Exploiting GPU Hardware Saturation for Fast Compiler Optimization

Alberto Magni
School of Informatics
University of Edinburgh
United Kingdom
a.magni@sms.ed.ac.uk

Christophe Dubach
School of Informatics
University of Edinburgh
United Kingdom
christophe.dubach@ed.ac.uk

Michael O’Boyle
School of Informatics
University of Edinburgh
United Kingdom
mob@inf.ed.ac.uk

ABSTRACT

Graphics Processing Units (GPUs) are efficient devices capable of delivering high performance for general purpose computation. Realizing their full performance potential often requires extensive compiler tuning. This process is particularly expensive since it has to be repeated for each target program and platform.

In this paper we study the utilization of GPU hardware resources across multiple input sizes and compiler options. In this context we introduce the notion of hardware saturation. Saturation is reached when an application is executed with a number of threads large enough to fully utilize the available hardware resources. We give experimental evidence of hardware saturation and describe its properties using 16 OpenCL kernels on 3 GPUs from Nvidia and AMD. We show that input sizes that saturates the GPU show performance stability across compiler transformations.

Using the thread-coarsening transformation as an example, we show that compiler settings maintain their relative performance across input sizes within the saturation region. Leveraging these hardware and software properties we propose a technique to identify the input size at the lower bound of the saturation zone, we call it Minimum Saturation Point (MSP). By performing iterative compilation on the MSP input size we obtain results effectively applicable for much large input problems reducing the overhead of tuning by an order of magnitude on average.

Categories and Subject Descriptors

D.3.4 [Programming languages]: Processors — Compilers, Optimization

General Terms

Experimentation, Measurement, Performance

Keywords

OpenCL, GPGPU, iterative compilation, optimization

1. INTRODUCTION

Graphic Processing Units (GPUs) are now widely used due to their ability to deliver high performance for a large class of parallel applications. Such devices are most suited to solve problems larger in size than traditional multicore CPUs, taking advantage of the hundreds of cores available. Writing efficient code for GPUs is challenging due to the complexity of the underlying parallel hardware. Achieving high levels of performance requires expensive tuning by the programmer either evaluating manually multiple code versions or using semi-automatic tools. This effort has to be replicated for every target program and architecture. Given the variety of devices now available and the high rate of hardware update the tuning cost is a significant problem.

To reduce tuning time, application programmers often evaluate many different compiler or code transformations on problem sizes smaller than their target. The aim is to have quick feedback on what are the most effective optimization options. This methodology assumes that code transformations that work well on a small problem size will work well on the larger target size. The testing input size must be chosen with care: too small and it might not match the behaviour of the larger target size, too large and it makes tuning too expensive. Finding the right input size on which to perform tuning is a crucial issue.

To tackle this problem we introduce the concept of saturation of hardware resources for graphics processors. Saturation is achieved when an application is run with an input size (i.e. number of threads) sufficiently large to fully utilize hardware resources. Programs running in such a region of the input size space usually scale according to the complexity of the problem and show performance stability across program optimizations. This means that code transformations effective for a small input size in the saturation zone are usually effective for very large input sizes too. We develop a search strategy that exploits the Minimum Saturation Point (MSP) to reduce reduce the total tuning time necessary to find good optimization settings.

In this work we describe the property of saturation in terms of the throughput metric: the amount of work performed by a parallel program per unit of time, showing how this reaches stability in the saturation zone. In summary the paper makes the following contributions:
We show the existence of saturation for 16 OpenCL benchmarks on three GPU architectures: Fermi and Kepler by Nvidia and Tahiti by AMD.

We show that the hardware saturation can be successfully exploited to speedup iterative tuning of applications leading to a reduction of search space of an order of magnitude.

The rest of the paper is organized as follows: section 2 motivates the problem with an example. Section 3 describes our experimental setup and section 4 introduces the concept of saturation point. Section 5 describes a technique to identify the lower bound of the saturation area using the throughput metric while section 6 presents detailed results. Section 7 presents the related work, finally section 8 concludes the paper.

2. MOTIVATING EXAMPLE

This section introduces the problem by showing how an OpenCL program reacts when performing iterative compilation on multiple input sizes. As an example we use the floydWarshall program running on the AMD Tahiti GPU and the optimization space of the thread coarsening transformation [6]. Figure 1 shows the behavior of our benchmark as a function of its input size. For OpenCL workloads there is direct mapping between the input size and the overall number of instantiated threads. We measure the problem size using the total number of instantiated threads.

