targetDP: an Abstraction of Lattice Based Parallelism with Portable Performance

Citation for published version:

Digital Object Identifier (DOI):
10.1109/HPCC.2014.212

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
targetDP: an Abstraction of Lattice Based Parallelism with Portable Performance

Alan Gray and Kevin Stratford
EPCC, The University of Edinburgh, Edinburgh EH9 3JZ, UK
Contact: a.gray@ed.ac.uk
7th July 2014

Abstract—To achieve high performance on modern computers, it is vital to map algorithmic parallelism to that inherent in the hardware. From an application developer’s perspective, it is also important that code can be maintained in a portable manner across a range of hardware. Here we present targetDP (target Data Parallel), a lightweight programming layer that allows the abstraction of data parallelism for applications that employ structured grids. A single source code may be used to target both thread level parallelism (TLP) and instruction level parallelism (ILP) on either SIMD multi-core CPUs or GPU-accelerated platforms. targetDP is implemented via standard C preprocessor macros and library functions, can be added to existing applications incrementally, and can be combined with higher-level paradigms such as MPI. We present CPU and GPU performance results for a benchmark taken from the lattice Boltzmann application that motivated this work. These demonstrate not only performance portability, but also the optimisation resulting from the intelligent exposure of ILP.

I. INTRODUCTION

Modern computing systems feature several levels of parallelism at the architectural level. At the most coarse-grained level, many nodes may be coupled via a high performance interconnect. Each node features one or more CPUs each with multiple compute cores. At the finest level, each core features a vector floating point unit, which can perform multiple operations per clock cycle. Furthermore, many systems now feature accelerators such as Graphics Processing Units (GPUs), on which computationally intensive kernels can be offloaded and executed with high efficiency on many low-power cores using high bandwidth graphics memory. Accelerators are used in conjunction with CPUs, and can result in additional complexity such as distinct memory spaces within a single application. The challenge for the programmer is to expose algorithmic parallelism in a way that maps onto the hierarchy of architectural parallelism. Ideally, this would be done in a way that optimises performance, but also allows intuitive expression of algorithmic content whilst promoting software maintainability across different systems such as those with and without accelerators.

For many scientific simulations, discrete regular grids, or lattices, are used to represent space. targetDP is a lightweight framework which targets the data parallelism inherent in lattice-based applications to the hierarchy of hardware parallelism for either SIMD multi-core CPUs or NVIDIA GPUs. targetDP consists of a set of (C99) standard C preprocessor macros, and a small C library interface for set up and memory management. It therefore requires no new pseudo-language intermediate code, or compiler-like translation software layer. The new abstraction promotes optimal mapping of code to hardware thread-level parallelism (TLP) and instruction-level parallelism (ILP), via the partitioning of lattice-based parallelism and translation to OpenMP or CUDA threads (for TLP) and perfectly SIMDizable parallel loops (for ILP). The model differentiates the memory space used for lattice-based operations, to allow mapping to accelerator or host memory. For large scale parallel applications targetDP may be used in conjunction with coarse-grained node-level parallelism, e.g. that provided by MPI. Thus, targetDP allows maintenance of a single source code base with portable performance on the majority of leading edge computational architectures.

In Section II we describe the application that motivated this work, Ludwig, and give a brief overview of related programming models. In Section III we introduce our targetDP framework, including a simple example. We demonstrate the effectiveness of the approach by presenting the performance of a Ludwig application benchmark in Section IV.

II. BACKGROUND AND RELATED WORK

A. Lattice Based Simulation

Our work is motivated by our development of the Ludwig complex fluid simulation package [1]. This versatile software is able to simulate a variety of soft matter substances such as mixtures, particle suspensions and liquid crystals, with relevance to many large industrial concerns such as foodstuffs, paints and coatings, and oil recovery. The basis is hydrodynamics using the lattice Boltzmann (LB) technique, coupled with a free energy based approach for various order parameters, the dynamics of which are solved via standard finite-difference techniques. We have recently developed Ludwig so that it can use many GPUs in parallel as well as traditional CPU based supercomputers [2][3]. The difficulty in maintaining duplicate source code for the two architectures is a key motivation for the work described here. Furthermore, the existing version relies on the compiler to find ILP and map to SIMD instructions, but the extents of innermost loops in the code are dictated by the model and typically do not map perfectly onto the vector hardware. As we will demonstrate, however, it is possible to restructure the algorithms to expose the lattice-based inherent parallelism in a more controlled way, resulting in the introduction of new innermost loops with a tunable extent.

