Light induced waveguides in nematic liquid crystals

Citation for published version:

Digital Object Identifier (DOI):
10.1109/JSTQE.2015.2446762

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Journal of Selected Topics in Quantum Electronics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Light Induced Waveguides in Nematic Liquid Crystals

Gaetano Assanto, Fellow IEEE and Noel F. Smyth

Abstract—Spatial optical solitary waves in media with nonlinear refractive index are self-localized beams as well as waveguides induced by light. We review their guiding features in reorientational birefringent soft matter, namely nematic liquid crystals, for which a highly “nonlocal” response enhances the confinement, stabilization and robustness of the generated optical solitary waves, termed “nematicons.” The waveguiding properties of spatial solitons in nematic liquid crystals are illustrated through the confinement of low power signals and other solitary waves, as well as optical vortices.

Index Terms—Solitons, Liquid crystals, Nonlinear optics, Optical solitons, Optical vortices

I. INTRODUCTION

Nematic liquid crystals can be considered an ideal medium for exploring nonlinear optical effects and light manipulation [1], [2]. This is due to their “huge” nonlinearity and negligible absorption, so that nonlinear optical effects occur at power levels of the order of milliwatts and over millimeter distances. Nematic liquid crystals (NLC) belong to a broad class of materials termed soft matter, in that they form an elastic medium which can flow while maintaining a finite order, hence their name [3]. In standard forms, they consist of elongated organic molecules which, in the nematic phase, possess a large degree of orientational order, but negligible positional order. NLC molecules contain benzene rings, so that their electrons exhibit a high non-localization and can easily move in the presence of an electric field, giving rise to dipoles which are able to rotate, opposing the intermolecular links (elastic forces) in order to align to the field vector and so reduce the interaction energy. Such a “reorientational” response manifests itself both as an electro-optic effect and as an all-optical nonlinearity. For the latter, since “reoriented” dipoles correspond to a “rotated” optic axis (or molecular director) in the macroscopic uniaxial dielectric, the refractive index increases in a nonlinear manner under the action of light in the extraordinary polarization, i.e. with electric field coplanar with the wavevector and optic axis [3]. Therefore, beams of light with polarized electric field non-orthogonal to the molecular director can undergo self-focusing through all-optical reorientation, eventually balancing diffraction and supporting the generation of self-confined transversely invariant spatial solitary waves, or simply solitons. The term “nematicon” refers to such self-trapped beams and the corresponding refractive index potentials or waveguides in nematic liquid crystals [1], [2], [4].

Optical solitary waves in nematic liquid crystals, nematicons, have been proposed as the basis for all-optical circuits [4], [5], [6], with several functionalities relying on their use as reconfigurable/readaddressable waveguides. Here we will review some of the configurations proposed for nematicon waveguide applications. Nematicon waveguides can be controlled through external electric fields [1], [7] or by interaction with other optical beams [1], [8], [9], [10], [11], [12], [13]. Since nematicons are nonlinear optical beams, they can alter their uniaxial environment and so change their own path [14]. Furthermore, since NLC are nonlocal in that the response to an optical beam extends far beyond its waist [1], [2], [15], nematicons can act on each other at a distance through the medium [16], [17], [18]. Finally, a nematicon waveguide can stabilize beams which tend to become unstable upon interacting with, for example, refractive index perturbations [19], [20], [21]. In the following we shall address these features and properties of nematicon waveguides.

II. GOVERNING EQUATIONS

Let us consider the propagation of a linearly polarized beam of light through a planar cell filled with undoped nematic liquid crystals. Let the propagation direction of the beam be z and the direction perpendicular to the confining interfaces be x, with y completing the coordinate triad. The complex valued envelope of the electric field of the beam will be denoted by u. To overcome the optical Freedericksz threshold [3] occurring when field and director are orthogonal, the nematic molecules are pre-tilted at an angle θ_0 to the propagation direction. This is achieved by either applying a low frequency electric field (bias voltage) across the cell thickness in the (x, z) plane or by “rubbing” the planar interfaces of the cell, so that the director is aligned to the rubbing direction in the (y, z) plane, with this alignment spread into the bulk via the intermolecular links. The angle θ will then denote the extra nonlinear rotation given to the molecules (director) by the light beam, so that the total angle the director makes to the z direction is $\theta_0 + \theta$. The non-dimensional equations governing the propagation of light in the paraxial, slowly varying envelope approximation are [1], [2], [15], [22], [23]

$$i\frac{\partial u}{\partial z} + \frac{1}{2} \nabla^2 u + 2\theta u = 0,$$ \hspace{1cm} (1)

$$\nu \nabla^2 \theta - 2q\theta = -2|u|^2.$$ \hspace{1cm} (2)

Equation (1) governs the evolution of the electric field of the light beam, with equation (2) giving the resulting NLC.