Figure 1a shows the execution time of the application as a function of the input size. The largest data size, with 67 million threads is the input size we want to optimize for. Unsurprisingly this leads to the longest execution time. If we were to tune this application by evaluating multiple versions, the time required to search the optimization space would be directly proportional to the execution time. As a result, it would be preferable to tune the application on the smallest possible input size.

However, the performance of the best optimization settings for a given problem size does not transfer across all input sizes as shown in figure 1b. The best optimization settings for the smallest input size achieves only a third of the performance of the best one corresponding to the largest input size. This means, that if the application were tuned for the smallest input size, it would run three times slower than the best achievable on the large input size. A good trade-off is an input size of 1M threads achieving performance within few percents of the largest input size. This represents a savings of 67× in search time (67M/1M). The question is how can we find the optimal input size without having to conduct the search for all input sizes in first place.

One way to solve this problem is to look at the throughput metric, which is typically expressed as the number of operations executed per second (the formal definition of this metric is given in section 4). Figure 1c shows the throughput of the application as a function of the problem size. As can be seen, the throughput starts very low and increases with the problem size. It flattens out at around 4M threads which corresponds to the saturation of the hardware resources. We call this point the minimum saturation point (MSP), given that passed this point throughput remains constant. Coincidentally, the MSP is smaller than the target input size and leads to performance on par with the best achievable when searching on the largest input size.

Figure 1. Execution time a, relative performance b and throughput c of the program floydWarshall running on AMD Tahiti as a function of the input size (i.e. total number of threads). Notice the log-scale of the x-axes.

The remainder of the paper characterizes hardware saturation using the throughput metric and shows that it can be used successfully to reduce tuning time.

3. EXPERIMENTAL SETUP

3.1 Benchmarks and Platforms

In this paper, we use 16 OpenCL benchmarks from various sources, as shown in Table 1. In the case of programs from the Parboil benchmark suite we used the opencl_base version. The table reports the range of sizes for the input problem, these are reported in terms of the total number of launched threads. For the rest of the paper we will consider the largest problem size as the target one, i.e. the one that we want to optimize the program for. We used three plat-
3.2 Optimization Space

The parameters of the thread-coarsening transformation define our search space. Coarsening can be thought as loop unrolling for the OpenCL parallel loop. It works by increasing the amount of work performed by a single thread by merging multiple threads of the original application and consequently reducing the overall number of running threads. As a convention, for the remainder of the paper we refer to input size the number of threads of the original uncoarsened application. Coarsening is controlled by three parameters:

- **factor**: define how many threads to merge together, *i.e.* by how much to reduce the thread space,
- **stride**: define how to remap threads after the transformation so to preserve coalescing of memory accesses,
- **local-work-group size**: define how many threads are scheduled concurrently onto a single core.

We tuned the transformation by considering all combination of our parameters leading to about 150-300 configurations for one dimensional kernels and 1000-2000 configuration for two dimensional kernels depending on the device limitation and the problem size. These add up to about 160000 configurations evaluated across all input sizes, programs and devices. This large evaluation of the coarsening transformation is made possible by our portable compiler toolchain [6].

4. THROUGHPUT AND HARDWARE SATURATION

This section defines the concept of hardware saturation and presents its features.

Graphics processors are highly parallel machines containing a large amount of computing cores. To harness the computing power of GPUs applications must run large amount of threads to fully exploit all the hardware resources. Programs running a small number of threads might show a behavior which is not representative of larger ones due to under utilization of the hardware resources. We describe this behavior using the notion of throughput which we formally defined as:

\[
\text{throughput} = \frac{\text{units of work}}{\text{execution time}}
\]

where units of work is a metric which depends on the algorithmic complexity of the application. In case of linear benchmarks, this corresponds to the number of input elements processed by the kernel:

\[
\text{units of work} = \text{input size},
\]

In case of non-linear programs the input size is scaled according to the complexity. For example the `nbody` program is quadratic in complexity and

\[
\text{units of work} = (\text{input size})^2.
\]

Note that in our benchmarks the total number of threads is a linear function of the input size.

Figure 2 shows the throughput as a function of the total number of running threads for each benchmark and our three platforms. Consider, for example, the first plot in figure 2, *binarySearch* running on Fermi. This graph clearly shows that the throughput increases along with the problem size (*i.e.* total number of threads) until 50 million threads. Passed this size the throughput reaches a plateau and stabilizes at around 180 billion units of work per second. We call this region of the input space saturation region. From the shape of the plot we can make two observations. The first one is that a program run with a small number of threads does not behave in the same way as with a large number. In particular small input sizes are in proportion slower than large ones, showing very low throughput values. Second, the fact that the throughput stabilizes for sufficiently large input sizes shows that we hit the hardware saturation limit of the GPUs and that applications scale close to the theoretical algorithmic complexity.

