Linear and bilinear $T(b)$ theorems à la Stein

Citation for published version:

Digital Object Identifier (DOI):
10.1090/bproc/18

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the American Mathematical Society Series B

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
LINEAR AND BILINEAR $T(b)$ THEOREMS À LA STEIN

ÁRPÁD BÉNYI AND TADAHIRO OH

Abstract. In this work, we state and prove versions of the linear and bilinear $T(b)$ theorems involving quantitative estimates, analogous to the quantitative linear $T(1)$ theorem due to Stein.

1. Introduction

The impact of the classical Calderón-Zygmund theory permeates through analysis and PDEs. Nowadays, both the linear and multilinear aspects of this theory are well understood and continue to be intertwined with aspects of analysis that are beyond their reach, such as those considering the bilinear Hilbert transform.

Two fundamental results in the linear theory from the 1980’s are the celebrated $T(1)$ theorem of David and Journé [4] and $T(b)$ theorem of David, Journé, and Semmes [5]. Both results were strongly motivated by the study of the Cauchy integral on a Lipschitz curve and the related Calderón commutators. Their gist lies in understanding the boundedness of a singular operator via appropriate simpler testing conditions.

In the $T(1)$ theorem, one needs to test a singular operator and its transpose on the constant function 1. If both the operator and its transpose were $L^\infty \to BMO$ bounded, then by duality and interpolation [6], the operator would be bounded on L^2. The remarkable aspect of the $T(1)$ theorem is that one does not need to test the operator on the whole L^∞, but just on one special element in it. Going back to the Cauchy integral operator associated to a Lipschitz function A, it turns out that it is not necessarily easy to test the operator on 1. It is, however, much easier to test the operator on the L^∞ function $1 + iA^\prime$. Thus, as the name suggests, the $T(b)$ theorem extends the $T(1)$ theorem by replacing the constant function 1 with a suitable L^∞ function b; or, to be more precise, by replacing 1 with two suitable functions b_0 and b_1 in L^∞ on which we test an operator and its transpose. The bilinear Calderón-Zygmund theory has its own versions of the $T(1)$ and $T(b)$ theorems, such as those proved by Grafakos and Torres [8] and by Hart [12], respectively. See Theorems [13] and [14] below.

In this work, we revisit the $T(b)$ theorem, both in linear and bilinear setting, through the lens of a gem due to Stein [15]. We are alluding to his formulation of the $T(1)$ theorem involving quantitative estimates for a singular operator and its transpose when tested now on normalized bump functions. Our goal is to prove that an analogous natural formulation à la Stein can be given for the $T(b)$ theorems in the linear and bilinear settings. We note that, while for the sake of clarity in our presentation we have chosen to delineate the linear and bilinear settings, a unified discussion is certainly possible under the encompassing more general multilinear setting.

2010 Mathematics Subject Classification. 42B20.

Key words and phrases. $T(b)$ theorem; $T(1)$ theorem; Calderón-Zygmund operator; bilinear operator.
2. Linear Calderón-Zygmund theory

In this section, we consider a linear singular operator T a priori defined from \mathcal{S} into \mathcal{S}' of the form

$$T(f)(x) = \int_{\mathbb{R}^d} K(x, y)f(y)dy. \quad (2.1)$$

Here, we assume that, away from the diagonal $\Delta = \{(x, y) \in \mathbb{R}^{2d} : x = y\}$, the distributional kernel K of T coincides with a function that is locally integrable on $\mathbb{R}^{2d} \setminus \Delta$. The formal transpose T^* of T is defined similarly with the kernel K^* given by $K^*(x, y) := K(y, x)$.

Definition 2.1. A locally integrable function K on $\mathbb{R}^{2d} \setminus \Delta$ is called a (linear) Calderón-Zygmund kernel if it satisfies the following conditions.

(i) For all $x, y \in \mathbb{R}^d$, we have $|K(x, y)| \lesssim |x - y|^{-d}$,

(ii) There exists $\delta \in (0, 1]$ such that

$$|K(x, y) - K(x', y)| + |K(y, x) - K(y, x')| \lesssim \frac{|x - x'|^{\delta}}{|x - y|^{d+\delta}} \quad (2.2)$$

for all $x, x', y \in \mathbb{R}^d$ satisfying $|x - x'| < \frac{1}{2}|x - y|$.

We say that a linear singular operator T of the form (2.1) with a Calderón-Zygmund kernel is a linear Calderón-Zygmund operator if T extends to a bounded operator on L^{p_0} for some $1 < p_0 < \infty$. It is well known [14] that if T is a linear Calderón-Zygmund operator, then it is bounded on L^p for all $1 < p < \infty$. Hence, in the following, we restrict our attention to the L^2-boundedness of such linear operators. We point out that the Calderón-Zygmund operator T is also $L^\infty \to \text{BMO}$ bounded. Here, BMO denotes the space of functions of bounded mean oscillation, which we now recall.

Definition 2.2. Given a locally integrable function f on \mathbb{R}^d, define the BMO-seminorm by

$$\|f\|_{\text{BMO}} := \sup_Q \frac{1}{|Q|} \int_Q |f(x) - \text{ave}_Q f|dx,$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^d$ and

$$\text{ave}_Q f := \frac{1}{|Q|} \int_Q f(x)dx.$$

Then, we say that f is of bounded mean oscillation if $\|f\|_{\text{BMO}} < \infty$ and we define $\text{BMO}(\mathbb{R}^d)$ by

$$\text{BMO}(\mathbb{R}^d) := \{f \in L^1_{\text{loc}}(\mathbb{R}^d) : \|f\|_{\text{BMO}} < \infty\}.$$

2.1. Classical linear $T(1)$ and $T(b)$ theorems. In this subsection, we provide a brief discussion of the classical $T(1)$ and $T(b)$ theorems proved in [4] and [5], respectively. In order to do so, we need to define a few more notions.

Definition 2.3. We say that a function $\phi \in \mathcal{D}$ is a normalized bump function of order M if $\text{supp}\phi \subset B_0(1)$ and $\|\partial^\alpha \phi\|_{L^\infty} \leq 1$ for all multi-indices α with $|\alpha| \leq M$.

Here, $B_x(r)$ denotes the ball of radius r centered at x. Given $x_0 \in \mathbb{R}^d$ and $R > 0$, we set

$$\phi^{x_0, R}(x) = \phi \left(\frac{x - x_0}{R}\right). \quad (2.3)$$
Definition 2.4. We say that a linear singular integral operator $T : S \to S'$ has the *weak boundedness property* if there exists $M \in \mathbb{N} \cup \{0\}$ such that we have
\[
|\langle T(\phi_1^{x_1,R}), \phi_2^{x_2,R} \rangle| \lesssim R^d
\] (2.4)
for all normalized bump functions ϕ_1 and ϕ_2 of order M, $x_1, x_2 \in \mathbb{R}^d$, and $R > 0$.

We note that it suffices to verify (2.4) for $x_1 = x_2$; see [11]. The statement of the $T(1)$ theorem of David and Journé [4] is the following.