G. Assanto is with NooEL—Nonlinear Optics and OptoElectronics Lab University of Rome “Roma Tre”, 00146 Rome, Italy and Optics Lab, Tampere University of Technology, FI-33101 Tampere, Finland email: assanto@uniroma3.it

N.F. Smyth is with School of Mathematics, University of Edinburgh, Edinburgh EH9 3F, Scotland, U.K. email: N.Smyth@ed.ac.uk
response in terms of the reorientation angle. These equations form a coupled system. The Laplacian in these equations is in the transverse \((x, y)\) plane. The parameter \(\nu\) measures the strength of the elastic forces (nonlocality) in the NLC and is \(O(100)\) in most experimental regimes \([1], [24], [25]\). The parameter \(q\) is proportional to the square of the pre-tilting electric field across \(x\) or related to the rest angle in the case of “rubbing” in \(yz\) \([15], [26]\). As inherent to the propagation of extraordinarily polarized light in uniaxials, the Poynting vector (power flow direction) for the extraordinary beam is at a “walkoff” angle to the input direction of its wavevector, around a maximum value of \(7^\circ\) in NLC with the usual birefringence of about 0.2 \([1], [2]\). The walkoff, associated with nonlinear beams as well \([1], [2]\), has been factored out of the electric field equation \((1)\) by a phase transformation \([18], [27]\). A typical cell thickness is \(75 \mu m\) and a typical input beam width is \(4 \mu m\) for visible/near infrared wavelengths \([28]\). As the electric field \(u\) and the director angle perturbation \(\theta\) decay exponentially away from the beam profile, the effect of the cell interfaces can be neglected for beams launched along \(z\) around the middle of the cell across \(x\). We shall therefore take the NLC sample to be infinite when deriving solutions of the nematic equations \((1)\) and \((2)\).

While the system of equations \((1)\) and \((2)\) has been derived for optical beam propagation in nematic liquid crystals, it is more general and holds for nonlinear beam propagation in media whose response is governed by some type of diffusive phenomenon \([29]\). For example, the system of equations \((1)\) and \((2)\) governs light beam propagation in thermo-optic media \([30]\), such as lead glasses \([31], [32], [33]\), and in photorefractive crystals \([34], [35]\). The same system also arises in \(\alpha\) models of fluid turbulence \([36], [37]\) and in the Schrödinger-Newton model of quantum gravity \([38], [39]\).

The nematic equations \((1)\) and \((2)\) possess a solitary wave solution, termed a nematicon \([1], [2], [4], [26]\). Numerical methods can be used to find this nematicon solution \([40], [41], [42]\), but there is no known general analytical nematicon solution, just specific ones for fixed parameter values of \(\nu\) and \(q\) \([43]\). A nematicon is formed by a balance of the nonlinear self-focusing in the NLC with linear diffraactive spreading \([1], [2]\). The corresponding refractive index distortion is a graded-index waveguide, able to confine other optical signals \([26]\), with or without angular momentum. A nematicon waveguide can also stabilize, or enhance the stability of, a co-propagating optical beam.

For the numerical solutions of the nematic equations presented in this work, the electric field equation \((1)\) and its extensions dealt with below were solved using the pseudospectral method of Fornberg and Whitham \([44]\). The elliptic director equation \((2)\) and its extensions were solved using a Fourier method outlined in \([45]\).

