Probabilistic Linear Discriminant Analysis for Acoustic Modeling

Citation for published version:

Digital Object Identifier (DOI):
10.1109/LSP.2014.2313410

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Signal Processing Letters

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Probabilistic Linear Discriminant Analysis for Acoustic Modelling

Liang Lu, Member, IEEE and Steve Renals, Fellow, IEEE

Abstract—In this letter, we propose a new acoustic modelling approach for automatic speech recognition based on probabilistic linear discriminant analysis (PLDA), which is used to model the state density function for the standard hidden Markov models (HMMs). Unlike the conventional Gaussian mixture models (GMMs) where the correlations are weakly modelled by using the diagonal covariance matrices, PLDA captures the correlations of feature vectors in subspaces without vastly expanding the model. It also allows the usage of high dimensional feature input, and therefore is more flexible to make use of different type of acoustic features. We performed the preliminary experiments on the Switchboard corpus, and demonstrated the feasibility of this acoustic model.

Index Terms—probabilistic linear discriminant analysis, acoustic modelling, automatic speech recognition

I. INTRODUCTION

Speech recognition systems based on hidden Markov models (HMMs) with Gaussian mixture model (GMM) output distributions defined the state-of-the-art in acoustic modelling for about 20 years [1]–[3]. GMM-based systems have straightforward, easily parallelizable algorithms for training and adaptation, but have a limited ability to capture the correlations in the acoustic space since diagonal covariance matrices are normally used for computational reasons. Although a variety of acoustic feature representations have been investigated [4], [5] high-dimensional features lead to a significant expansion in model size. One way to address these limitations is the use of neural networks (NNs) which can learn the correlations within feature vectors [6]. NNs typically use high-dimensional features covering several frames of acoustic context [7]–[9], and deep neural networks (DNNs) have achieved significant reductions in word error rate (WER) across many datasets [10].

In this letter we propose a new acoustic model, based on the GMM, which is able to capture acoustic correlations and to use high-dimensional features. The approach is based on probabilistic linear discriminant analysis (PLDA), originally proposed for face recognition [11], and now heavily employed for speaker recognition based on i-vectors [12]–[14]. PLDA – which is closely related to joint factor analysis (JFA) [15] used for speaker recognition – is a probabilistic extension of linear discriminant analysis (LDA). In speaker or face recognition, PLDA factorizes the variability of the observations for a specific class (e.g. one speaker) using an identity variable – which is shared by all the observations of this class, and a channel variable that depends on each observation – which is used to explain the variability caused by the channel noise to each observation. However, the main difference is that JFA operates in the GMM mean supervector domain while the PLDA used in this work is operated directly in the the acoustic feature domain.

We extended PLDA to estimate the HMM state density functions: the PLDA identity variables depend only on the HMM states, while the acoustic observations depend on both the identity variables and channel variables. Since both types of latent variable can be estimated in a low-dimensional subspace, it is feasible for PLDA to be deployed in a high-dimensional feature space. In this letter we present the PLDA-HMM model and a training algorithm, together with experiments on Switchboard [16].

II. PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS

PLDA is formulated by a generative model, where an acoustic frame vector \(y_t \) from the \(j \)-th HMM state at time index \(t \) can be expressed as

\[
y_{t|j} = U x_{jt} + G z_j + b + \epsilon_{jt}, \quad \epsilon_{jt} \sim \mathcal{N}(0, \Lambda),
\]

where \(z_j \) is the state-dependent identity variable (referred as state variable for brevity) shared by the whole set of acoustic frames generated by the \(j \)-th state. \(x_{jt} \) is the channel variable which explains the per-frame variance. In this work, we do not consider the correlations between the latent variables to simplify model training. We assume that their prior distributions are both \(\mathcal{N}(0, I) \) for ease of Bayesian inference [11], while more general forms of the PLDA prior distribution have been investigated for speaker recognition [12]. \(U \) and \(G \) are two low rank matrices which span the subspaces to capture the major variations for \(x_{jt} \) and \(z_j \) respectively. They are analogous to the within-class and between-class subspaces in the standard LDA formulation, but are estimated probabilistically. \(b \) denotes the bias and \(\epsilon_{jt} \) is the residual noise which is Gaussian with a zero mean and diagonal covariance.

