Ultrasmall superparamagnetic particles of iron oxide-enhanced magnetic resonance imaging in the assessment of cellular inflammation after myocardial infarction

Citation for published version:

Digital Object Identifier (DOI):
10.1186/1532-429X-17-S1-P252

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Publisher Rights Statement:
2015 Stirrat et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Ultrasmall superparamagnetic particles of iron oxide-enhanced magnetic resonance imaging in the assessment of cellular inflammation after myocardial infarction

Colin G Stirrat2,1*, Shirjel Alam2,1, Thomas J MacGillivray1,3, Calum D Gray1,3, Marc R Dweck2,1, Saeed Mirsadraee1,4, Graham McKillop4, Peter A Henriksen2,1, David Newby2,1, Scott Semple1,2

From 18th Annual SCMR Scientific Sessions
Nice, France. 4-7 February 2015

Background
Excessive inflammation after myocardial infarction (MI) can be detrimental to the recovery of cardiac function. Ultrasmall superparamagnetic particles of iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI) can be used to detect myocardial cellular inflammation. USPIO are engulfed by resident macrophages through phagocytosis and pinocytosis resulting in concentration within inflamed tissues. We aimed to determine the time course and duration of USPIO-enhancement following acute MI (Figure 1).

Methods
Thirty patients with acute MI were studied in the 3-month period following acute MI. Repeated T2*-weighted 3T MRI was performed immediately before and 24 h after USPIO (ferumoxytol, 4 mg/kg) administration at 2±1, 5±2, 13±3, 21±4 and 90±9 days. Myocardial regions of interest (ROIs) were drawn and categorised into infarct and non-infarct regions by the presence or absence of late gadolinium enhancement (LGE). R2* values (1/T2*) within ROIs were determined to assess the time course and duration of uptake of USPIO.

Results
Following single-dose USPIO administration 2-7 days after acute MI, USPIO uptake is demonstrable at 24 h (p<0.001) and is cleared within 4-8 days. Increased USPIO uptake is seen in the infarct region at days 2-3 (p<0.001), days 4-7 (p<0.01), and days 10-16 (p<0.05) compared to non-

Figure 1: Patient imaged 5 days after an inferior MI. Images show late gadolinium enhancement in the region of the MI (left). R2* colour maps of the baseline pre-USPIO scan (middle), and 24 hours following USPIO administration (right). USPIO uptake, with increased R2* values, is shown by the lighter area of the colour map in the region of the inferior wall infarct (arrow).
infarcted myocardium (Figure 2). There was no difference in uptake between regions at later time points (21±4 and 90±9 days).

Conclusions

USPIO-enhanced MRI can detect and quantify infarct-related cellular inflammation in the first 2 weeks following acute MI. This imaging tool holds promise to non-invasively assess myocardial cellular inflammation after MI and in other inflammatory cardiac conditions. It has the potential to monitor disease progression and remission, and may provide a future platform on which to test novel anti-inflammatory therapies for the heart.

Funding

The BHF have provided funding for this work (FS/12/83/29781).

Authors’ details

1Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK.
2Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
3Wellcome Trust Clinical Research Facility, NHS Lothian, Edinburgh, UK.
4Department of Radiology, NHS Lothian, Edinburgh, UK.

Published: 3 February 2015

Cite this article as: Stirrat et al. Ultrasmall superparamagnetic particles of iron oxide-enhanced magnetic resonance imaging in the assessment of cellular inflammation after myocardial infarction. *Journal of Cardiovascular Magnetic Resonance* 2015, 17(Suppl 1):P252.