Theorem A (T(1) theorem). Let $T : S \to S'$ be a linear singular integral operator with a Calderón-Zygmund kernel. Then, T can be extended to a bounded operator on L^2 if and only if
(i) T satisfies the weak boundedness property,
(ii) $T(1)$ and $T^*(1)$ are in BMO.

Since T is a priori defined only in S, the expressions $T(1)$ and $T^*(1)$ are, of course, not well defined and need to be interpreted carefully. The same comment applies to the corresponding theorems in the bilinear setting.

The main concept needed in extending the $T(1)$ theorem to the $T(b)$ theorem is that of para-accretive functions.

Definition 2.5. We say that a function $b \in L^\infty$ is *para-accretive*\(^1\) if there exists $c_0 > 0$ such that, for every cube Q, there exists a subcube $\tilde{Q} \subset Q$ such that
\[
\frac{1}{|Q|} \left| \int_{\tilde{Q}} b(x) dx \right| \geq c_0.
\] (2.5)

It follows from (2.5) that
\[
|\tilde{Q}| \geq \frac{c_0}{\|b\|_{L^\infty}} |Q|.
\] (2.6)

In particular, the function 1 is automatically para-accretive. It is also worth pointing out that the definition of para-accretivity in the Definition 2.5 is not the same as the one used in the classical $T(b)$ theorem of David, Journé, and Semmes [5]. The notion of para-accretivity stated here is borrowed from [10, 12]; for a similar definition in which cubes are replaced by balls, see Christ’s monograph [2]. The two definitions of para-accretivity are nevertheless equivalent. Since this natural observation seems to be missing from the literature, we have included its proof in the appendix.

Before giving a meaning to operators to which the $T(b)$ theorem applies, we need one more definition.

Definition 2.6. Given $0 < \eta \leq 1$, let C^η be the collection of all functions from $\mathbb{R}^d \to \mathbb{C}$ such that $\|f\|_{C^\eta} < \infty$, where the C^η-norm is given by
\[
\|f\|_{C^\eta} = \sup_{x \neq y} \left| \frac{f(x) - f(y)}{|x - y|^\eta} \right|.
\]

We also denote by C^η_0 the subspace of all compactly supported functions in C^η.

\(^1\) An extra condition that $b^{-1} \in L^\infty$ is sometimes included in the definition of para-accretivity. This, however, is not necessary. Indeed, it follows from (2.6) and Lebesgue differentiation theorem that $|b(x)| \geq c_0$ almost everywhere. In particular, we have $b^{-1} \in L^\infty$.

Definition 2.7. Let b_0 and b_1 be para-accretive functions. A linear singular operator $T : b_1C_0^n \to (b_0C_0^n)'$ is called a linear singular integral operator of Calderón-Zygmund type associated to b_0 and b_1 if T is continuous from $b_1C_0^n$ into $(b_0C_0^n)'$ for some $\eta > 0$ and there exists a Calderón-Zygmund kernel K such that

$$
(T(M_{b_0}f),b_0g) = \int_{\mathbb{R}^{2d}} K(x,y)b_1(y)f(y)b_0(x)g(x)dxdy,
$$

for all $f,g \in C_0^n$ such that $\text{supp } f \cap \text{supp } g = \emptyset$. Here, M_b denotes the operation of multiplication by b.

With these preparations, we are now ready to state the classical $T(b)$ theorem [5].

Theorem B ($T(b)$ theorem). Let b_0 and b_1 be para-accretive functions. Suppose that T is a linear singular integral operator of Calderón-Zygmund type associated to b_0 and b_1. Then, T can be extended to a bounded operator on L^2 if and only if the following conditions hold:

- (i) $M_{b_0}TM_{b_1}$ satisfies the weak boundedness property,
- (ii) $M_{b_0}T(b_1)$ and $M_{b_0}T^*(b_0)$ are in BMO.

In the special case when b_0 and b_1 are accretive \(^2\) and $Tb_1 = T^*b_0 = 0$, the $T(b)$ theorem was independently proved by McIntosh and Meyer [13].

Remark 2.8. In [5], the condition (ii) of Theorem B is stated slightly differently; it was assumed that $T(b_1),T^*(b_0) \in \text{BMO}$. We note that this is just a matter of notation. For example, the condition $T(b_1) \in \text{BMO}$ in [5] means that there exists $\beta \in \text{BMO}$ such that

$$
\langle T(b_1), f \rangle = \langle \beta, f \rangle \quad \text{for all } f \in b_0C_0^n.
$$

This is clearly equivalent to

$$
\langle T(b_1), b_0f \rangle = \langle \beta, b_0f \rangle \quad \text{for all } f \in C_0^n \text{ such that } \int b_0f dx = 0. \quad (2.7)
$$

Here, we used the fact that $b_0f \leftrightarrow f$ is a one-to-one correspondence since b_0 is para-accretive and thus, in particular, is bounded away from zero almost everywhere. In Theorem B we followed the notation from [12] to signify the fact that the condition indeed depends on both b_0 and b_1, and what we mean by the condition (ii) in Theorem B is precisely the statement (2.7). See also Theorem B below in the bilinear setting.

Lastly, note that, as in the $T(1)$ theorem, the expressions $M_{b_0}T(b_1)$ and $M_{b_1}T^*(b_0)$ are not a priori well defined and thus some care must be taken.

2.2. **Formulations of the $T(1)$ and $T(b)$ theorems à la Stein.** There is another formulation of the $T(1)$ theorem due to Stein [15] in which the conditions (i) and (ii) in Theorem A are replaced by the quantitative estimate (2.8) involving normalized bump functions.

Theorem C ($T(1)$ theorem à la Stein). Let T be as in Theorem A Then, T can be extended to a bounded operator on L^2 if and only if there exists $M \in \mathbb{N} \cup \{0\}$ such that we have

$$
\|T(\phi^{x_0,R})\|_{L^2} + \|T^*(\phi^{x_0,R})\|_{L^2} \lesssim R^2 \quad (2.8)
$$

for any normalized bump function ϕ of order M, $x_0 \in \mathbb{R}^d$, and $R > 0$.

\(^2 \) A function $b \in L^\infty$ is called accretive if there exists $\delta > 0$ such that $\text{Re } b \geq \delta$ for all $x \in \mathbb{R}^d$. Note that an accretive function is para-accretive.
By viewing the expressions $T(\phi^{x_0,R})$ and $T^*(\phi^{x_0,R})$ as $T(1 \cdot \phi^{x_0,R})$ and $T^*(1 \cdot \phi^{x_0,R})$, it is natural to extend this result by replacing the constant function 1 by para-accretive functions b_0 and b_1. This is the first result of our paper.

Theorem 1 ($T(b)$ theorem à la Stein). Let T, b_0, and b_1 be as in Theorem 1. Then, T can be extended to a bounded operator on L^2 if and only if there exists $M \in \mathbb{N} \cup \{0\}$ such that the following two inequalities hold for any normalized bump function ϕ of order M, $x_0 \in \mathbb{R}^d$, and $R > 0$:

$$
\|T(b_1 \phi^{x_0,R})\|_{L^2} \lesssim R^2,
$$

(2.9)

$$
\|T^*(b_0 \phi^{x_0,R})\|_{L^2} \lesssim R^2.
$$

(2.10)

We present the proof of Theorem 1 in Section 3.