A. Mixture of PLDAs

As a single PLDA model can only approximate one Gaussian distribution, we can use a mixture of PLDAs which can be written:

\[
y_{t|m} = U_m x_{jm} + G_m z_{jm} + b_m + \epsilon_{jm},
\]

where \(1 \leq m \leq M \) is the component index. Let \(c \) denote the component indicator variable, with prior distribution (weight)
Fig. 1. Graphical model of mixture of PLDAs for the j-th HMM state. T_{jm} is the number of frames generated from the state j and component m.

$P(c = m) = \pi_m$. To avoid clutter we write $P(c = m|y_t)$ as $P(m|y_t)$. This model, which is shown in Figure 1, is related to the mixture of factor analysis model used for speaker and speech recognition [17], [18].

B. Covariance modelling

The proposed PLDA model can learn feature correlations, as can be seen from the marginal prior distribution of y_t given state j and component m under the independence assumption between x_{jmt} and z_{jm}

$$P(y_t|j, m) = \int P(y_t|x_{jmt}, z_{jm}, j, m) \times P(x_{jmt})P(z_{jm})dx_{jmt}dz_{jm}$$

$$= \mathcal{N}(y_t; b_m, U_mU_m^T + G_mG_m^T + \Lambda_m)$$

Using low-rank matrices for U_m and G_m allows this model to be used in a high-dimensional acoustic feature space, in contrast to other full covariance modelling approaches such as semi-tied covariance matrices [19], diagonal priors [20] or sparsity constrained [21]. Other approaches which use a low-rank matrix approximation include EMLLT [22] and SPAM [23]. The PLDA model is also closely related to the subspace GMM (SGMM) [24], and the factor analysed HMM (FAHMM) [25]. In fact, if we do not consider the softmax function for the GMM weights, the SGMM acoustic model may be represented as

$$y_t|j, m = G_mz_j + \epsilon_{jmt}, \quad \epsilon_{jmt} \sim \mathcal{N}(0, \Lambda_m)$$

where the state-dependent variables z_j are tied across the Gaussian components, although they can be optionally mixed up to improve model capacity. SGMMs directly use globally shared full covariance matrices without introducing another set of projection matrices to capture the frame level correlations. However, the SGMM is computationally expensive when in the case of high-dimensional features. Similar to SGMMs, the PLDA-based model can also share the state-independent parameters across domains, such as for cross-lingual speech recognition [26].

The FAHMM may be represented as

$$y_t|j, m = C_jx_{jmt} + \epsilon_{jmt}, \quad \epsilon_{jmt} \sim \mathcal{N}(\mu_{jm}, \tilde{\Lambda}_{jm})$$

$$x_{jmt} \sim \mathcal{N}(\mu_{jm}, \Sigma_{jm})$$

where C_j is analogous to U_m, but is tied to each HMM state rather than being globally shared. ϵ_{jmt} and x_{jmt} are modelled by two separate GMMs for each HMM state, which makes the inference problem for FAHMM more complex compared to a PLDA model.

III. MODEL TRAINING

Since the state-dependent and state-independent parameters of a PLDA-based model are correlated, there is no closed form solution to update them in a joint fashion. However, an expectation-maximization (EM) algorithm can be employed.

A. Likelihoods

In order to accumulate the statistics to update the model parameters, we first need to compute the likelihoods of the model given the acoustic data, and the posterior distributions of the latent variables x_{jmt} and z_{jm} given the current model estimate. Depending on whether the latent variables are integrated out or not, the likelihood can be estimated as follows.

1) Point estimate: This approach refers to using the maximum a posteriori (MAP) estimate of the latent variables x_{jmt} and z_{jm} to compute the likelihood function

$$p(y_t|x_{jmt}, z_{jm}, j, m) = \mathcal{N}(y_t; U_mx_{jmt} + G_mz_{jm} + b_m, \Lambda_m)$$

2) Uncertainty estimate: This approach refers to marginalising out the channel variable x_{jmt} using its prior distribution, in order to compensate for the uncertainties in the estimation of x_{jmt}, resulting in the following likelihood function:

$$p(y_t|z_{jm}, j, m) = \int p(y_t|x_{jmt}, z_{jm}, j, m)P(x_{jmt})dx_{jmt}$$

$$= \mathcal{N}(y_t; G_mz_{jm} + b_m, U_mU_m^T + \Lambda_m).$$

This method is similar to the channel integration evaluation method used for JFA based speaker recognition [27], [28]. Note that the likelihood can be efficiently computed without inverting matrices $U_mU_m^T + \Lambda_m$ [27], which makes it feasible when y_t is high dimensional. It is also possible to marginalise out the state variable z_{jm} alone or jointly with x_{jmt} similar as the methods used in [28].