4.1 Outliers Analysis

The Tahiti column in figure 2 shows a number of outliers which do not show a plateau. Examples of these are: *mvUncoal, sgemm, stencil, mt* and *ntlLocal*. Notice that all these programs are memory bound. We investigate these cases using performance counters. Figure 4 reports the results of our analysis for *sgemm*. The top sub-figure shows the throughput performance along with the value of the performance counter MemUnitBusy as a function of the total number of threads. *MemUnitBusy* is the hardware counter that measures the percentage of execution time that the memory unit is busy processing loads and stores. We can see that there is a very high correlation between the two curves. This signifies that performance for large input sizes is limited by the memory functional unit, which is unable to handle efficiently a large amount of requests coming from different threads. As shown in figure 4b the coarsening transformation mitigates this problem, leading to much higher performance. The throughput curve still follows the hardware
Figure 2. Throughput, defined as billions units of work processed per unit of time (see formula 1), as a function of the total number of threads (i.e. the problem input size) for all the programs and the three devices.

Figure 3. Performance of the best optimizations settings found for a given input size evaluated on the largest input size.
counter without dropping for higher input sizes. A similar analysis can be performed for programs such as mvUncoal where the uncoalesced memory access pattern highlights the problem even more. The mvUncoal benchmark is described in more detail in section 6.

5. THROUGHPUT-BASED TUNING

Taking advantage of the saturation properties described earlier, this section introduces a methodology to accelerate iterative compilation.

5.1 Tuning Across Input Sizes

We now show how the best compiler settings found for a given input size perform on the largest input size. Figure 3 shows this performance on all benchmarks and devices for the full compiler transformation space described in section 3. For example a value of 1 for input size \(x \) means that the best performing coarsening configuration for \(x \) is the best for the target size as well. A value of 0.5 means that the best configuration on \(x \) gives half of the maximum performance when evaluated on the target. By definition the line reaches 1 for the largest input size.

The overall trend for performance is to increase as the tuning input size gets close to the target one. After a certain input size, performance reaches a plateau and stabilizes in most cases. Small input sizes tends to have low and unpredictable performance while large input sizes have performance close to that of the largest input size. This means that for input sizes in that saturate the device performance reaches stability. This can be clearly seen when comparing figure 2 and 3; when throughput saturates, so does the performance.

5.2 Throughput and Coarsening Factor

Before introducing our search technique, we consider the impact of the thread coarsening factor on the throughput as shown in figure 5. This figures shows the throughput for five different values of the factor parameter for the coarsening transformations (labeled on the right). The relative performance of the different coarsening factors changes across input sizes until saturation is reached between 1M and 4M threads. For all coarsening factors, the throughput reaches a plateau and stabilizes after 1M threads. In this example the factors 8 and 16 are the best parameters for problem sizes of about 4 million threads remaining stable up to 67 million threads.

This signifies that performing a search for the best parameter at the left of the saturation point will probably lead to bad choices when evaluating on the largest input size. On the contrary, performing beyond the saturation should lead to good choices when evaluated on the largest input size.

5.3 Throughput Based Input Size Selection

We now propose a tuning technique that takes advantage of the saturation plateau that exists for both performance and throughput. We first build the throughput curve by (1) running the benchmark using the default compiler parameters on multiple input sizes within the range given in table 1. Once the throughput curve is built, (2) we select the smallest input size that achieves a throughput within a given threshold of the maximum one. The threshold is used to deal with noise in the experimental data and small fluctuations in execution time around the throughput plateau. The resulting selected input size is our Minimum Saturation Point (MSP)
and are presented in Table 3 for all the benchmarks and devices. The last step consist of (3) conducting the tuning or search at the MSP. Following this methodology, we expect that the best optimization settings found at the MSP leads to performance in par with the best for the largest input size. We refer to this searching technique as MSP-Tuning.

The next section presents the results obtained applying the proposed tuning technique.

6. RESULTS

This section provides detailed results for the speedups in kernel execution time and in search time given by MSP-Tuning.