As an application of this result, one could recover the well known fact that the commutator of a pseudodifferential operator with symbol in the Hörmander class $S^1_{1,0}$ and the multiplication operator of a Lipschitz function a is bounded on L^2. Indeed, suppose that for all $x, \xi \in \mathbb{R}^d$ and all multi-indices α, β we have

$$
|\partial_x^\alpha \partial_\xi^\beta \sigma(x, \xi)| \lesssim (1 + |\xi|)^{1-|\beta|},
$$

and let

$$
T_\sigma(f)(x) = \int_{\mathbb{R}^d} \sigma(x, \xi) f(x) e^{ix \cdot \xi} \, d\xi
$$

be the corresponding pseudodifferential operator. Also, given a such that $\partial a / \partial x_j \in L^\infty(\mathbb{R}^d)$ for $1 \leq j \leq d$, let

$$
[T_\sigma, M_a] = T_\sigma(a f) - a T(f)
$$

be the commutator of T_σ and the multiplication operator M_a. It is straightforward to check that the kernel of $[T_\sigma, M_a]$ is Calderón-Zygmund and, by a similar computation to the one in [15] pp. 309-310], (2.9) and (2.10) hold as well; thus proving $[T_\sigma, M_a] : L^2 \to L^2$.

3. Bilinear Calderón-Zygmund theory

Next, we turn our attention to the bilinear setting and consider the corresponding extensions of the results in Section 2. Namely, we consider a bilinear singular operator T a priori defined from $\mathcal{S} \times \mathcal{S}$ into \mathcal{S}' of the form:

$$
T(f, g)(x) = \int_{\mathbb{R}^{2d}} K(x, y, z) f(y) g(z) \, dy \, dz,
$$

(3.1)

where we assume that, away from the diagonal $\Delta = \{(x, y, z) \in \mathbb{R}^{3d} : x = y = z\}$, the distributional kernel K coincides with a function that is locally integrable on $\mathbb{R}^{3d} \setminus \Delta$. The formal transposes T^{*1} and T^{*2} are defined in an analogous manner with the kernels K^{*1} and K^{*2} given by $K^{*1}(x, y, z) := K(y, x, z)$ and $K^{*2}(x, y, z) := K(z, y, x)$.

Definition 3.1. A locally integrable function K on $\mathbb{R}^{3d} \setminus \Delta$ is called a (bilinear) Calderón-Zygmund kernel if it satisfies the following conditions.

(i) For all $x, y, z \in \mathbb{R}^d$, we have

$$
|K(x, y, z)| \lesssim (|x - y| + |x - z|)^{-2d},
$$

where we assume that, away from the diagonal $\Delta = \{(x, y, z) \in \mathbb{R}^{3d} : x = y = z\}$, the distributional kernel K coincides with a function that is locally integrable on $\mathbb{R}^{3d} \setminus \Delta$. The formal transposes T^{*1} and T^{*2} are defined in an analogous manner with the kernels K^{*1} and K^{*2} given by $K^{*1}(x, y, z) := K(y, x, z)$ and $K^{*2}(x, y, z) := K(z, y, x)$.
(ii) There exists \(\delta \in (0, 1] \) such that
\[
|K(x, y, z) - K(x', y, z)| \lesssim \frac{|x - x'|^\delta}{(|x - y| + |x - z|)^{2d+\delta}}
\] (3.2)
for all \(x, x', y, z \in \mathbb{R}^d \) satisfying \(|x - x'| < \frac{1}{4} \max(|x - y|, |x - z|) \). Moreover, we assume that the formal transpose kernels \(K^{*1} \) and \(K^{*2} \) also satisfy the regularity condition (3.2).

We say that a bilinear singular operator \(T \) of the form (3.1) with a bilinear Calderón-Zygmund kernel is a \emph{bilinear Calderón-Zygmund operator} if \(T \) extends to a bounded operator on \(L^{p_0} \times L^{q_0} \) into \(L^{r_0} \) for some \(1 < p_0, q_0 < \infty \) with \(\frac{1}{p_0} + \frac{1}{q_0} = \frac{1}{r_0} \leq 1 \).

Similarly to the linear case, the crux of the bilinear Calderón-Zygmund theory is contained in the fact that if \(T \) is a bilinear Calderón-Zygmund operator, then it is bounded on \(L^p \times L^q \) into \(L^r \) for all \(1 < p, q < \infty \) with \(\frac{1}{p} + \frac{1}{q} = \frac{1}{r} \leq 1 \) (with the appropriate statements at the endpoints); see Grafakos and Torres [8]. Therefore, the main question is to prove that there exists at least one triple \((p_0, q_0, r_0) \) with \(1 < p_0, q_0 < \infty \) and \(\frac{1}{p_0} + \frac{1}{q_0} = \frac{1}{r_0} \leq 1 \) such that \(T \) is bounded from \(L^{p_0} \times L^{q_0} \) into \(L^{r_0} \).

The weak boundedness property for bilinear singular operators has a similar flavor as the one in the linear case.

Definition 3.2. We say that a bilinear singular integral operator \(T : S \times S \to S' \) has the (bilinear) \emph{weak boundedness property} if there exists \(M \in \mathbb{N} \cup \{ 0 \} \) such that we have
\[
\left| \left(T^1(\phi^{x_1,R}_{x_1}), \phi^{x_2,R}_{x_2} \right), \phi^{x_3,R}_{x_3} \right| \lesssim R^d
\] (3.3)
for all normalized bump functions \(\phi_1, \phi_2, \phi_3 \) of order \(M, x_1, x_2, x_3 \in \mathbb{R}^d \), and \(R > 0 \).

Remark 3.3. It follows from [1] Lemma 9) that it suffices to verify (3.3) for \(x_1 = x_2 = x_3 \).

3.1. Bilinear \(T(1) \) and \(T(b) \) theorems.

We now state the bilinear \(T(1) \) theorem in the form given by Hart [11].

Theorem D (Bilinear \(T(1) \) theorem). Let \(T : S \times S \to S' \) be a bilinear singular integral operator with a standard Calderón-Zygmund kernel. Then, \(T \) can be extended to a bounded operator on \(L^p \times L^q \to L^r \) for all \(1 < p, q < \infty \) with \(\frac{1}{p} + \frac{1}{q} = \frac{1}{r} \) if and only if
- (i) \(T \) satisfies the weak boundedness property,
- (ii) \(T(1,1), T^{*1}(1,1), \) and \(T^{*2}(1,1) \) are in \(\text{BMO} \).

We chose this formulation since it closely follows the statement of the classical linear \(T(1) \) theorem given in the previous section. Further, note that Theorem D is equivalent to the formulation of Grafakos-Torres [8]; see also Christ and Journé [3].

Next, we turn our attention to the bilinear version of the \(T(b) \) theorem.

