Erosion rates as a potential bottom-up control of forest structural characteristics in the Sierra Nevada Mountains

DAVID T. MILODOWSKI, SIMON M. MUDD, AND EDWARD T. A. MITCHARD
School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom

Abstract. The physical characteristics of landscapes place fundamental constraints on vegetation growth and ecosystem function. In actively eroding landscapes, many of these characteristics are controlled by long-term erosion rates: increased erosion rates generate steeper topography and reduce the depth and extent of weathering, limiting moisture storage capacity and impacting nutrient availability. Despite the potentially important bottom-up control that erosion rates place on substrate characteristics, the relationship between the two is largely unexplored. We investigate spatial variations in aboveground biomass (AGB) across a structurally diverse mixed coniferous/deciduous forest with an order of magnitude erosion-rate gradient in the Northern Californian Sierra Nevada, USA, using high resolution LiDAR data and field plots. Mean basin slope, a proxy for erosion rate, accounts for 32% of variance in AGB within our field area (P < 0.001), considerably outweighing the effects of mean annual precipitation, temperature, and bedrock lithology. This highlights erosion rate as a potentially important, but hitherto unappreciated, control on AGB and forest structure.

Key words: biogeomorphology; biomass; ecological succession; erosion; landscape evolution; LiDAR; mixed-conifer forest; Sierra Nevada; topography.

INTRODUCTION

Geomorphic processes act to generate, erode, and redistribute sediment, sculpting the landscape and creating the physical template on which ecosystems develop (Urban et al. 2000, Chase et al. 2012, Detto et al. 2013). In addition, vegetation is an important geomorphic agent, playing a direct role in soil production and modifying the efficacy of erosion and sediment transport (Gabet et al. 2003, Gabet and Mudd 2010, Roering et al. 2010). Life and landscape are thus intimately linked; their coevolution is connected by the interplay between erosion and sediment transport, chemical weathering, hydrology, ecology, and biology.

It is widely documented that elevation-dependent variations in precipitation and temperature place important controls on ecosystem development and functioning in mountain environments. In the Californian Sierra Nevada, USA, these “top-down” controls are manifest in the macroscale altitudinal zonation of ecosystems, primary productivity, and evapotranspiration (Stephenson 1998, Bales et al. 2011, Goulden et al. 2012). In contrast, “bottom-up” controls imposed by the geomorphic evolution of landscapes have received significantly less attention, yet the balance between uplift and geomorphic processes determines the distribution of elevations in a landscape. In addition, geomorphic processes play a key role in determining the thickness, chemistry, and texture of soils, the substrate upon which ecosystems develop (Kirkby 1985, Heimsath et al. 1997, 2012, Dixon et al. 2012, Vanwalleghem et al. 2013).

In actively eroding landscapes, rates of erosion are typically paced by fluvial incision, which sets the lower base-level of adjacent hillslopes (Gilbert 1909, Roering et al. 1999). In response to increased fluvial incision, hillslopes steepen, raising the rate at which sediment is transmitted across hillslopes into the channel network. On steeper hillslopes, gravitational forces begin to overcome resisting forces and sediment transport increases rapidly, limiting further development of hillslope relief (Roering et al. 1999, 2001). Erosion rates not only control the distribution of elevation and topographic gradient across a landscape, they also can control soil texture and chemistry by modulating soil residence time. Minerals in rapidly eroding landscapes spend less time in the soil than minerals in slowly eroding landscapes, thus limiting their exposure to weathering and reducing the potential for clay formation (Mudd and Yoo 2010). There is a strong feedback between erosion rate and residence time, because not only do minerals move through rapidly eroding soils more quickly, but in addition, rapidly eroding soils are thinner than slowly eroding soils (Heimsath et al. 1997). Thus, erosion rates are directly tied to both moisture storage capacity (Graham et al. 2010) and the bioavailability of key nutrients (Vitousek et al. 2003, Porder et al. 2007, Hilton et al. 2013). Given that the establishment of forest communities is fundamentally dependent on the presence of a hospitable substrate from which...
vegetation can extract moisture and nutrients, long-term erosion rates may place important controls on forest characteristics; however, the relationship between forest structure, AGB, and erosion rate is largely unexplored.