III. NEMATICON WAVEGUIDES

The waveguiding capabilities of a nematicon were detailed in the early work in which a nematicon was experimentally demonstrated by exploiting the reorientational response of undoped NLC \([26]\). The guidance of a longer wavelength signal \((632.8\, nm)\) by a fundamental order solitary wave launched at \(514\, nm\) was supported by the large numerical aperture associated with the nonlocal response of the NLC \([26]\), a property responsible for the formation of nematicons, even with spatially incoherent light \([24], [43], [46]\). The formation of a nematicon waveguide from a 1064\, nm Nd:YAG laser of power 2.0\, mW and the confinement of a co-propagating weak, 30\, \mu W copolarized probe from a Helium-Neon laser of wavelength 632.8\, nm is illustrated by photographs in Figure 1 for the case of a cell with optic axis planarly aligned at 45° with respect to \(z\). Figure 1(a) shows the evolution of a low power (i.e. linear) beam which diffracts, since it does not carry enough power to form a nematicon, and propagates with walkoff (about 7°) with respect to its wavevector along \(z\). A red low power probe beam, colounched and copolarized (with input electric field oscillating along \(y\)), also diffracts and spreads in the transverse \((x, y)\) plane, as seen in Figure 1(b) after propagating over \(1\, mm\). For an input nonlinear beam of sufficient power, a diffractionless nematicon is formed, as in Figure 1(c). This nematicon is also a waveguide for the weak probe, which gets confined, as shown in Figure 1(d). The red light does not diffract and remains confined and bell shaped in \((x, y)\) at the cell output.

This guiding of a low power signal by a nematicon was extended in a recent numerical and theoretical study of the interaction between two such beams \([47]\). This study included a detailed investigation of how the trajectory of the nematicon could be controlled by the low power beam, with trajectory deviation resulting from momentum exchange between the beams.

Reorientational nematic liquid crystals are a self-focusing medium, so that regions of higher beam intensity tend to exhibit higher refractive index. However, a light-induced reduction in the order parameter through the introduction of dopants, such as azo-dyes, can turn the NLC into a self-defocusing medium, so that dark solitary waves can be excited \([48]\). For a defocusing NLC, the electric field equation \((1)\) becomes

\[
\frac{\partial u}{\partial z} + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} - 2\theta u = 0
\]
for one-dimensional dark solitons [49]. The self-defocusing nematic equations (2) and (3) support dark nematicons, solitary waves which are dips in a background carrier wave, rather than the intensity hump of the “bright” nematicons of the focusing equations (1) and (2).

Dark nematicon solutions on a constant background are of the form

\[u = f(x - Uz)e^{-2iu^2z/q}, \tag{4} \]

for a (complex) function \(f \) which gives the dark nematicon profile [50]. A typical dark nematicon solution is shown in Figure 2 and differs from the dark soliton solution of the nonlinear Schrödinger equation [49]. This can be seen in Figure 2 as two humps in the electric field at the tails of the dark nematicons. These humps are due to a linear wave mode trapped in the tail of the dark nematicon owing to the nonlocal response of the NLC [50], which extends well beyond the beam. A mathematical dark nematicon (4) differs from an experimental dark nematicon: the former has a carrier wave which extends to \(x = \pm \infty \), whereas in the latter the carrier wave has a finite extent, often Gaussian. Nevertheless, in both limits dark nematicons are associated with a coaxial graded-index waveguide supporting the guided co-propagation of a (bright) linear signal. This property was exploited to experimentally guide a longer wavelength copolarized probe in a dark nematicon [48].

Figure 3 shows simulated and experimental results obtained in an azo-doped NLC cell with resonant absorption around 475nm. In Figure 3(a) the simulated diffraction of a linear (bell shaped) beam with a central dip (top) is compared with the simulated evolution of a dark nematicon (bottom). As expected, the low power beam diffracts (the notch gets wider), whereas the high power nematicon remains self-confined. The corresponding experimental results for extraordinary polarized light in Figure 3(b) show a low power (0.1mW) dark beam at 532nm diffracting along \(z \) (top), whereas at high power (4mW) it gives rise to a self-confined dark nematicon. The propagation of a weak (0.1mW) copolarized bell-shaped probe at 1064nm is illustrated in Figure 3(c). When colaunched in the low power dark beam, the probe diffracts as expected (top), whereas when the dark nematicon is formed, the near-infrared signal is trapped by the dark nematicon waveguide (bottom) [48].

IV. MUTUALLY GUIDING NEMATICONS

Being nonlinear waveguides, nematicons can produce confining effects not only on weaker probes, but also on other nonlinear beams and nematicons. Let us first consider the incoherent interaction of two nematicons of different wavelengths (colors), as discussed in [18], [17]. The extension of the (non-dimensional) nematic equations (1) and (2) to this two color case is [51]

\[
\begin{align*}
\frac{i\partial u}{\partial z} + & \frac{1}{2}D_u \nabla^2 u + 2A_u \theta u = 0, \\
\frac{i\partial v}{\partial z} + & \frac{1}{2}D_v \nabla^2 v + 2A_v \theta v = 0, \\
\nu \nabla^2 \theta - 2q\theta = & -2A_u |u|^2 - 2A_v |v|^2. \tag{7}
\end{align*}
\]