Definition 3.4. Let \(b_0, b_1, \) and \(b_2 \) be para-accretive functions. A bilinear singular operator \(T : b_1 C_0^n \times b_2 C_0^n \to (b_0 C_0^n)' \) is called a \emph{bilinear singular integral operator of Calderón-Zygmund type} associated to \(b_0, b_1, \) and \(b_2 \) if \(T \) is continuous from \(b_1 C_0^n \times b_2 C_0^n \) into \((b_0 C_0^n)' \) for some \(\eta > 0 \) and there exists a bilinear Calderón-Zygmund kernel \(K \) such that
\[
\langle T(M_{b_1} f_1), M_{b_2} f_2 \rangle, b_0 f_0 \rangle = \int_{\mathbb{R}^{3d}} K(x, y, z) b_0(x) f_0(x) b_1(y) f_1(y) b_2(z) f_2(z) dx dy dz,
\] (3.4)
for all \(f_0, f_1, f_2 \in C_0^n \) with \(\text{supp} f_0 \cap \text{supp} f_1 \cap \text{supp} f_2 = \emptyset \).
Hart [12] proved the following result.

Theorem E (Bilinear \(T(b)\) theorem). Let \(b_0, b_1,\) and \(b_2\) be para-accretive functions. Suppose that \(T\) is a bilinear singular integral operator of Calderón-Zygmund type associated to \(b_0, b_1,\) and \(b_2.\) Then, \(T\) can be extended to a bounded operator on \(L^p \times L^q \rightarrow L^r\) for all \(p, q < \infty\) satisfying \(\frac{1}{p} + \frac{1}{q} = \frac{1}{r}\) if and only if

(i) \(M_{b_0} T(M_{b_1}(\cdot), M_{b_2}(\cdot))\) satisfies the weak boundedness property,

(ii) \(M_{b_0} T(b_1, b_2), M_{b_1} T^{*1}(b_0, b_2),\) and \(M_{b_2} T^{*2}(b_1, b_0)\) are in \(BMO.\)

As in Theorem [13] we used the notation such as \(M_{b_0} T(b_1, b_2) \in BMO\) rather than \(T(b_1, b_2) \in BMO\) to signify the fact that each of the three statements in the condition (ii) of Theorem [13] involves \(b_0, b_1\) and \(b_2.\) See Remark 2.8.

3.2. Formulation of the bilinear \(T(b)\) theorem à la Stein

As in the linear setting, we consider the formulation after Stein (Theorem C), involving quantitative estimates. In the following, we only state and prove the formulation after Stein in the context the bilinear \(T(b)\) theorem. The corresponding version for the bilinear \(T(1)\) theorem follows by setting \(b_0 = b_1 = b_2 = 1;\) this result already appears in [8].

Theorem 2 (Bilinear \(T(b)\) theorem à la Stein). Let \(b_0, b_1,\) and \(b_2\) be para-accretive functions. Suppose that \(T\) is a bilinear singular integral operator of Calderón-Zygmund type associated to \(b_0, b_1,\) and \(b_2.\) Then, \(T\) can be extended to a bounded operator on \(L^p \times L^q \rightarrow L^r\) for all \(p, q < \infty\) satisfying \(\frac{1}{p} + \frac{1}{q} = \frac{1}{r}\) if and only if there exists \(M \in \mathbb{N} \cup \{0\}\) such that we have

\[
\|T(b_1 \phi^{x_1, R}, b_2 \phi^{x_2, R})\|_{L^2} \lesssim R^{\frac{d}{r}}, \tag{3.5}
\]

\[
\|T^{*1}(b_0 \phi^{x_0, R}, b_2 \phi^{x_2, R})\|_{L^2} \lesssim R^{\frac{d}{r}}, \tag{3.6}
\]

\[
\|T^{*2}(b_1 \phi^{x_1, R}, b_0 \phi^{x_0, R})\|_{L^2} \lesssim R^{\frac{d}{r}}, \tag{3.7}
\]

for any normalized bump function \(\phi\) of order \(M, x_0, x_1, x_2 \in \mathbb{R}^d,\) and \(R > 0.\)

We prove this result in Section 5

4. Proof of Theorem 1

Suppose that \(T\) is bounded on \(L^2.\) Let \(\phi\) be a normalized bump function. Then, given any \(x_0 \in \mathbb{R}^d\) and \(R > 0,\) we have

\[
\|T(b_1 \phi^{x_0, R})\|_{L^2} \lesssim \|b_1\|_{L^\infty} \|\phi^{x_0, R}\|_{L^2} \lesssim R^{\frac{d}{r}}.
\]

This proves (2.9). The condition (2.10) follows from a similar computation.

Next, we assume that the conditions (2.9) and (2.10) hold. It suffices to show that the conditions (2.9) and (2.11) imply the conditions (i) and (ii) in Theorem [13]

We first prove the condition (i) in Theorem [13] Let \(\phi_1\) and \(\phi_2\) be normalized bump functions of order 0. Then, it follows from (2.9) and (2.3) that we have

\[
\left| \langle M_{b_0} T M_{b_1}(\phi_1^{x_1, R}, \phi_2^{x_2, R}) \rangle \right| \lesssim \|b_0\|_{L^\infty} \|T(b_1 \phi_1^{x_1, R})\|_{L^2} \|\phi_2^{x_2, R}\|_{L^2} \lesssim R^d
\]

for all \(x_1, x_2 \in \mathbb{R}^d\) and \(R > 0.\) This proves the weak boundedness property of \(M_{b_0} T M_{b_1}.\)
Next, we prove the condition (ii) in Theorem [13]. In the following, we only show $M_{b_0}T(b_1) \in BMO$, assuming [2.9]. The proof of $M_{b_1}T^*(b_0) \in BMO$ follows from [2.10] in an analogous manner.

We first recall from [5] how to extend the definition of T to $b_1C^0_\infty$, where $C^0_\infty := C^0 \cap L^\infty$. Denote by $\{b_0C^0_\infty\}_0$ the subspace of mean-zero functions in $b_0C^0_\infty$. Given $f \in b_1C^0_\infty$ and $g \in \{b_0C^0_\infty\}_0$, let $\psi \in C^0_\infty$ with $0 \leq \psi \leq 1$ and $\psi \equiv 1$ in a neighborhood of $\text{supp} \ g$. Then, we define the action of $T(f)$ on g by

$$\langle T(f), g \rangle := \langle T(f\psi), g \rangle + \langle T(f(1-\psi)), g \rangle$$

$$= \langle T(f\psi), g \rangle + \int_{\mathbb{R}^d} [K(x, y) - K(x_0, y)] f(y)(1 - \psi(y))g(x) \, dx \, dy. \quad (4.1)$$

Note that this definition is independent of the choice of ψ. Here, the last equality in (4.1) holds for any $x_0 \in \text{supp} \ g$.