In this contribution, we use airborne Light Detection and Ranging (LiDAR) data to investigate spatial variations of AGB in a mixed-conifer forest in the Californian Sierra Nevada. Rates of erosion in this landscape vary spatially by an order of magnitude, providing a natural laboratory for investigating the role of changing erosion rates on land surface dynamics. This has motivated a significant body of geomorphological and geochemical research at the site (Riebe et al. 2000, 2001, Witty et al. 2003); periodic dry-season fires are an important additional factor in driving ecosystem turnover; for all returns within a moving 10-m-radius window (Fig. 2a). Simple canopy metrics like this have been shown to be excellent predictors of AGB (Asner et al. 2012).

In order to calibrate the AGB estimates, we undertook 31 tree inventory plots during the summers of 2012 and 2013, each with a 10 m radius. For each plot, we recorded the species and diameter at breast height (1.3 m), dbh, for all trees with dbh >10 cm. AGB estimates for the field plots were obtained using previously published allometric equations relating dbh to AGB (Appendix: Table A1; Jenkins et al. [2003], Návar [2009]; see also equation 1060 in the Pacific Northwest Plant Biomass Component Equation Library, available online). Since there are significant sources of uncertainty in both LiDAR-derived metrics (Mascaro et al. 2011) and plot-based biomass estimates (Chave et al. 2004), we used standardized major axis (SMA) regression to fit a linear model to the data (Warton et al. 2006; Fig. 2b). The regression is fixed through the origin, justified because a plot with no return heights above ground level will have zero AGB. We employ a simple linear model, as the calibration data do not support the use of a more complex parameterization. Uncertainties in both field plot-based biomass and LiDAR-derived canopy metrics were estimated using a Monte Carlo framework (Gonzalez et al. 2010, Yanai et al. 2010), but these uncertainty estimates are not used to weight the regression, due to the fact that they are poorly constrained, and errors in the allometric relationships are likely to have significant bias. One outlier is excluded from the regression analysis (marked as a hollow symbol in Fig. 2b), as the plot biomass was skewed by the presence of one very large tree (Quercus decurrens, dbh >1m).

In order to explore the relationship between erosion rate and AGB, we compare aggregated characteristics of second-order drainage basins (defined by Strahler stream order; Appendix), where the channel network is defined using the method outlined by Clubb et al. (2014). Basins with catchments smaller than 20,000 m² are excluded from our analysis. We use mean basin slope as a proxy for locally averaged erosion rate: all else being equal, higher erosion rates will generate steeper topography (Ahnert 1970). The functional relationship between mean basin slope and erosion rate is nonlinear (Montgomery and Brandon 2002): mean basin slopes
become increasingly insensitive to erosion rates as hillslope gradients steepen toward the threshold of stability and gravitational forces begin to overcome resisting forces, limiting the further development of relief (Roering et al. 1999). Nevertheless, a comparison of mean basin slope and cosmogenic-radionuclide-derived erosion rates in the Feather River region by Hurst et al. (2012) indicates that mean basin slope remains a sensitive metric across the range of erosion rates observed here, and is therefore sufficient to illustrate the erosion gradient in our analysis.

Climate also has a significant influence on forest characteristics in the Sierra Nevada (Stephenson 1998, Urban et al. 2000, Franklin 2003). It is therefore important to take into account local climate gradients within the field site. To achieve this, we utilized 800-m
resolution maps of mean annual precipitation (MAP) and mean annual temperature (MAT) from the PRISM Climate Group (see footnote 2; see also Daly et al. 2008). In order to take into account variations in microclimate generated by topography, we downscaled these maps following the method described by Chorover et al. (2011). Soil characteristics can also influence plant community composition and growth; to account for soil parent material, we divided the catchments into two principal bedrock lithologies; granodiorite and meta-volcanic/peridotite. We then used a general linear model (GLM) framework to explore the relative importance of erosion rate (mean basin slope), climate, and bedrock lithology in driving the observed distribution of AGB.

The region was affected by the Scotch Fire in 2008, six months prior to the LiDAR acquisition. In order to test for bias in the results due to the influence of the recent fire, we repeated the analysis using USFS burn-intensity maps to exclude parts of the forest that suffered significant damage to the structurally dominant vegetation (moderate/high intensity; Miller and Thode 2007). A full description of our methods is given in the Appendix.

RESULTS

A comparison of the LiDAR-derived AGB estimates against the field plot AGB estimates yields an R^2 value of 0.70 and a root mean squared error (RMSE) of 103.3 Mg/ha (Fig. 2b). Comparing the distribution of AGB produced by extending the analysis across the study region (Fig. 3a) against the distribution of slopes (Fig. 1b), some important features stand out: (1) a general trend of high biomass on the plateau and lower AGB on steeper, more rapidly eroding topography, (2) the presence of weak aspect-driven variations in AGB, and (3) the AGB distribution on the plateau is disrupted by a series of low-AGB patches, often with sharp, quasi-geometric boundaries, where there has been recent active logging. The latter is likely to add significant scatter to basin-averaged AGB for low gradient basins draining the plateau.