B. Programming Models

The ideal framework would allow the same source code to operate efficiently on either CPUs or accelerators. The majority
of current (NVIDIA) GPU applications are programmed using CUDA, which consists of extensions to C, C++ or Fortran and library API functions. CUDA is not designed for the CPU architecture, but PGI provide a compiler that can create an X86 executable from CUDA code [4]. Such “retrofitted” could potentially realise good performance since CUDA is effective at exposing parallelism, but this approach would still lack portability since it would rely on this single commercial product. An alternative is OpenCL, which has the advantage of offering portability including to X86, but has the disadvantages of being relatively low level and immature, and therefore more difficult to develop and maintain (although the situation is improving [5]).

There have emerged directive-based standards, in particular OpenACC [6] and OpenMP 4.0 [7], that support accelerators. These rely on the compiler to automatically manage data management and computational offloading, with help from user-provided directives. The same base language code can be therefore in principle be portable between CPUs and accelerators through switching between different directive syntax. Such methods offer high productivity, at the expense of user control (and hence performance in many cases).

More closely related to our work are frameworks such as OCCA [8] and HEMI [9], which map the same source to both CPU and accelerator architectures. These, however, are designed to be general purpose, and therefore rely on relatively complex code-generation and data management mechanisms (both leveraging features of C++). Furthermore, they do not offer the CPU performance benefits of explicitly targeting SIMD units. We instead exploit the fact that our approach is domain specific (for lattice-based codes), to facilitate such SIMD targeting and also retain simplicity.

Finally, within the research area of lattice QCD there exist domain specific solutions such as Chroma/QDP++ [10] and Bagel [11]. These offer powerful options to those working specifically in the domain, but do not offer immediate utility for other lattice-based problems.

III. TARGETDP

Lattice based applications use “lattice field” data structures: arrays that have values (or sets of values) defined at every point on the lattice. The runtime of such applications is dominated by operations on lattice fields: these are data parallel in nature since they involve the same operation at all lattice sites. In this section we explain how the targetDP model maps to hardware memory and compute units. We then define the targetDP memory and execution model and illustrate its use.

A. Mapping to Hardware

We use the terminology “host” to refer to the CPU that is hosting the execution of the application, and “target” to refer to the device targeted for execution of lattice-based operations. The target may be an accelerator such as a GPU or it may simply be the host CPU itself. It is an important aspect of our model that even in the case of the latter, we retain the distinction between host and target. We maintain both host and target copies of our lattice data, where the target copy is located in a memory space suitable for access on the target, and is treated as the master copy within those lattice-based computations. The host copy is located on the host memory, and is updated from the target copy as and when required to permit those (non computationally demanding) operations that should always be performed by the host.

targetDP aims to expose the data parallelism inherent in the application in a way that can be mapped to the hardware efficiently. TLP will map to CUDA threads on a GPU or OpenMP threads on a CPU. When the target is an X86 CPU, ILP can be mapped to those vector instructions that extend the X86 set, such as 128-bit SSE, 256-bit AVX and 512-bit IMCI. ILP can similarly be mapped to equivalent vector instructions on other CPU architectures. On NVIDIA GPUs, exposure of ILP within a kernel can also be very beneficial, since it allows the use of fewer thread blocks, with more instructions per block. The increased number of instructions provides the system with opportunities to hide latencies without having to switch blocks. The smaller number of thread blocks means that there are more resources (such as registers) available per block, allowing more data to be retained on-chip [12].

B. Memory Management

We provide both C and CUDA implementations of the targetDP preprocessor macros and library functions, that target CPU and GPU architectures respectively, such that a switch in the application build process can be used to select the appropriate version without changes to source code.

The library provides facilities to manage the host and target data structures. Each lattice field data structure contains, for each site on the lattice, a set of double precision values. The number of values in the set vary depending on the details of the field. For example, a vector field such as velocity has three elements corresponding to the three spatial directions. The user is responsible for allocating and initialising the host data structures. Data should by stored in a “Structure of Arrays” (SoA) format, where the consecutive lattice site indices correspond to consecutive memory locations, to allow chunks of lattice site data to be loaded as vectors for ILP operations. To allocate target data structures, we provide the targetMalloc function, which maps trivially to cudaMalloc in our CUDA library implementation and malloc in our C implementation, with added error checking in each case. Our targetFree function deallocates data in a similar fashion.