Let $\phi \in C^\infty_\infty$ with $0 \leq \phi \leq 1$ such that $\phi(x) = 1$ for $|x| \leq \frac{1}{2}$ and $\text{supp} \ \phi \subset B_0(1)$. Let $\phi_R(x) = \phi(R^{-1}x)$. Then, $T(b_1\phi_R)$ converges to $T(b_1)$ in the weak-* topology of $\{b_0C^0_\infty\}_0$. Namely, for all $g \in \{b_0C^0_\infty\}_0$, we have

$$\langle T(b_1), g \rangle = \lim_{R \to \infty} \langle T(b_1\phi_R), g \rangle. \quad (4.2)$$

Indeed, letting $\psi \in C^\infty_\infty$ such that $\psi \equiv 1$ on $\text{supp} \ g$ as before, we have

$$\langle T(b_1\phi_R), g \rangle = \langle T(b_1\psi\phi_R), g \rangle + \langle T(b_1(1-\psi)\phi_R), g \rangle \quad (4.3)$$

First, note that

$$\langle T(b_1\psi\phi_R), g \rangle = \langle T(b_1\psi), g \rangle \quad (4.4)$$

for all sufficiently large R. In view of (2.2), it follows from Lebesgue dominated convergence theorem that

$$\lim_{R \to \infty} \langle T(b_1(1-\psi)\phi_R), g \rangle = \lim_{R \to \infty} \int_{\mathbb{R}^d} K(x, y)b_1(y)(1 - \psi(y))\phi_R(y)g(x) \, dy \, dx$$

$$= \lim_{R \to \infty} \int_{\mathbb{R}^d} [K(x, y) - K(x_0, y)] b_1(y)(1 - \psi(y))\phi_R(y)g(x) \, dy \, dx$$

$$= \int_{\mathbb{R}^d} [K(x, y) - K(x_0, y)] b_1(y)(1 - \psi(y))g(x) \, dy \, dx$$

$$= \langle T(b_1(1-\psi)), g \rangle \quad (4.5)$$

where $x_0 \in \text{supp} \ g$. Then, (4.2) follows from (4.1), (4.3), (4.4), and (4.5).

Suppose now that we have

$$\|T(b_1\phi_R)\|_{BMO} \lesssim 1, \quad (4.6)$$

uniformly in $R > 0$. Then, by Banach-Alaoglu theorem with $BMO = (H^1)'$, there exists a sequence $\{R_j\}_{j=1}^\infty$ such that $T(b_1\phi_{R_j})$ converges in the weak-* topology to some function β in BMO. Namely,

$$\lim_{j \to \infty} \langle T(b_1\phi_{R_j}), g \rangle = \langle \beta, g \rangle \quad (4.7)$$

for all $g \in H^1$. In particular, (4.7) holds for all $g \in \{b_0C^0_\infty\}_0$. Then, from (4.2) and (4.7) with the uniqueness of a limit, we can identify $T(b_1)$ (or rather $M_{b_0}T(b_1)$) with $\beta \in BMO$. See Remark 2.8.
Therefore, it remains to prove (4.16). Let \(M \in \mathbb{N} \cup \{0\} \) be as in Theorem 1. Then, by imposing that \(\|\partial^\alpha \phi\|_{L^\infty} \leq 1 \) for all multi-indices \(\alpha \) with \(|\alpha| \leq M \), the function \(\phi \) defined above is a normalized bump function of order \(M \).

Fix a cube \(Q \) of side length \(\ell > 0 \) with center \(x_0 \in \mathbb{R}^d \). Set \(\phi_Q := \phi^{x_0,r} \), where \(r := 6 \text{diam}(Q) = 6\sqrt{d}\ell \). By writing \(T(b_1\phi_R) \) as

\[
T(b_1\phi_R) = T(b_1\phi_Q\phi_R) + T(b_1(1 - \phi_Q)\phi_R),
\]

we consider the first and second terms separately.

On the one hand, when \(R \leq r \), write \(\phi_Q\phi_R \) as

\[
\phi_Q(x)\phi_R(x) = \phi(R^{-1}x - 2x_0)\phi(\frac{x_0}{R}) = [\psi_1\phi]^{0,R}(x)
\]

with \(\psi_1(x) := \phi(R^{-1}x - \frac{2x_0}{R}) \). Note that \(\psi_1\phi \) is a normalized bump function. Then, by the Cauchy-Schwarz inequality and (2.9), we have

\[
\int_Q |T(b_1\phi_Q\phi_R)|dx \leq |Q|^\frac{1}{2} \|T(b_1[\psi_1\phi]^{0,R})\|_{L^2} \lesssim R^d|Q|^{\frac{1}{2}} \lesssim |Q|.
\]

On the other hand, when \(R > r \), write \(\phi_Q\phi_R \) as

\[
\phi_Q(x)\phi_R(x) = \phi(\frac{x_0}{R} - \frac{2x_0}{R})\phi(\frac{x}{R}) = [\phi\psi_2]^{x_0,r}(x)
\]

with \(\psi_2(x) := \phi(\frac{x}{R} + \frac{2x_0}{R}) \). Then, noting that \(\phi\psi_2 \) is a normalized bump function, it follows from the Cauchy-Schwarz inequality and (2.9) that

\[
\int_Q |T(b_1\phi_Q\phi_R)|dx \leq |Q|^\frac{1}{2} \|T(b_1[\phi\psi_2]^{x_0,r})\|_{L^2} \lesssim R^d|Q|^{\frac{1}{2}} \lesssim |Q|.
\]

Next, we estimate the second term in (4.8). From the support condition:

\[
\text{supp}(1 - \phi_Q) \subset \mathbb{R}^d \setminus B_{x_0}(3 \text{diam}(Q)) \subset \mathbb{R}^d \setminus Q,
\]

we have

\[
T(b_1(1 - \phi_Q)\phi_R)(x) = \int_{\mathbb{R}^d} K(x,y)b_1(y)(1 - \phi_Q(y))\phi_R(y)dy,
\]

for all \(x \in Q \). Define \(c_{Q,R} \) by

\[
c_{Q,R} := \int_{\mathbb{R}^d} K(x_0,y)b_1(y)(1 - \phi_Q(y))\phi_R(y)dy,
\]

where \(x_0 \) is the center of the cube \(Q \). Then, it follows from (2.2) with (4.13) that, for \(x \in Q \), we have

\[
|T(b_1(1 - \phi_Q)\phi_R)(x) - c_{Q,R}| \leq \int_{|x-x_0| \leq \text{diam}(Q) \leq \frac{1}{2}|x-y|} |K(x,y) - K(x_0,y)|dy
\]

\[
\lesssim 1
\]

uniformly in \(R > 0 \).

Hence, putting (4.8), (4.10), (4.12), and (4.14) together, we conclude that there exists \(A > 0 \) such that for each cube \(Q \) and \(R > 0 \), there exists a constant \(c_{Q,R} \) such that

\[
\frac{1}{|Q|} \int_Q |T(b_1\phi_R)(x) - c_{Q,R}|dx \leq A.
\]

Therefore, it follows from Proposition 7.1.2 in [7] that

\[
\sup_{R>0} \|T(b_1\phi_R)\|_{BMO} \leq 2A.
\]
This proves (4.7) and thus completes the proof of Theorem 1.

