorphology (2015), http://dx.doi.org/10.1016/j.geomorph.2015.05.009
The volume of rock eroded from Ásbyrgi was quantified using high-resolution topographic data based on a total station survey and a 1.8-m resolution digital elevation model (DEM; source: TanDEM-X collected on 2 September 2012). A 'pre-flood' surface was constructed by interpolating the elevation values from around the outer rim and the Island surface across the top of the canyon. An initial estimate of the rock
eroded from Ásbyrgi during formation was made through the subtraction of the ‘pre-flood’ surface from the ‘present day’ DEM (Fig. 10A), giving a total of 0.139 km³. However, this is an underestimate of the true amount of rock eroded from Ásbyrgi as the floor of the canyon is completely covered with sediment. An assessment of the sedimentary thickness was carried out using electrical resistivity tomography (ERT) surveys across the canyon floor. The ERT surveys are nondestructive and provide greater spatial coverage than point measurements when multiple profiles are collected. The ERT is an established method for imaging the near subsurface and has been used for a wide range of applications, including detecting the bedrock-sediment interface (Hsu et al., 2010; Chambers et al., 2012), aquifer characterisation (Doetsch et al., 2012), detection of subsurface cavities (Martinez-Lopez et al., 2013), rockwall retreat rates (Siewert et al., 2012), and permafrost depth and structure (You et al., 2013). The ERT surveys were carried out across transects A–L shown in Fig. 6, with 25 electrodes at 5-m spacing, allowing electrode spacings ranging from 5 to 40 m. By increasing the spacing between the electrodes, the current penetrates deeper, building up a data section that can be interpreted in terms of lateral and depth variations in electrical resistivity. Some of the transects were built up from multiple surveys in order to cover a longer distance than the 120 m possible in a single 25-electrode survey, such as the long transect along the middle of the eastern canyon (transect G, 680 m long, Fig. 6).

Different inversion methods are available in the ‘res2Dinv’ software (res2Dinv version 3.4; Geotomo, 2001). The conventional least squares method minimises the square of the difference between the measured and the calculated apparent resistivity values and produces a model with smooth resistivity variations (Loke et al., 2003). However, the technique is not perfectly appropriate when the subsurface contains sharp boundaries between resistivity interfaces as the smoothing of the boundaries between layers makes their localisation difficult. We therefore employed a ‘robust iterative inversion’ to model our survey data, whereby the absolute changes in the resistivity values are minimised (Claerbout and Muir, 1973). This approach produces models of the subsurface with sharp interfaces between different subsurface structures that have different resistivity values (Loke et al., 2003) and was deemed most appropriate because we expect to see a sharp boundary between the sediment deposits and the basalt bedrock beneath; all images presented here have been produced using this method (Fig. 11).

The model iterations were stopped when the percentage misfit between the measured and the calculated apparent resistivity was <5% or no further improvement to the fit was possible with further iterations. In the case of transect E, no further improvement to the fit occurred after five iterations, when RMS error was 5.9%.

Broadly, sedimentary deposits have the lowest resistivity and igneous rocks the highest (Telford et al., 1990). We therefore interpret the bedrock-sediment interface in each of our profiles as the sharp horizontal downward transition from regions of low to high resistivities (Fig. 11). The typical range of resistivity for basalt is large: 10¹–1.3 × 10⁵ Ωm (Telford et al., 1990) because of a number of factors, including the water content in fractures and pore space. The resistivity of dry (0% water content) basalt is 1.3 × 10⁵ Ωm, whereas basalt with 0.5% water content typically has a much lower resistivity of 4 × 10⁴ Ωm (Telford et al., 1990). The peak resistivity in each of our surveys is up to 3.7 × 10⁵ Ωm, which implies that the basalt in our study area has a water content >1%. This is to be expected as the rocks are located in a coastal region with a wet climate. We are confident that the transition to high resistivity found a few metres below the surface is the top of bedrock (Fig. 11). The layer of lower resistivity at the base of each of the surveys is interpreted to represent the water table owing to its broadly consistent depth at ~15 m across all surveys.