We provide copyToTarget and copyFromTarget functions to transfer data to and from the target respectively which map to cudaMemcpy and memcp for CUDA and C respectively (noting that for the latter there may be scope in the future to reduce total memory usage through use of pointers). These take as an argument the total number of lattice sites N, and operate over the full lattice. However, such memory copies can be very computationally expensive, especially when the target is an accelerator. It is often the case that only a subset of the lattice data is required in such transfers. We therefore provide a mechanism for the user to specify a lattice subset, and the implementation will compress the data into that subset for the transfer. The copyToTargetMasked and copyFromTargetMasked functions take as an additional argument a boolean structure of size N, where each element should be set to 1 if the lattice site should be included in the transfer and 0 otherwise. Our CUDA copyFromTargetMasked implements
this by using a CUDA kernel to pack the included sites into a scratch structure on the GPU, transferring the packed structure with cudaMemcpy, and unpacking on the host using a loop. The CUDA copyToTargetMasked implementation operates similarly in reverse. The C implementations operate in an analogous fashion using loops.

Lattice-based operations often involve parameters that remain constant for the operation; a simple example being the scaling of lattice field by a constant factor \(a \). More complex examples involve vectors or arrays, but these are relatively small compared to the lattice fields themselves. For performance, in hardware these should be stored as close to the registers as possible to avoid latencies. To get good GPU performance it is important to specify that these should be stored in the constant fast on-chip memory space. To facilitate this, we again maintain such data on both host and target. The target copy can be treated as constant for the duration of each lattice-based operation. We provide the \texttt{TARGET_CONST} specifier when declaring the target copy: this maps to \texttt{__constant_} in our CUDA implementation and holds no value for our C implementation. We provide a family of functions to populate the target structures with the \texttt{copyConstant\textlt{<X>}	extt{FromSymbol}} family of functions to populate the target structures with the \texttt{<X>} naming convention, where \texttt{<X>} specifies the type and shape for a range of cases such as \texttt{Double}, \texttt{Int}, \texttt{Double1DArray}, etc. In the CUDA implementation, These map to \texttt{cudaMemcpyToSymbol} where \texttt{<X>} can be associated with a thread as follows:

\[
\texttt{__global__}\text{ }\texttt{copyConstant\textlt{<X>}}\texttt{ToTarget,}\text{ where }\texttt{<X>}\text{ specifies the type and shape for a range of cases such as }\texttt{Double, Int, Double1DArray, etc.}\text{ In the CUDA implementation, These map to }\texttt{cudaMemcpyToSymbol} \text{ where the argument types are set appropriately in each function in the family. In the C version, these map trivially to }\texttt{memcpy}.\]

\[\]

\C. Execution Model\]

Consider a simple example which is the scaling of a 3-vector field by a constant. This is, schematically:

\[
\text{for (idx = 0; idx < N; idx++) { //loop over lattice sites}
\text{int iDim;}
\text{for (iDim = 0; iDim < 3; iDim++)}
\text{field[iDim*N+idx] = a*field[iDim*N+idx];}
\text{}}
\]

We can introduce targetDP by replacing the above code with the following function (noting that a SoA format is already in use):

\[
\text{TARGET_ENTRY void scale(double* t_field) {}
\text{int baseIndex;}
\text{TARGET_TLP(baseIndex, N) {}
\text{int iDim, vecIndex = 0;}
\text{for (iDim = 0; iDim < 3; iDim++)}
\text{t_field[iDim*N+baseIndex + vecIndex] = t_a*t_field[iDim*N+baseIndex + vecIndex];}
\text{}}
\text{}}
\]

The \texttt{t_} syntax is used to identify target data structures. For the C implementation, the \texttt{TARGET_ENTRY} macro holds no value, and the code will compile as a standard C function. For the CUDA implementation, it is defined as \texttt{__global__} to specify compilation for the GPU. We similarly provide a \texttt{TARGET_ENTRY} macro for use on subroutines called from \texttt{TARGET_ENTRY} functions. We expose the lattice-based parallelism to each of the TLP and ILP levels of hardware parallelism through use of C-preprocessor macros in the following way. We re-express the original loop over lattice sites using the \texttt{TARGET_TLP(baseIndex, N) macro, where baseIndex is an index for lattice sites, and N is the total number of lattice sites. The “base” terminology will become clearer below. This macro is implemented in our C version of the targetDP header file as follows:

\[
\text{#define TARGET_TLP(baseIndex,extent) \}
\text{_Pragma("omp parallel for") \}
\text{for (baseIndex = 0; baseIndex < extent; baseIndex += VVL)}
\text{}}}
\]