Here \(u \) and \(v \) are the complex valued envelopes of the electric fields of the two beams. As the two beams have different wavelengths, they have different diffraction coefficients \(D_u \) and \(D_v \), and interaction strengths \(A_u \) and \(A_v \) with the NLC. For instance, for the experiments of Alberucci et al [51] the diffraction coefficients were 0.805 for red and 0.823 for near-infrared light, respectively. The initial beams in the modes \(u \) and \(v \) can be taken to be

\[u = a_u \text{sech} \frac{\lambda_u}{w_u} e^{i\psi_u}, \quad v = a_v \text{sech} \frac{\lambda_v}{w_v} e^{i\psi_v}, \tag{8} \]
and so reduces the amplitude of their oscillations about each
orther until they share the same trajectory [18]. Due to the large
nonlocality ν, this occurs over a very long z distance as the
loss to radiation scales as $1/\sqrt{\nu}$ [52].

V. NEMATICONS GUIDING OPTICAL VORTICES

Let us now consider the guidance of an optical vortex by a
co-propagating nematicon, as studied in [19], [20], [21].
As expected on the basis of the highly nonlocal medium
response, the nematicon acts as a waveguide even for a vortex:
while an isolated vortex could not survive interaction with an
index perturbation or interface and undergo stable refraction,
in the presence of a coaxial nematicon it gets stabilized by the
nonlinear index potential and can be deviated/refracted
[19], [20], [21]. We consider a nematicon and a vortex to be
generated from polarized beams of the same wavelength, so
that we can take $D_u = D_v = 1$ and $A_u = A_v = 1$ in terms of
the two color nematic equations (5)–(7). The NLC can have
an imposed refractive index potential generated, for instance,
by voltages applied across its thickness [11], [12], [13], by
finite light beams travelling through the cell [8], [9], [10] or
nonuniform anchoring. If this index potential has the general
form $\mathcal{F}(x,z)$, the non-dimensional equations governing the
guiding of the optical vortex by the nematicon are [2], [51],
[53]

\[
\frac{\partial u}{\partial z} + \frac{1}{2} \nabla^2 u + 2\mathcal{F}(x,z)u + 2\theta u = 0, \tag{12}
\]
\[
\frac{\partial v}{\partial z} + \frac{1}{2} \nabla^2 v + 2\mathcal{F}(x,z)v + 2\theta v = 0, \tag{13}
\]
\[
\nu \nabla^2 \theta - 2q\theta = -2|u|^2 - 2|v|^2. \tag{14}
\]

The initial beams are taken to be

\[
u = a_u \text{sech} \frac{\sqrt{(x-\xi_u)^2+y^2}}{w_u} e^{i\sigma_u+iU_u(x-\xi_u)} \tag{15}
\]

\[
u = a_v r^{-\tau/w_v} e^{i\sigma_v+iU_v(x-\xi_v)+i\phi}. \tag{16}
\]

The coordinates (r, ϕ) are plane polar coordinates centered
at the initial position of the vortex $(\xi_v, 0)$. For simplicity we
assume a Gaussian refractive index variation

\[
\mathcal{F}(x,z) = AD e^{-[|x-\xi|^2+(z-z_0)^2]/W^2}. \tag{17}
\]

centered at (X, Z) [54], [55]. The initial beam (15) is again
a beam of amplitude a_u and width w_u centered at $(\xi_u, 0)$
and propagating at an initial angle $\tan^{-1} U_u$ to the z
direction in the (x,z) plane. The beam (16) is a vortex of amplitude
$a_v w_v e^{-\tau}$ and width w_v centered at $(\xi_v, 0)$ and propagating at
an angle $\tan^{-1} U_v$ to the z direction in the (x,z) plane.

The stable confinement of an optical vortex in the nematicon
waveguide is illustrated in Figure 5. The white curves in this
figure mark the curve along which the refractive index change
\mathcal{F} given by (17) is half its peak value. Fig. 5(a) shows that, in
the absence of the guiding nematicon and the refractive index
change (17), the vortex is stable, with Fig. 5(b) showing that the
refractive index change destabilizes the vortex. The vortex is
actually pulled apart by its different portions being subjected
to different local refractive indices. Propagating the optical
vortex through a nematicon waveguide has a major effect on
its stability under refraction, as visible in Figs. 5(c) and (d).
Figure 5(c) shows that the nematic is a stable waveguide on refraction by the localized refractive index change. Fig. 5(d) then shows that guiding by the nematic also results in the stable refraction of the vortex, in contrast to the instability seen in Fig. 5(b) without the nematic. The vortex undergoes some distortion on refraction, but is not pulled apart as in Fig. 5(b).