The results from the GLM analysis (Table 1, Appendix; Tables A2 and A3) reveal that mean basin slope, temperature, and precipitation can together explain 44% of the variance in AGB observed in this landscape ($F_{7,278} = 32.9, P < 0.001; N = 287$). A comparison of single-variable regressions indicates that of these variables, mean basin slope produces the strongest correlation with AGB at the scale of second-order basins, accounting for 73% of this explanatory power (Fig. 3b–e). Accounting for bedrock lithology typically explains a further 2% of the variance in a given model: granodiorite basins tend to have lower biomass than their meta-volcanic counterparts. A comprehensive tabulation of the GLM results is provided in Appendix: Tables A2 and A3. Adding extra terms into the GLM analysis generated incremental improvements to model fit, with no unexpected deviations in model behavior.

Importantly, the trends between mean basin slope and AGB are sufficiently strong that even including the regions severely affected by the 2008 fire, there is no major change in the relationship (R^2 for the univariate model changes from 0.32 to 0.34; parameters within standard error). Note that as both the climate and erosion gradients are at least partly topographically structured, a degree of autocorrelation of variables is unavoidable (Pearson’s correlation coefficients: mean basin slope–MAT = –0.02; mean basin slope–MAP = –0.40; MAP–MAT = –0.14).

DISCUSSION

The strong negative correlation between mean basin slope and basin-averaged biomass (Fig. 3) suggests that there is an important coupling between hillslope erosion rates and the process of succession and development of plant communities in this region. While the simple linear models assumed in our analysis are likely an oversimplification of the true functional relationships between the variables, the models that explicitly incorporate the influence of erosion rate through spatial variations in mean basin slope perform significantly better than those without. The strength of the trends observed is remarkable given the degree of natural heterogeneity that one might expect, particularly as some parts of the plateau have been logged for timber, which is likely to have reduced the observed correlation. Erosion rates could influence AGB through a variety of mechanisms, but the most likely explanation we believe relates to its influence on the depth of soil and saprolite, and through this water storage and availability for plants.

In the Feather River region, previous work has focused on the geomorphological and geochemical evolution of the landscape. Hurst et al. (2012) observed that in response to increased fluvial incision at their base, hillslopes steepen and become increasingly planar, focusing curvature at the ridge crest, consistent with theoretical and experimental models of nonlinear hillslope sediment transport (Roering et al. 1999, 2001). Decreasing residence times of material within the critical zone across this same transition are indicated by a decrease in the extent of weathering of both saprolite and soil (Riebe et al. 2001, Yoo et al. 2011) and a corresponding drop in the soil clay content (Yoo et al. 2011), again in agreement with theoretical (e.g., Mudd and Yoo 2010) and empirical observations from other rapidly eroding sites in California (Dixon et al. 2012).

The change in residence time of material as it passes through the weathering zone is critical to understanding the functional link between erosion rate and biomass distribution in this setting. In the upland Sierra Nevada, water is the limiting factor in ecosystem productivity (Urban et al. 2000). Mixed-conifer forests are typically established on relatively thin soils overlying strongly weathered saprolite (Hubbert et al. 2001, Witty et al. 2003). Weathered granitic saprolite has an available water capacity of ~12%, which, while lower than that of
FIG. 3 (a) A map showing the distribution of aboveground biomass, estimated using the calibrated LiDAR metric. Areal extent is identical to Fig. 2b. Regions with no data (gray) indicate regions that suffered moderate-severe burn severity (as defined by Miller and Thode [2007]) in the 2008 Scotch Fire. Logged areas on the plateau are visible as uniformly low biomass patches, often with sharp boundaries. The coordinate system is UTM Zone 10N. (b) Estimated AGB plotted against mean basin slope for all second-order basins with catchment areas >20 000 m². (c–e) AGB plotted against (c) mean basin slope, (d) mean annual precipitation (MAP), and (e) mean annual temperature (MAT) for those same basins, but filtered to exclude areas which suffered moderate-to-high-severity burn damage in 2008. Results are shown for the two principal bedrock lithologies present in the study; granodiorite and meta-volcanic/peridotite. Basins for which more than 50% of the area was affected were also removed. Note that including the burned areas do not affect the overall trends.
soil (~20%), makes it a vital water store that continues to supply vegetation with moisture through the dry season long after the soil moisture has been exhausted (Graham et al. 2010, Bales et al. 2011).