5. PROOF OF THEOREM 2

Suppose that T is bounded on $L^4 \times L^4 \to L^2$. Then, given a normalized bump function ϕ, we have
\[
\|T(b_1 \phi^{x_1,R}, b_2 \phi^{x_2,R})\|_{L^2} \lesssim \|b_1\|_{L^\infty} \|\phi^{x_1,R}\|_{L^4} \|b_2\|_{L^\infty} \|\phi^{x_2,R}\|_{L^4} \lesssim R^d
\]
for any $x_1, x_2 \in \mathbb{R}^d$ and $R > 0$. This proves (3.5). A similar computation yields (3.6) and (3.7).

Next, we assume that the conditions (3.5), (3.6), and (3.7) hold. It suffices to show that the conditions (3.5), (3.6), and (3.7) imply the conditions (i) and (ii) in Theorem E.

We first prove the condition (i) in Theorem E. Let ϕ_j, $j = 0, 1, 2$, be normalized bump functions of order M. Then, it follows from the Cauchy-Schwarz inequality, (3.5), and (2.3) that
\[
\langle M_{b_0} T(b_1 \phi^{x_1,R}_1, b_2 \phi^{x_2,R}_2), \phi^{x,R}_0 \rangle \lesssim \|b_0\|_{L^\infty} \|T(b_1 \phi^{x_1,R}_1, b_2 \phi^{x_2,R}_2)\|_{L^2} \|\phi^{x,R}_0\|_{L^2} \lesssim R^d
\]
for all $x_0, x_1, x_2 \in \mathbb{R}^d$ and $R > 0$. This proves the condition (i) in Theorem E.

Next, we prove the condition (ii) in Theorem E. As in the proof of Theorem 1, we only show $M_{b_0} T(b_1, b_2) \in \text{BMO}$, assuming (3.5). The proof of the other two conditions follows in a similar manner in view of the symmetric condition in Definition 3.1.

Since T is a priori defined only on $b_1 C^0_0 \times b_2 C^0_0$, we first extend T to $b_1 C^0_0 \times b_2 C^0_0$. Fix $f_j \in b_j C^0_0$, $j = 1, 2$. Given $b \in \{b_0 C^0_0\}$, let $\psi \in C^0_0$ with $0 \leq \psi \leq 1$ and $\psi \equiv 1$ in a neighborhood of supp g. Then, we define the action of $T(f_1, f_2)$ on g by
\[
\langle T(f_1, f_2), g \rangle := \langle T(f_1 \psi, f_2 \psi), g \rangle + \langle T(f_1(1 - \psi), f_2 \psi), g \rangle + \langle T(f_1 \psi, f_2(1 - \psi)), g \rangle + \langle T(f_1(1 - \psi), f_2(1 - \psi)), g \rangle.
\] (5.1)

Note that the last three terms can be written as triple integrals of the form (3.4). From this, we see that this definition is independent of the choice of ψ.

Let $\phi \in C^\infty_0$ with $0 \leq \phi \leq 1$ such that $\phi(x) = 1$ for $|x| \leq \frac{1}{2}$ and supp $\phi \subset B_0(1)$. Let $\phi_R(x) = \phi(R^{-1}x)$. Then, $T(b_1 \phi_R, b_2 \phi_R)$ converges to $T(b_1, b_2)$ in the weak-* topology of $(\{b_0 C^0_0\})'$. Namely, we have
\[
\langle T(b_1, b_2), g \rangle = \lim_{R \to \infty} \langle T(b_1 \phi_R, b_2 \phi_R), g \rangle
\] (5.2)
for all $g \in \{b_0 C^0_0\}$. See [12] for the proof of (5.2).

Suppose that we have
\[
\|T(b_1 \phi_R, b_2 \phi_R)\|_{\text{BMO}} \lesssim 1,
\] (5.3)
uniformly in $R > 0$. Then, as in the proof of Theorem 1, it follows from Banach-Alaoglu theorem that there exists a sequence $\{R_j\}_{j=1}^\infty$ and $\beta \in \text{BMO}$ such that
\[
\lim_{j \to \infty} \langle T(b_1 \phi_{R_j}, b_2 \phi_{R_j}), g \rangle = \langle \beta, g \rangle
\] (5.4)
for all $g \in H^1$, in particular for all $g \in \{b_0 C^0_0\}$. Hence, from (5.2) and (5.4), we conclude that $M_{b_0} T(b_1, b_2) \in \text{BMO}$.

Therefore, it remains to prove (5.3). By imposing that $\|\partial^\alpha \phi\|_{L^\infty} \leq 1$ for all multi-indices α with $|\alpha| \leq M$, the function ϕ defined above is a normalized bump function of order M.

As in the proof of Theorem 1, let Q be the cube of side length $\ell > 0$ with center $x_0 \in \mathbb{R}^d$. Set $\phi_Q = \phi^{x_0,r}$, where $r = 6 \text{diam}(Q)$. Then, write $T(b_1\phi_R, b_2\phi_R)$ as
\[
T(b_1\phi_R, b_2\phi_R) = T(b_1\phi_Q\phi_R, b_2\phi_Q\phi_R) + T(b_1(1 - \phi_Q)\phi_R, b_2\phi_Q\phi_R)
+ T(b_1\phi_Q\phi_R, b_2(1 - \phi_Q)\phi_R) + T(b_1(1 - \phi_Q)\phi_R, b_2(1 - \phi_Q)\phi_R)
:= I + II + III + IV.
\]

(5.5)

It follows from the Cauchy-Schwarz inequality and (3.5) with (4.9) and (4.11) that
\[
\int_Q |I| dx \leq \left\{ \begin{array}{ll}
|Q|^{1/2} \|T(b_1[\psi_1\phi]^{0,R}, b_2[\psi_1\phi]^{0,R})\|_{L^2} \lesssim |Q|, & \text{when } R \leq r, \\
|Q|^{1/2} \|T(b_1[\phi_{\psi_2}^{x_0,r}, b_2[\phi_{\psi_2}^{x_0,r}]\|_{L^2} \lesssim |Q|, & \text{when } R > r.
\end{array} \right.
\]

(5.6)

Next, we consider the terms II, III, and IV. Let $\phi_Q^c := 1 - \phi_Q$. Then, from the support condition (4.13), we have
\[
II(x) = \int_{\mathbb{R}^d} K(x, y, z) b_1(y)\phi_Q^c(y)\phi_R(y) b_2(z)\phi_Q(z)\phi_R(z)dydz
\]
for $x \in Q$. Define $c_{Q,R}^{(2)}$ by
\[
c_{Q,R}^{(2)} := \int_{\mathbb{R}^d} K(x_0, y, z) b_1(y)\phi_Q^c(y)\phi_R(y) b_2(z)\phi_Q(z)\phi_R(z)dydz,
\]
where x_0 is the center of the cube Q. Then, it follows from (3.2) with (4.13) that, for $x \in Q$, we have
\[
|II(x) - c_{Q,R}^{(2)}| \leq \int_{\supp \phi_Q} \int_{|x-x_0| \leq \text{diam}(Q) \leq \frac{1}{2}|x-y|} |K(x, y, z) - K(x_0, y, z)|dydz
\leq 1
\]
uniformly in $R > 0$. By symmetry, the same estimate holds for III. As for IV, by letting
\[
c_{Q,R}^{(4)} := \int_{\mathbb{R}^d} K(x_0, y, z) b_1(y)\phi_Q^c(y)\phi_R(y) b_2(z)\phi_Q^c(z)\phi_R(z)dydz,
\]
we have, for $x \in Q$,
\[
|IV(x) - c_{Q,R}^{(4)}| \leq \int_{|x-x_0| \leq \text{diam}(Q) \leq \frac{1}{2}\min(|x-y|,|x-z|)} |K(x, y, z) - K(x_0, y, z)|dydz
\leq 1
\]
uniformly in $R > 0$.