B. Posteriors

Given the likelihoods, we then compute the posterior distributions of the latent variables x_{jmt} and z_{jm}, using conjugate priors. The posterior distribution of x_{jmt} is given by

$$P(x_{jmt}|y_t, z_{jm}, j, m) = \frac{p(y_t|x_{jmt}, z_{jm}, j, m)P(x_{jmt})}{\int p(y_t|x_{jmt}, z_{jm}, j, m)P(x_{jmt})dx_{jmt}}.$$

With some algebraic rearrangement, we can obtain

$$P(x_{jmt}|y_t, z_{jm}, j, m) = \mathcal{N}(x_{jmt}; V_m^{-1}w_{jmt}, V_m^{-1})$$

$$V_m = I + U_m^T\Lambda_m^{-1}U_m$$

$$w_{jmt} = U_m^T\Lambda_m^{-1}(y_t - G_mz_{jm} - b_m)$$

$$\mu_{jm} = P(\mu_{jm}|\mu_{jm}, \Sigma_{jm})$$

$$\Lambda_m = P(\Lambda_m|\mu_{jm}, \Sigma_{jm})$$

$$\nu_m = P(\nu_m|\mu_{jm}, \Sigma_{jm})$$

$$\Sigma_m = P(\Sigma_m|\mu_{jm}, \Sigma_{jm})$$

where Σ_{jm} is the variance of the j-th component of the m-th GMM.

$$P(\mu_{jm}|\mu_{jm}, \Sigma_{jm}) = \mathcal{N}(\mu_{jm}, \Sigma_{jm})$$

$$P(\Lambda_m|\mu_{jm}, \Sigma_{jm}) = \mathcal{W}(\Lambda_m|\mu_{jm}, \Sigma_{jm})$$

$$P(\nu_m|\mu_{jm}, \Sigma_{jm}) = \mathcal{J}_m(\nu_m|\mu_{jm}, \Sigma_{jm})$$

$$P(\Sigma_m|\mu_{jm}, \Sigma_{jm}) = \mathcal{D}(\Sigma_m|\mu_{jm}, \Sigma_{jm})$$

where \mathcal{W} is the Wishart distribution and \mathcal{J}_m is the inverse Wishart distribution.
Similarly, we can derive the posterior distribution of \(\mathbf{z}_{jm} \) given all the observations \(\mathbf{y}_t \) and the latent variables \(\mathbf{x}_{jmt} \) that \(\mathbf{z}_{jm} \) depends on (cf. Figure 1):

\[
P(\mathbf{z}_{jm}|\mathbf{y}_t, \mathbf{x}_{jmt}, j, m, t = 1, \ldots, T_{jm}) = \mathcal{N}(\mathbf{z}_{jm}|\mathbf{F}_{jm}^{-1}\mathbf{d}_{jm}, \mathbf{F}_{jm}^{-1}) \quad (14)
\]

\[
\mathbf{F}_{jm} = \mathbf{I} + \sum_t \gamma_{jmt}\mathbf{G}_m\mathbf{L}_m^{-1}\mathbf{G}_m \quad (15)
\]

\[
\mathbf{d}_{jm} = \mathbf{G}_m\mathbf{L}_m^{-1}\sum_t \gamma_{jmt}(\mathbf{y}_t - \mathbf{U}_m\mathbf{x}_{jmt} - \mathbf{b}_m). \quad (16)
\]

Where \(\gamma_{jmt} \) denotes the per-frame posterior probability, given as (using the uncertainty likelihood estimation (8))

\[
\gamma_{jmt} = P(j, m|\mathbf{y}_t) = P(j|\mathbf{y}_t)\frac{\pi_m p(\mathbf{y}_t|\mathbf{z}_{jm}, j, m)}{\sum_m \pi_m p(\mathbf{y}_t|\mathbf{z}_{jm}, j, m)} \quad (17)
\]

where \(P(j|\mathbf{y}_t) \) is the HMM state posterior which can be obtained using the forward-backward algorithm\(^1\).