6.1 Search Speedup Definition

In our experiments the baseline to compute kernel speedups is represented by the execution time of the application run without applying the coarsening transformation (i.e. coarsening factor 1) and with the default local work group size by the benchmark suite. In all our experiments the problem size we are optimizing for is the largest of the range we record in Table 1, we call this the *target* problem size. Figure 6 summarizes the results of MSP-Tuning described in section 5 for our three OpenCL devices. Consider the top barplot in each subfigure. It reports the speedup over the baseline attainable using MSP-Tuning compared to the maximum speedup attainable with thread-coarsening. The second barplot reports the speedup in the search optimal configuration. The speedup is computed using this formula:

\[
\text{Search speedup} = \frac{\text{Time}_{\text{target}}}{\text{Time}_{\text{MSP}} + \text{Time}_{\text{throughput}}} \quad (2)
\]

Here \(\text{Time}_{\text{target}}\) is the time spent exhaustively searching for the best configuration on the *target* input size. \(\text{Time}_{\text{MSP}}\) is the search time on the MSP input size and \(\text{Time}_{\text{throughput}}\) is the time spent building the throughput curve.

Table 3. Minimum Saturation Point identified by the technique presented in section 5 for all the benchmarks and architectures. MSP is expressed in number of threads.

<table>
<thead>
<tr>
<th>Program name</th>
<th>Fermi</th>
<th>Kepler</th>
<th>Tahiti</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) binarySearch</td>
<td>8M</td>
<td>16M</td>
<td>8M</td>
</tr>
<tr>
<td>2) blackholes</td>
<td>1M</td>
<td>1M</td>
<td>1M</td>
</tr>
<tr>
<td>3) convolution</td>
<td>262K</td>
<td>802K</td>
<td>1M</td>
</tr>
<tr>
<td>4) dwtHaar1D</td>
<td>262K</td>
<td>524K</td>
<td>1M</td>
</tr>
<tr>
<td>5) fastWalshTrans</td>
<td>2M</td>
<td>2M</td>
<td>1M</td>
</tr>
<tr>
<td>6) floydWarshall</td>
<td>4M</td>
<td>4M</td>
<td>1M</td>
</tr>
<tr>
<td>7) mriQ</td>
<td>524K</td>
<td>131K</td>
<td>65K</td>
</tr>
<tr>
<td>8) mt</td>
<td>2.3M</td>
<td>4M</td>
<td>1M</td>
</tr>
<tr>
<td>9) mtLocal</td>
<td>1M</td>
<td>1M</td>
<td>262K</td>
</tr>
<tr>
<td>10) mvCoal</td>
<td>16K</td>
<td>16K</td>
<td>16K</td>
</tr>
<tr>
<td>11) mvUncoal</td>
<td>16K</td>
<td>1K</td>
<td>1K</td>
</tr>
<tr>
<td>12) nbody</td>
<td>32K</td>
<td>65K</td>
<td>131K</td>
</tr>
<tr>
<td>13) reduce</td>
<td>1M</td>
<td>1M</td>
<td>2M</td>
</tr>
<tr>
<td>14) sgemm</td>
<td>36K</td>
<td>65K</td>
<td>1M</td>
</tr>
<tr>
<td>15) sobel</td>
<td>262K</td>
<td>262K</td>
<td>1M</td>
</tr>
<tr>
<td>16) stencil</td>
<td>4M</td>
<td>4M</td>
<td>4M</td>
</tr>
</tbody>
</table>

Figure 6. Summary of the tuning results for the three architectures. In each subfigure, the top plot represents the kernel execution speedup attainable with MSP-Tuning in comparison with the maximum available speedup given by coarsening. The bottom plot shows the search-time speedup given by MSP-Tuning, notice that in this plot the y-axis is in log-scale.
6.2 Result Description

The kernel speedups achieved on Fermi, Kepler and Tahiti are respectively: 1.35×, 1.24× and 1.55×. Which represent 82%, 73% and 53% of the maximum performance. On the other hand the search time speedup given by MSP-Tuning is about one order of magnitude for the three devices. To fully understand the savings results we have to take into account the algorithmic complexity of the application. A program like sgemm ensures very large tuning savings (even in the order of thousands) thanks to its cubic complexity: halving the input size leads to a factor of eight in tuning time saving. The overall results are very similar for the two Nvidia GPUs, Fermi and Kepler demonstrating the similarities of the two architectures. On the other hand the Tahiti results show significant differences with higher speedups on average. The search fails to achieve good performance due on mtLocal, mvUncoal and stencil due to the erratic shape of throughput and performance lines for these benchmarks.