The ERT surveys show that the sediment is ~1 m thick across the floor of the western gorge (Figs. 11A–D) and 3 m thick in the eastern gorge (Figs. 11G–I). Owing to forest cover, only two surveys were carried out in a field near the apex of the western gorge, but these show that the sediment in this region of the canyon is ~5 m thick (Figs. 11E–F). We hypothesise that this is because of the survey location on top of the pile of sediment immediately downstream of the plunge pool. These surveys were parallel to each other and have produced a similar subsurface morphology despite a slight difference in the peak resistivity values, indicating reproducibility of the results. The three surveys undertaken in the region between the two main channels indicate a sediment depth of ~1.5 m in this region (Fig. 11I–L).

Sediment depths were interpolated across the canyon floor using the ‘Spline with Barriers’ function in ArcGIS (Fig. 10B). Owing to the limits on the spatial coverage of the ERT surveys, the interpolated surface does not cover the canyon floor in the apex of the western channel of Ásbyrgi or in some of the areas at the exit of the western and eastern canyons. The volume of sediment within Ásbyrgi was estimated by subtracting the interpolated surface from the DEM of the canyon floor topography, giving a volume of 0.005 km³, making up ~4% of the total volume of rock eroded from Ásbyrgi at 0.144 km³. This is a minimum estimate as the interpolated surface does not cover the entire floor of Ásbyrgi, although the additional sediment located beyond the interpolated surface is unlikely to cause a significant increase in the estimate of total rock eroded. Fig. 10C shows the bedrock surface elevation above sea level, created by subtracting the interpolated sediment depth (Fig. 10B) from the DEM of the canyon floor. The area close to the apex of Ásbyrgi is affected by the presence of trees that are picked up by the DEM (the highest elevation areas in blue) but farther north, near to the outlet of the two canyons, the elevation of the bedrock surface above sea level is...
very similar. This observation suggests that when the two canyons were retreating, before they coalesced, the vertical knickpoints at the headwall of the canyon were the same height.

5. Discussion

Some of the features described in Section 3, such as boulder erratics, are not exclusive to the action of extreme flood events and individually should not be used as evidence for the action of extreme flood events (Carling et al., 2009c; Carrivick et al., 2013). However, as multiple different landforms across all scales of the Carrivick et al. (2004) criteria are found in three distinct and very different reaches of the Jökulsárgljúfur canyon, we suggest that the evidence for extreme flood events is unequivocal in this landscape. Combining this with the identification of three significant periods of canyon cutting by Baynes et al. (2015) at ~10,000, ~5000 and ~2000 years ago, the following sections reconstruct the landscape evolution of the lower Jökulsá á Fjöllum during the Holocene.

5.1. Model of formation of Ásbyrgi and Klappir during a flood ~10,000 years ago

The presence of fluvially sculpted surfaces on the top of Ásbyrgi Island as well as strath terraces above the Jökulsárgljúfur canyon to the east suggests that during the retreat of the last Icelandic ice sheet, a major river flowed from the south over the northward-dipping lava surface into which the canyons have been eroded. This proto-Jökulsá á Fjöllum may have been substantially wider than the modern river channel as the discharge may have been higher because of increased meltwater generated during a major period of deglaciation. It possibly generated a large braided river system with multiple active channels on the lava substrate similar to the present day Jökulsá á Fjöllum upstream of Selfoss. This palaeo-river system could have simultaneously...
occupied, and fluvially sculpted, the surface at the top of Ásbyrgi Island and the surface close to the present day main canyon (Fig. 12A). Alternatively, the palaeo-river system could have been similar in size to the present day Jökulsá á Fjöllum and could have migrated the 2.5 km across the lava surface, sculpting the two bedrock surfaces at different times (Fig. 12A).

During the initial phases of the early Holocene jökulhlaup, the floodwaters spread across the Klappir area and the area to the east, over what would become the course of the modern day river. The eastern floodwaters split, and two canyons (the origins of the main Jökulsárgljúfur canyon at Landsbjörg and lake Ástjörn) began to be incised through the plucking and toppling of large basalt blocks and columns at the lava flow front (Fig. 12B). The floodwaters in the Klappir area also began incising at the lava flow front with two canyons forming close to each other (the beginnings of the modern Ásbyrgi canyon) (Fig. 12B). Upstream of these four main canyons, the Klappir area began to be sculpted into the ridge and pool scabland morphology seen today, with the smaller cataracts starting to be formed under a similar process to the main canyons to the north.