C. Model Update

We may use the EM algorithm to update the model parameters of a PLDA-based acoustic model. For instance, the auxiliary function to update \(\mathbf{U}_m \) is

\[
\mathcal{Q}(\mathbf{U}_m) = \sum_j \int \left[P(j, m|\mathbf{y}_t)P(\mathbf{x}_{jmt}|\mathbf{y}_t, \mathbf{z}_{jm}, j, m) \times \log p(\mathbf{y}_t|\mathbf{x}_{jmt}, \mathbf{z}_{jm}, j, m) \right] d\mathbf{x}_t
\]

\[
= \sum_j \gamma_{jmt} \left[-\frac{1}{2}\mathbf{x}_{jmt}^T\mathbf{U}_m^{-1}\mathbf{x}_{jmt} + \mathbf{x}_{jmt}^T\mathbf{U}_m^{-1}(\mathbf{y}_t - \mathbf{G}_m\mathbf{z}_{jm} - \mathbf{b}_m) + k \right]
\]

\[
= \sum_j \gamma_{jmt} \text{Tr}\left(\mathbf{U}_m^{-1}\left(-\frac{1}{2}\mathbf{U}_mE[\mathbf{x}_{jmt}\mathbf{x}_{jmt}^T] + \mathbf{U}_m^T(\mathbf{y}_t - \mathbf{G}_m\mathbf{z}_{jm} - \mathbf{b}_m)\mathbf{U}_m^T\mathbf{x}_{jmt} \right) \right) + k
\]

where \(k \) is a constant value that is independent of \(\mathbf{U}_m \). \(\gamma_{jmt} \) denotes the component posterior probability \(P(j, m|\mathbf{y}_t) \), and \(E[\cdot] \) is the expectation operation over the posterior distribution of \(\mathbf{x}_{jmt} \). By setting \(\partial\mathcal{Q}(\mathbf{U}_m)/\partial\mathbf{U}_m = 0 \) we obtain

\[
\mathbf{U}_m = \left(\sum_j \gamma_{jmt}(\mathbf{y}_t - \mathbf{G}_m\mathbf{z}_{jm} - \mathbf{b}_m)\mathbf{E}[\mathbf{x}_{jmt}] \right) \times \left(\sum_j \gamma_{jmt}\mathbf{E}[\mathbf{x}_{jmt}\mathbf{x}_{jmt}^T] \right)^{-1} \quad (18)
\]

The updates for \(\{\mathbf{G}_m, \mathbf{b}_m, \mathbf{L}_m\} \) can be derived similarly.

\(^1\)In this work we used Viterbi training, so the value of \(P(j|\mathbf{y}_t) \) is binary.

TABLE I

<table>
<thead>
<tr>
<th>A Training Recipe for a PLDA-HMM Acoustic Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Train a diagonal GMM and initialize (\mathbf{G}_m, \mathbf{U}_m, \mathbf{b}m) and (\mathbf{L}m). Set (\mathbf{z}{jm}) and (\mathbf{x}{jmt}) to be Gaussian as (\mathcal{N}(0, \mathbf{I})).</td>
</tr>
<tr>
<td>2. Update (\mathbf{U}_m, \mathbf{b}_m) and (\mathbf{L}_m) using the model as equation (19) for 4 ~ 6 iterations.</td>
</tr>
<tr>
<td>3. Select the subset of components for each frame with the highest likelihood using the model from step 2.</td>
</tr>
<tr>
<td>4. Update the posterior distribution of (\mathbf{z}{jm}) and (\mathbf{x}{jmt}) given the current estimate of (\mathbf{G}_m, \mathbf{U}_m, \mathbf{b}_m, \mathbf{L}_m).</td>
</tr>
<tr>
<td>5. Accumulate the statistics to update of (\mathbf{G}_m, \mathbf{U}_m, \mathbf{b}_m, \mathbf{L}_m).</td>
</tr>
<tr>
<td>6. Optionally re-align the training data using the current model.</td>
</tr>
<tr>
<td>7. Go to step 4 until convergence.</td>
</tr>
</tbody>
</table>

D. Training Recipe

To obtain appropriate model resolution in the feature space it is necessary to use a relatively large number of components in the PLDA-based model, e.g. \(m = 400 \) in (2). However, this can result in data sparsity when estimating the state-dependent model parameters \(\mathbf{z}_{jm} \). We may tie \(\mathbf{z}_{jm} \) across the components, as in the SGMM (4); however, in this work we simply set the distribution of \(\mathbf{z}_{jm} \) to be its prior if there is not enough training data. This approach is preferred in order to make it easier to scale the model to a very large training dataset and to avoid sub-state splitting as used in SGMMs [24].