Decreasing moisture storage as erosion rates increase, thus reducing water availability in the dry season, provides a compelling explanation for the observed trends. Water availability influences the tree species that can grow successfully, their growth and turnover rates, susceptibility to fire, drought, and other disturbance, and ultimately the mean AGB of the resulting communities. Our results suggest that trees are less likely to become large in high-erosion-rate areas, and will be more vulnerable in drought years than those on lower-erosion-rate areas with enhanced soil and saprolite water availability. This conclusion is supported by the result that AGB was negatively correlated with temperature: drought sensitivity is increased by temperature (Adams et al. 2009), and clearly this negative effect here outweighs any positive effect of increased radiation for photosynthesis.

Crossing the erosion gradient in the Feather River region, the landscape becomes increasingly inhospitable. Both the less extensively weathered saprolite and loss of clay from the soil as erosion rates increase (Yoo et al. 2011) act to reduce the amount of water retained on the hillslope for ecological use, thus limiting forest productivity. The clear trends expressed in this landscape corroborate previous work elsewhere in the Sierra Nevada by Meyer et al. (2007), who noted that at the stand level, stand basal area was positively correlated with the combined thickness of the A and C horizons, which should obey an inverse relationship with erosion rate (Dixon et al. 2012).

In more humid settings, moisture limitation ceases to place such strong constraints on ecosystem productivity, and erosion rates are more tightly coupled to the bioavailability of key nutrients (e.g., Vitousek et al. 2003, Porder et al. 2005), though soil and saprolite water storage capacity has been implicated in explaining the vulnerability of trees to droughts even in normally very wet regions (Slik et al. 2002). At high erosion rates, it has been posited that productivity could be limited either by phosphorous limitation, due to a reduction in the weathering extent (Porder et al. 2007), or nitrogen limitation, due to nitrogen loss through more frequent landslides (Hilton et al. 2013). In these settings, it is likely that the relationship between erosion rate and the ecosystem properties may differ, depending on the pervasiveness and efficiency of chemical weathering, and the primary mechanisms by which erosion occurs. Exploring how climate modulates this relationship remains an important challenge for future work quantifying eco-geomorphological coupling.

These findings have important implications for understanding longer-term evolution of landscapes. By actively penetrating into bedrock, tree roots efficiently drive the physical formation of soil (Gabet and Mudd 2010, Roering et al. 2010). Larsen et al. (2014) postulated that the extremely high soil production rates they observed in the Western Alps of New Zealand, reaching 2.5 mm/yr, were possible as a consequence of persistent active bioturbation by plant roots, maintaining soil-mantled hillslopes at erosion rates reaching 10 mm/yr. In contrast, in the semiarid San Gabriel Mountains of southern California, where moisture limitation is important and vegetation is thus likely to be more strongly controlled by erosion rate, maximum observed soil production rates are 0.37 mm/yr, an order of magnitude lower than those reported from New Zealand (Heimsath et al. 2012).

CONCLUSIONS

In conclusion, empirical observations of AGB variations across a gradient of long-term erosion rates highlight geomorphic dynamics as a potentially important bottom-up control on the structural properties of the mixed-conifer forests of the northwestern Sierra Nevada Mountains. Specifically, increased erosion rates appear to be associated with lower AGB, a hitherto unconstrained relationship. In this setting, this relation-
ship can be rationalized as being driven by moisture limitation as a direct consequence of the corresponding reduction in soil and saprolite development. This relationship is likely to exist elsewhere, but its strength and mechanism is likely to vary according to the range of erosion rates, bedrock lithology, climate, and the presence and intensity of natural or anthropogenic disturbance. We suggest that consideration of the underlying geomorphic setting is therefore important to consider when investigating variations in forest characteristics across landscapes.

ACKNOWLEDGMENTS

This research was funded by a NERC studentship (NERC DTG NE/152830X/1 and NE/J50021/1; D. T. Milodowski), in addition to the Harkness Award from the University of Cambridge (D. T. Milodowski). E. Mitchard is funded by a NERC Fellowship (NE/I021217/1).

LITERATURE CITED

Miller, J. D., and A. E. Thode. 2007. Quantifying burn severity in a heterogeneous landscape with a relative version of the

SUPPLEMENTAL MATERIAL

Ecological Archives

The Appendix is available online: http://dx.doi.org/10.1890/14-0649.1.sm