Fig. 12C shows the proposed locations of the canyons midway through the jökulhlaup, with the floodwaters flowing into the Ástjörn canyon captured owing to the upstream migration of the head of the main Jökulsárgljúfur canyon farther east. We propose that the jökulhlaup had no further impact on the scabland tract leading to Lake Ástjörn, which is now exposed ~60 m above the modern channel (Fig. 12C). The two canyons of Ásbyrgi were also still retreating at the mid flood stage (Fig. 12C); and at some point during the latter stages of the flood, the two canyons coalesced to form the horseshoe-shaped canyon seen today (Fig. 12D). Based on the maximum size of boulders deposited across the canyon floor, calculations suggest that the discharge of the jökulhlaup that eroded Ásbyrgi was at least 39,000 m3 s$^{-1}$, although it may have been greater than this magnitude. The perfect preservation of landforms in the Klappir scablands and the maintained vertical headwall of Ásbyrgi suggest that the floodwaters were diverted from this area at the end of the flood, and we propose that this occurred through the capture of the waters because of the retreat of the headwall of the main Jökulsárgljúfur canyon to the east (Fig. 12D). The ERT profiles reveal that the sediment in the canyon...
Fig. 11. Electrical resistivity tomography imaging of the subsurface. Labels (A–L) refer to the location of each transect shown in Fig. 6. Surveys A–D are from the western canyon; they show a depth to the bedrock-sediment interface of ~1 m. Surveys E and F are parallel to each other from the field close to the apex of Ásbyrgi; they show a sediment thickness of ~5 m. Survey G is a longitudinal survey along the middle of the eastern canyon with surveys H and I also from the eastern canyon, each showing a uniform sediment thickness of ~3 m. Surveys J–L are from the region between the two main canyons and have a sediment depth of ~1.5 m. The letters at the edges of each profile (bottom) indicate the orientation of the transects. Vertical dashed lines and corresponding labels on (G), (H), and (I) indicate the location where the transects cross each other.
The floor is just a thin veneer only a few metres thick over the bedrock surface, filling <4% of the total volume. We propose that this sediment was deposited across the canyon floor of Ásbyrgi during the latter stages of the flood when the waning floodwaters were no longer powerful enough to transport the sediment load (Fig. 12D).

Waitt (2002) proposed that the eroded scabland area immediately upstream of Ásbyrgi was reoccupied during the late Holocene flood ~1500 years ago as the soil in this area lacks the H3 (~2900 YBP), H4 (~3800 YBP), and H5 (~6000 YBP) tephra layers, while the soil beyond the scabland limits do contain them. This observation suggests that the soils in the scabland area were washed away after the deposition of the H3 layer, most likely during the late Holocene flood. However, the exposure age from the eroded notch at the rim of Ásbyrgi (9850 ± 2650 years from a sample in a notch a couple of metres under the original surface of the lava flow; Baynes et al., 2015) suggests that any flow through here during the mid- and late Holocene was not powerful enough to cause any significant bedrock erosion (i.e., not enough to ‘reset’ the concentration of cosmogenic nuclides). Thus, we can be confident that the carving of Ásbyrgi represents the impact of an early Holocene flood event. The effect of any mid- to late Holocene floodwaters that overtopped the scablands and flowed into Ásbyrgi on the sediments deposited across the canyon floor is unknown, but the presence of the eroded boulders (from the early Holocene flood) and the thin layer of canyon floor deposits suggest that at least some of the material was preserved. The loss of additional material through aeolian processes is unlikely because of the morphology of the canyon and the vegetation cover.

Over time, overland flow into a canyon with a vertical headwall should act to diffuse the knickpoint through abrasion and plucking of small blocks (Lamb et al., 2014). As the Ásbyrgi headwall is vertical...
and contains no evidence for diffusion since its formation, we propose that the Klappir scablands and Ásbyrgi were formed during a single extreme flood event. The floodwaters were diverted at the end of the flood preventing further fluvial activity that could have diffused the canyon headwall or reworked the landforms present on the Klappir scablands. Fig. 12E shows the state of the landscape at the present day, which is likely to be very similar to that of the immediate aftermath of the early Holocene flood, although the morphology of the main canyon at Landsbórgjö may have been altered after the early Holocene flood owing to subsequent modification during moderate and large floods in the mid- and late Holocene.