To reduce the computational cost, we do not accumulate statistics over all the PLDA components, but only over those components (typically 10–20) which have higher posterior probabilities for each acoustic frame [24]. This is a reasonable approximation since most of the components have very small posterior probabilities. We selected the subset of components for each frame according to its likelihood to a mixture of factor analysers [29] based global background model

\[
\mathbf{y}_t|m = \mathbf{U}_m\mathbf{x}_{mt} + \mathbf{b}_m + \epsilon_{mt} \quad (19)
\]

This is analogous to the universal background model used in SGMMs for Gaussian selection, but is trained in the low dimensional features space rather than using full covariance.

As stated before, the state and channel variables are initialized as Gaussian distributions \(\mathcal{N}(0, \mathbf{I}) \). The remaining PLDA parameters may be initialized randomly, however, this can limit reproducibility. In this work, we used a diagonal covariance GMM which has the same number of components as the PLDA to initialize the parameters \(\mathbf{G}_m, \mathbf{U}_m, \mathbf{b}_m, \) and \(\mathbf{L}_m \). More precisely, \(\mathbf{b}_m \) and \(\mathbf{L}_m \) are initialized by the corresponding mean and covariance of the GMM. We then take the singular value decomposition of all the GMM means and use the principal eigenvectors to initialize the matrices \(\mathbf{U}_m \) and \(\mathbf{G}_m \). We have observed this to be a good starting point to train the model in our experiments. The full training recipe is summarised in Table I.

IV. EXPERIMENTS

We performed experiments on the Switchboard corpus [16], where the training set contains about 300 hours of conversational telephone speech. The Hub-5 Eval 2000 data [30] is used as the test set, which contains the Switchboard (SWB)
Table II shows the results of using a 33 hour subset of the training data. In this case, there are about 2,400 clustered triphone states in the GMM systems, corresponding to about 30,000 Gaussians. The PLDA and SGMM systems have a similar number of clustered triphone states, and a 400-component background model is used for each. The state vector of SGMMs and latent variables of PLDA are all 40-dimensional. We used 20,000 sub-states in the SGMM system, and for PLDA systems, we have also compared the results of using point or uncertainty estimation discussed in section III-A. All of these systems were trained using the maximum likelihood criterion without speaker adaptation.

After estimating the optimal system configurations for different acoustic models, we then performed experiments using the full training set of 300 hours (Table III). We used concatenated static MFCC_0 of 7 input frames, followed by LDA and STC transformation for the GMM system. There were around 8,000 clustered triphone states, with about 200,000 Gaussians. The SGMM system had 120,000 sub-states, and the PLDA system used 9 input frames of static MFCC_0. Again, they have a similar number of clustered triphone states as the GMM system.

V. DISCUSSION AND CONCLUSION

Our experimental results highlight the flexibility of the PLDA acoustic model which can use a variable number of potentially highly correlated input frames without requiring full covariance modelling. Compared to the GMM system using LDA and an STC transform, the PLDA system resulted in a lower WER given the same input features. In terms of likelihood computation, using uncertainty estimation leads to significantly lower WER compared to using point estimation. The PLDA systems obtained higher WER compared with the SGMM systems, however, using both the small and large training sets. As mentioned in Section II-B, we do not tie the state-dependent variables z_{jm} across all the components as in the SGMM, in order to scale the model easily to large training sets. However, this comes at the cost that we cannot balance the size of model according to the amount of training data, in contrast to the sub-state splitting used in SGMMs. We may achieve higher recognition accuracy by using a similar method to tie the state dependent variables, an issue for future work.

In this letter, we have proposed a new acoustic modelling approach based on probabilistic linear discriminant analysis (PLDA). This model is able to use multiple input feature frames by using subspace covariance modelling. We have presented the algorithm and the training recipe to build a PLDA-based acoustic model, and have also shown some preliminary results on the Switchboard corpus which illustrates the potential of this model. In the future, we shall investigate other training approaches such as speaker adaptive training and discriminative training, as well as using different feature representations, for instance, the bottleneck features that are obtained from neural networks.
REFERENCES