The macro is therefore expanded as a loop over lattice sites, decomposed between OpenMP threads. Note that, in OpenMP terminology, variables declared outside the TLP region will be treated as shared, and those declared inside as private. Importantly, the TLP loop is strided in steps of a virtual vector length (VVL): a tunable parameter that represents the width of ILP that we wish to present to the hardware. The value of VVL can be edited by the user in the header file. Thus, each TLP thread operates not on a single lattice site but instead a chunk of VVL lattice sites, and baseIndex corresponds to the first index in the chunk. In other words, we are strip-mining the original loop.

For our CUDA implementation, it can be seen that the TLP macro appears inside a kernel function and the baseIndex can be associated with a thread as follows:

\[
\text{#define TARGET_TLP(baseIndex, extent) \}
\text{baseIndex = VVL*(blockIdx.x*blockDim.x + threadIdx.x); \}
\text{if (baseIndex < extent)}
\text{}}}
\]

Again, it can be seen that a virtual vector length is used such that each CUDA thread becomes responsible for a chunk of lattice sites.

The lattice-based operation to be performed for the chunk of VVL sites is implemented using the \texttt{TARGET_ILP(vecIndex) macro prepended to the innermost operation. The vecIndex variable is an integer which acts as an offset to the base index within the chunk of lattice sites. For both C and CUDA, this is implemented as follows:

\[
\text{#define TARGET_ILP(vecIndex) \}
\text{for (vecIndex = 0; vecIndex < VVL; vecIndex++)}
\text{}}}
\]

The operation that follows this macro can then use the combination \texttt{baseIndex+vecIndex} when accessing array data, ensuring that all elements of the lattice chunk are operated on. For C, \texttt{VVL} can be tuned to allow the compiler to generate optimal SIMD instructions. For example, setting \texttt{VVL} to \texttt{m \times 4}, will create \texttt{m} AVX instructions, where \texttt{m} is a small integer. \(m = 1 \) is an obvious choice, but it can be the case that \(m > 1 \) gives better performance. \texttt{VVL} can similarly be tuned for the CUDA implementation, giving the benefits described in Section III-A.

The \texttt{scale} function is called from host code as follows:

\[
\text{targetMalloc(void ** t_field, data size);}
\text{copyToTarget(t_field, field, data size);}
\text{copyConstantDoubleToTarget(4_t_a, 4_a, sizeOf(double));}
\text{scale TARGET_LAUNCH(N) (t_field);}
\text{syncTarget();}
\text{copyFromTarget(field, t_field, data size);}
\text{targetFree(t_field);}
\]
exposing ILP within each kernel offers performance benefit on the GPU. In this case we tune VVL to be 2, and we see a performance boost of 1.4X. Incidentally, the GPU targetDP benchmark implementation outperforms the CPU by 4.5X.

V. Conclusion

In order to get good performance, the programmer must expose thread-level parallelism (TLP) and instruction-level parallelism (ILP). For code sustainability, the same source code should be portable across the range of modern architectures including those featuring accelerators. In this paper we introduced targetDP, a lightweight programming framework designed to achieve such goals for lattice-based applications. We showed the performance benefits in partitioning the lattice-based parallelism into TLP and ILP through targetDP, for an application benchmark on CPU and GPU architectures. We are now in the process of integrating targetDP fully within the Ludwig complex fluid application. We also plan to extend the library to provide more lattice-based operations such as reductions (which at the moment can co-exist in targetDP applications, but must be implemented using the lower level CUDA/OpenMP syntax directly). The targetDP framework is, in principle, directly applicable to other lattice based applications, and the concepts may be transferrable to a wider class of applications. So far we have tested implementations on NVIDIA GPUs and X86 CPUs (including Intel Xeon Phi in native mode). Additional implementations could be added to enable other accelerator configurations including Xeon Phi in coprocessor mode, AMD GPUs and DSPs.

Acknowledgments

AG is funded by the EU-Funded CRESTA project (Seventh Framework Programme ICT-2011.9.13 Grant Agreement 287703). KS is funded by the UK EPSRC grant EP/J007404/1.

References