Of particular interest is the application mvGoal. This is a matrix-vector multiplication benchmark from the Nvidia SDK. Considering the search time speedup barplots (and comparing tables 1 and 3) we can see that no reduction on the input size is attainable, i.e. the selected MSP corresponds to the largest input size. This is because no saturation plateau is reached, check the corresponding plot in figure 2. The reason for this behavior lies in the structure of the algorithm: one thread processes one row of the input matrix and the whole input vector producing a single element of the output. Thus we have only a thread for each matrix row: very few with respect to the complexity of the problem. Scaling the problem to larger sizes is prohibitive, running 16K threads means to work with about 1GB of data, scale to 32K means to work with 4GB, hitting device hardware constraints. In summary our target GPUs cannot full express the throughput potential of mvGoal due to limitations in the available memory resources. Similar considerations can be made for mvUncoal, a different version of the same program.

6.3 Noise Threshold

Figure 7 shows how the choice of the noise threshold described in section 5.3 affects the performance of our strategy. For the values of percentages between 0 and 15 it plots the achievable kernel speedup by implementing the search technique and the saving in search time. As expected the search speedup increases with the threshold percentage, this because the higher threshold values allows the selection of smaller input sizes as MSP. The kernel speedup slightly decreases increasing the percentage. Based on this data, we selected a threshold of 10%, leading to marginal performance degradation with respect to 0% and more than 10× improvement in search speed across platforms.

7. RELATED WORK

7.1 Performance Prediction for Parallel Applications and Systems

Reducing the cost of program tuning has been widely considered in the literature. Yang et al. [10] considered running just a small fraction of a parallel application on a testing architecture using the results to tune it on a different one. Other works [4, 1] have made use of performance modeling, The first [4] predicts performance for various application-specific parameters such as working-set size and processors topology. The second [1] predicts the scalability of an application on a various number of processors. However, both techniques require significant amount of training and do not consider the problem of finding the hardware saturation point. Other researchers have looked at using techniques such as deterministic replay coupled with clustering to select representative replays [11]. A trace of the application is extracted from a host machine and is then replayed locally on a single node. Interestingly, it is possible to use this technique to execute multiple replays on the same machine node in or-
order to estimate resource contention and predict performance of the whole system. This prior work has focused on extrapolating performance of the whole system using just a few nodes. In our case, we are addressing a different problem, i.e. determining what is the minimum application workload that saturates the machine. Once this point has been found, we can use this to extrapolate performance on a larger input size problem.

Fursin and Chen [3, 2] have studied the sensitivity of optimizations to the program input for sequential applications. They have shown that it has little effect on the results of iterative compilations. This is a different conclusion from our results and is probably due to the benchmarks used (embedded programs) not stressing the underlying machines enough and the differences between sequential and parallel GPU hardware.

7.2 Optimization Space Exploration on GPUs

There has been a large amount of work dedicated to optimization space pruning. We focus on the most recent work applied to GPU compiler space optimization. Ryoo et al. [8] developed an analytical model to predict the performance of compiler optimization for a CUDA architecture. Liue et al. [5] built a model to predict which optimization to apply for a given input size. While these approaches have the potential to speedup the exploration of the design space, they still rely on large data collection in order to build a model. Samadi et al. [9] have looked at using StreamIt and automatically generate optimised for high-level operators such a reduction. They use a performance model to determine which version to use on the target system. Our technique is orthogonal to these since we present a method- diligence to speedup iterative compilation. The same hardware limitations. MSP-Tuning has proved to be a valu- able technique to speedup iterative compilation. The same underlying idea can be applied to other types of searches.

8. CONCLUSION AND FUTURE WORK

8.1 Conclusion

This paper has introduced the concept of hardware saturation for GPUs. Saturation is reached when the device runs a problem large enough (in number of threads) so to fully utilize its hardware resources. We have provided experimental evidence of saturation on three devices from Nvidia and AMD. We have showed that the thread coarsening compiler transformation has stable performance across problem sizes that saturate hardware resources. Leveraging this insight we propose a technique to identify the lower-bound of the saturation area in the input space (called MSP). We use this input size for fast tuning of the parameters of the coarsening transformation. The proposed tuning technique has shown to reduce the impact of searching by an order of magnitude on average and up to hundred times reaching 83%, 72% and 54% of the maximum attainable performance with coarsening on Fermi, Kepler and Tahiti respectively.

8.2 Future Work

For future work we will investigate the possibility to estimate the throughput curve without running multiple versions of a benchmark. This could be done running few versions of a program with small problem sizes and then use extrapolation to estimate the remaining ones. Such an improvement would increase the savings in the search and making the technique more widely applicable. Another possible extension would be to use throughput to study the performance bottlenecks of graphics devices. Related to this, programs deviating from the characteristic curve (like *sgemm* on Tahiti) are of interest for further study as they expose hardware limitations. MSP-Tuning has proved to be a valuable technique to speedup iterative compilation. The same underlying idea can be applied to other types of searches.

9. REFERENCES