The stable routing of an optical vortex by a nematic around a localized index change can be extended to the classical optics problem of a beam refracted at a linear interface between two regions of different refractive indices [21]. To eliminate numerical instabilities, the linear interface between the regions of different refractive indices in the (x, z) plane was smoothed as

\[F(x, z) = \frac{A_D}{2} \left[1 - \tanh \frac{x - \mu_0 z - \mu_1}{W} \right]. \tag{18} \]

Figure 6 illustrates the refraction of a guided vortex, as governed by the nematic equations (12)–(14). Figs. 6(a) and (b) show the stable refraction of a vortex confined by the nematic. The white line gives the location of the refractive index interface. Fig. 6(d) illustrates the stability of the vortex under refraction after it has passed through the interface. The guiding nematic is also stable on refraction, as shown in Figure 6(c).

VI. CONCLUSIONS

Nematic liquid crystals are a highly nonlinear, nonlocal and uniaxial medium in which reconfigurable waveguides in the form of optical solitary waves, nematicons, can be formed and manipulated. Such nematicon waveguides can be used to guide low power optical signals and beams in a manner similar to other forms of optical waveguides. There are, however, a number of advantages of nematics as optical waveguides. Nematicon trajectories can be changed by the presence of other optical beams or by the application of voltages across the sample. Therefore, these light induced guides can be “redirected” and so form readdressable “circuits” to guide other signals. Nematicons can also form waveguides for high power, nonlinear optical beams, such as other nematicons. They have the further advantage of stabilizing beams, such as vortices, which can otherwise become unstable when their trajectory is changed by, for instance, regions of varying refractive index. Furthermore, since nematics are nonlinear optical beams, the nonlinear interaction between a nematicon and another beam can be used to change the trajectories of either, or both, so that the waveguide layout becomes power dependent, with potential applications to signal control and routing. Such beam-on-beam control can be achieved in a number of different ways, with fine all-optical control by adjusting beam width and power.

VII. ACKNOWLEDGEMENTS

GA thanks the Academy of Finland for financial support through the FiDiPro grant no. 282858.

REFERENCES

Fig. 5. (Color online) Evolution of nematicon and vortex for \(a_u = 0.15, w_u = 4.0, w_v = 5.0, U_u = U_v = 0.5, \xi_u = \xi_v = 0 \) at \(z = 0 \) with \(q = 2, v = 200, (X, Z) = (0, 40) \) and \(W = 20 \). (a) vortex \(|v| \) for \(a_u = 0, A_D = 0 \), (b) vortex \(|v| \) for \(a_u = 0, A_D = 0.25 \), (c) nematicon \(|u| \) for \(a_u = 0.75, A_D = 0.25 \), (d) vortex \(|v| \) for \(a_u = 0.75, A_D = 0.25 \).

Fig. 6. (Color online) Refraction of a nematicon and a vortex for the initial values \(a_u = 0.45, a_v = 0.25, w_u = 5.0, w_v = 5.5, U_u = U_v = 0.75, \xi_u = \xi_v = 0, A_D = -0.1, v = 200, q = 2, \mu_0 = 2.0, \mu_1 = -25.0 \) and \(W = 2.0 \). (a) evolution of nematicon \(|u| \) in \((x, z) \) plane, white line: interface, (b) evolution of vortex \(|v| \) in \((x, z) \) plane, white line: interface, (c) nematicon \(|u| \) at \(z = 60 \), (d) vortex \(|v| \) at \(z = 60 \).
Melbourne and the University of New South Wales. He was a lecturer in the Department of Mathematics and Applied Statistics at the University of Wollongong between 1987 and 1990. Since 1990 he has been in the School of Mathematics at the University of Edinburgh, first as a lecturer (1990–1999), senior lecturer (1999–2004), reader (2004–2009) and finally professor of nonlinear waves (2009–present). He is the author of 4 book chapters and 122 articles. His research interests are in the general area of linear and nonlinear waves and nonlinear optics, including solitons, water waves, bores and waves in oceanography and meteorology.

Professor Smyth is a member of the American Physical Society, the Optical Society of America, the Society for Industrial and Applied Mathematics and the Australian Mathematical Society. He is a Senior Member of the Optical Society of America.