Hence, putting (5.5), (5.6), (5.7), and (5.8) together, we conclude that there exists $A > 0$ such that for each cube Q and $R > 0$, there exists a constant $\bar{c}_{Q,R}$ such that
\[
\frac{1}{|Q|} \int_Q |T(b_1\phi_R, b_2\phi_R)(x) - \bar{c}_{Q,R}| dx \leq A,
\]
thus yielding (5.3). This completes the proof of Theorem 2.
Para-accretive functions play an important role in the $T(b)$ theorems. In this paper, we used Definition 2.5 for para-accretivity. In [3], however, David, Journé, and Semmes used a different definition (see Definition A.1 below) and gave several equivalent characterizations for para-accretive functions (Proposition A.2 below). In this appendix, we show that these two definitions (Definition 2.5 and Definition A.1) are equivalent.

Definition A.1. A function $b \in L^\infty$ is para-accretive if $b^{-1} \in L^\infty$ and there exists a sequence $\{s_k\}_{k \in \mathbb{Z}}$ of functions $s_k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$ for which the following conditions hold; there exist $C > 0$ and $\alpha > 0$ such that for all $k \in \mathbb{Z},$

(i) $|s_k(x, y)| \leq C2^{kd}$, for all $x, y \in \mathbb{R}^d$,

(ii) $s_k(x, y) = 0$, if $|x - y| \geq C2^{-k}$,

(iii) $s_k(x, y) = s_k(y, x)$, for all $x, y \in \mathbb{R}^d$,

(iv) $|s_k(x, y) - s_k(x', y)| \leq C2^{k(d+\alpha)}|x - x'|$, for all $x, x', y \in \mathbb{R}^d$,

(v) $\int s_k(x, y)b(y)dy = 1$, for all $x \in \mathbb{R}^d$.

The following proposition states different characterizations for para-accretive functions according to Definition A.1.

Proposition A.2 (Proposition 2 in [5]). Let $b \in L^\infty$ such that $b^{-1} \in L^\infty$. Then, the following statements are equivalent.

(A) A function b is para-accretive according to Definition A.1.

(B) There exists $\varepsilon > 0$ and $N > 0$ such that for all $k \in \mathbb{Z}$ and for any dyadic cube Q of side length $\ell(Q) = 2^{-k}$, there exists another dyadic cube \tilde{Q} of the same side length such that the distance between Q and \tilde{Q} is at most $N2^{-k}$ and

$$\frac{1}{|Q|} \left| \int_{\tilde{Q}} b(x)dx \right| \geq \varepsilon_1.$$

(C) There exist $C > 0$, $\delta > 0$, and $u_k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$ such that for all $k \in \mathbb{Z},$

(i) $|u_k(x, y)| \leq C2^{kd}$, for all $x, y \in \mathbb{R}^d$,

(ii) $u_k(x, y) = 0$, if $|x - y| \geq C2^{-k}$,

(iii) $|u_k(x, y) - u_k(x, y')| \leq C2^{k(d+\delta)}|y - y'|$, for all $x, y, y' \in \mathbb{R}^d$,

(iv) For all $x \in \mathbb{R}^d,$

$$\frac{1}{C} \leq \left| \int u_k(x, y)b(y)dy \right| \leq C.$$

(D) There exist $C > 0$, $\delta > 0$, and $v_k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$ such that for all $k \in \mathbb{Z}$, the conditions (i)-(iv) in (C) are satisfied. Moreover, the following extra conditions are satisfied:

(v) $\int v_k(x, y)dy = 1$, for all $x \in \mathbb{R}^d$,

(vi) $\int v_k(x, y)dx = 1$, for all $y \in \mathbb{R}^d$,
(vii) For all \(y \in \mathbb{R}^d \), the function \(v_k(\cdot, y) \) is constant for each dyadic cube of side length \(2^{-k} \).

A.1. Definition \([A.1]\) implies Definition \([2.5]\) Let \(b \in L^\infty \) be para-accretive according to Definition \([A.1]\). In the following, we show that \((2.5)\) in Definition \([2.5]\) follows from Proposition \([A.2]\) (B).

Let \(\varepsilon > 0 \) and \(N > 0 \) be as in Proposition \([A.2]\) (B). Without loss of generality, we assume that \(N \geq 10 \). Given a dyadic cube \(Q \) centered at \(x_0 \), choose \(k \in \mathbb{Z} \) such that

\[
10 \cdot N 2^{-k} \leq \ell(Q) \leq 20 \cdot N 2^{-k}.
\] (A.1)

Fix a dyadic cube \(Q_1 \subset Q \) of side length \(2^{-k} \), containing the center \(x_0 \) of the cube \(Q \). Then, by Proposition \([A.2]\) (B), there exists another dyadic cube \(Q_2 \) of side length \(2^{-k} \) within distance \(N 2^{-k} \) from \(Q_1 \) such that

\[
\frac{1}{|Q_2|} \left| \int_{Q_2} b(x) dx \right| \geq \varepsilon.
\] (A.2)

Note that \(Q_2 \subset Q \). Moreover, from \((A.1)\) and \((A.2)\), we have

\[
\frac{1}{|Q|} \left| \int_{Q_2} b(x) dx \right| \geq \frac{\varepsilon}{(20N)^d}.
\]

Since the choice of \(Q \) was arbitrary, this shows that \(b \) is indeed para-accretive in the sense of Definition \([2.5]\).

A.2. Definition \([2.5]\) implies Definition \([A.1]\) Let \(b \in L^\infty \) be para-accretive according to Definition \([2.5]\). It suffices to construct a sequence \(\{u_k\}_{k \in \mathbb{Z}} \) of functions \(u_k \) on \(\mathbb{R}^d \times \mathbb{R}^d \), satisfying the conditions (i)-(iv) in Proposition \([A.2]\) (C).

Let \(\phi \in C_0^\infty \) be a normalized bump function of order 1 such that \(\int_{\mathbb{R}^d} \phi(x) dx = \alpha^{-1} > 0 \). Then, let \(\phi_\varepsilon(x) = \varepsilon^{-d} \alpha \phi(\varepsilon^{-1} x) \), that is, \(\{\phi_\varepsilon\}_{\varepsilon > 0} \) is an approximation to the identity.