5.2. Evolution of lower Jökulsá á Fjöllum during mid-late Holocene floods

While we hypothesise that the knickpoint at the head of the main Jökulsárgljúfur canyon retreated at least as far as to capture the floodwaters flowing into Ásbyrgi, we have no evidence to suggest the exact position of the knickpoint at the end of the early Holocene flood. Waitt (2002) stated that the canyon already existed before the eruption of a fissure at Hljodaklettar ~9000 years ago, as some of the cinder cones lie within the canyon (Fig. 1C). This chronology supports the theory that an early-Holocene flood, pre-fissure eruption, initiated formation of the Jökulsárgljúfur canyon and that erosion through headwall retreat proceeded at least as far as Hljodaklettar. We suggest that the 16 floods identified by Waitt (2002) and Kirkbride et al. (2006) at Vesturdalur have contributed to the upstream propagation of the knickpoint(s) from Hljodaklettar to the current apex of the Jökulsárgljúfur canyon. The two youngest floods dated by Kirkbride et al. (2006), as well as a late Holocene extreme flood that several authors agree has taken place (Samundsson, 1973; Tómasson, 1973; Helgason, 1987; Waitt, 2002), led to significant erosion within the upper 5 km of the canyon (Baynes et al., 2015). Additional erosion of the downstream reach of the main canyon during the mid- and late Holocene floods cannot be ruled out, but we believe that this is minimal because of the absence of active, or relict, knickpoints within this part of the canyon. An abandoned terrace on the east side of the canyon at Landsbórgjö represents a historical position of the river bed (Fig. 6), but the age of formation and abandonment of this terrace is not currently known.

6. Conclusions

Our work documents widespread evidence for bedrock erosion during extreme flood events in the lower Jökulsá á Fjöllum in northern Iceland. Multiple discrete phases of extreme flooding have occurred during the Holocene, leaving a lasting legacy on the landscape morphology in three distinct reaches. Evidence for erosion during extreme floods is clear at Dettifoss and Ásbyrgi, where evidence for deposition is found in the Forvoða valley. Ásbyrgi, unaltered since formation, contains a thin veneer of sediment in the floor of the canyon documented using an ERT survey; sediment fills <4% of the total 0.14 km² volume of material that was eroded during an early Holocene extreme flood event, with reconstructed discharge of at least 39,000 m³ s⁻¹. During this flood, coincident erosion was occurring in what is now the main Jökulsárgljúfur canyon through upstream migration of the canyon headwall. The canyon head retreated far enough to capture the floodwaters flowing across the Klappir scablands into Ásbyrgi: all future flow of the Jökulsá á Fjöllum and all subsequent floods were channelled within the main canyon at Landsbórgjö to the east and caused significant erosion farther upstream, although a small-scale overtopping over Klappir during later floods cannot be ruled out. The overall contribution of extreme flooding along the Jökulsá á Fjöllum during the Holocene has been the formation of a 28-km-long, up to 100-m-deep canyon in <10 ka. This highlights the importance of extreme flood events in the erosion of bedrock landscapes, with discrete high-magnitude events having the potential to cause catastrophic landscape change that can be preserved over millennial timescales.

Acknowledgements

We thank the Vatnajökulsþjóðgarður National Park for allowing access, survey permission, and providing logistical support. We thank Katie Whitbread for her assistance in the field and Noel Gourmelen for obtaining the high-resolution DEM from TanDEM-X. We are grateful to Paul Carling, an anonymous reviewer, and the Editor for their time and constructive suggestions that have improved this manuscript. This work was funded by NERC PhD Studentship NE/H525720/1 to E.R.C.B., a grant from the Carnegie Trust for the Universities of Scotland to M.A., and National Science Foundation grant 1249313 to A.J.D.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.geomorph.2015.05.009. These data include the Google map of the most important areas described in this article.

References