Given \(k \in \mathbb{Z} \), let \(Q_k \) be the cube of side length \(2^{-k} \) centered at the origin and \(Q_k^\varepsilon := x + Q_k \) be the cube of side length \(2^{-k} \) centered at \(x \in \mathbb{R}^d \). Then, by Definition \([2.5]\) there exists a subcube \(\tilde{Q}_k^\varepsilon \subset Q_k \) such that

\[
2^{kd} \left| \int 1_{Q_k^\varepsilon}(y) b(y) dy \right| \geq c_0.
\] (A.3)

Here, \(c_0 \) is uniform in all cubes \(Q_k^\varepsilon \supset \tilde{Q}_k^\varepsilon \). From \((2.6)\), we also have

\[
\ell_{x,k} := \ell(Q_k^\varepsilon) \geq c_1 \ell(Q_k^\varepsilon) = c_1 2^{-k}, \quad \text{where} \quad c_1 = c_1(b) := \left(\frac{c_0}{\|b\|_{L^\infty}} \right)^{\frac{1}{d}}.
\] (A.4)

Note that

\[
1_{\tilde{Q}_k^\varepsilon}(y) = 1_{Q_0}(\ell_{x,k}^{-1}(y - \bar{x})),
\] (A.5)

where \(\bar{x} \) is the center of the subcube \(\tilde{Q}_k^\varepsilon \). Then, by setting \(\varepsilon = h\ell_{x,k} \) for \(h > 0 \), we have

\[
1_{\tilde{Q}_k^\varepsilon} \ast \phi_\varepsilon(y) = \int 1_{\tilde{Q}_k^\varepsilon}(y - z) \phi_\varepsilon(z) dz = \ell_{x,k}^{-d} \int 1_{Q_0}(\ell_{x,k}^{-1}(y - \bar{x} - z)) \phi_h(\ell_{x,k}^{-1} z) dz
\]

\[
= 1_{Q_0} \ast \phi_h(\ell_{x,k}^{-1}(y - \bar{x})).
\] (A.6)
Then, it follows from \((A.5)\) and \((A.6)\) that we can choose sufficiently small \(h \ll 1\) such that

\[
2^{kd} \left| \int 1_{\tilde{Q}_k} \ast \phi_{\varepsilon}(y) - 1_{\tilde{Q}_k}(y) dy \right| = \frac{\tilde{Q}_k}{Q_k} \left| \int 1_{\tilde{Q}_0} \ast \phi_{h}(y) - 1_{\tilde{Q}_0}(y) dy \right|
\leq \left| \int 1_{\tilde{Q}_0} \ast \phi_{h}(y) - 1_{\tilde{Q}_0}(y) dy \right| \leq \frac{c_0}{2\|b\|_{L^\infty}}, \tag{A.7}
\]

uniformly in \(x \in \mathbb{R}^d\) and \(k \in \mathbb{Z}\). Hence, using \((A.3)\), \((A.7)\), and the triangle inequality, we obtain

\[
2^{kd} \left| \int 1_{\tilde{Q}_k} \ast \phi_{h\ell_{x,k}}(y)b(y)dy \right| \geq \frac{1}{2}c_0. \tag{A.8}
\]

In the following, we fix \(h \ll 1\) such that \((A.7)\) holds.

Now, let us define \(u_k\) by

\[
u_k(x, y) := |Q_k|^{-1}1_{\tilde{Q}_k} \ast \phi_{h\ell_{x,k}}(y) = 2^{kd}1_{\tilde{Q}_k} \ast \phi_{h\ell_{x,k}}(y). \tag{A.9}
\]

Then, from \((A.8)\) and Young’s inequality, we have

\[
\frac{1}{2}c_0 \leq \left| \int u_k(x, y)b(y)dy \right| \leq \frac{\tilde{Q}_k}{|Q_k|}\|\phi_{h\ell_{x,k}}\|_{L^1}\|b\|_{L^\infty} \leq \|b\|_{L^\infty}
\]

for all \(x \in \mathbb{R}^d\) and \(k \in \mathbb{Z}\). Hence, (iv) holds.

By the mean value theorem and Young’s inequality with \((A.4)\), we have

\[
|u_k(x, y) - u_k(x, y')| \leq 2^{kd}\|1_{\tilde{Q}_k} \ast \partial(\phi_{h\ell_{x,k}})\|_{L^\infty}|y - y'| \leq \alpha 2^{kd}\|\tilde{Q}_k\|(h\ell_{x,k})^{d-1}|y - y'|
\leq \alpha c_1 h^{-d-1} 2^{k(d+1)}|y - y'|
\]

for all \(x, y, y' \in \mathbb{R}^d\). This proves (iii). By Young’s inequality, we have

\[
\|u_k(x, y)\|_{L^\infty} \leq 2^{kd}\|1_{\tilde{Q}_k}\|_{L^1}\|\phi_{h\ell_{x,k}}\|_{L^\infty} \leq \alpha 2^{kd}\|\tilde{Q}_k\|(h\ell_{x,k})^{-d} = \alpha h^{-d} 2^{kd}
\]

for all \(x, y \in \mathbb{R}^d\). This proves (i). Lastly, from \((A.6)\) and \((A.9)\), we have

\[
u_k(x, y) = 2^{kd}1_{Q_0} \ast \phi_{h}(\ell^{-1}_{x,k}(y - \tilde{x})) = 0 \tag{A.10}
\]

for \(|\tilde{x} - y| \geq (1 + \sqrt{d})\ell_{x,k}\) since \(h \ll 1\). Note that (i) \(\ell_{x,k} = \ell(Q_{\tilde{k}}) \leq \ell(Q_k) = 2^{-k}\) and (ii) \(|x - \tilde{x}| \leq \sqrt{d}2^{-k}\), since \(x\) and \(\tilde{x}\) are the centers of the cubes \(Q_{\tilde{k}}\) and \(\tilde{Q}_k\), respectively. This in particular implies that \((A.10)\) holds for \(|x - y| \geq (1 + \sqrt{d})2^{-k}\). This proves the condition (ii). By Proposition \((A.2)\), we conclude that \(b\) is para-accractive in the sense of Definition \((A.1)\).

Therefore, Definitions \((2.5)\) and Definition \((A.1)\) are equivalent.

Acknowledgments. This work was partially supported by a grant from the Simons Foundation (No. 246024 to Árpád Bényi). The authors are grateful to the Hausdorff Research Institute for Mathematics in Bonn for its hospitality during the trimester program Harmonic Analysis and Partial Differential Equations, where a part of this manuscript was prepared. They would also like to thank Jarod Hart for helpful discussions.

References

ÁRPÁD BÉNYI, DEPARTMENT OF MATHEMATICS, WESTERN WASHINGTON UNIVERSITY, 516 HIGH STREET, BELLINGHAM, WA 98225, USA
E-mail address: arpad.benyi@wwu.edu

TADAHIRO OH, SCHOOL OF MATHEMATICS, THE UNIVERSITY OF EDINBURGH, AND THE MAXWELL INSTITUTE FOR THE MATHEMATICAL SCIENCES, JAMES CLERK MAXWELL BUILDING, THE KING’S BUILDINGS, PETER GUTHRIE TAIT ROAD, EDINBURGH, EH9 3FD, UNITED KINGDOM
E-mail address: hiro.oh@ed.ac.uk