Development and Optimization of Durable Microelectrodes for Quantitative Electroanalysis in Molten Salt

Citation for published version:

Digital Object Identifier (DOI):
10.1109/JMEMS.2015.2399106

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
Journal of Microelectromechanical Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Development and Optimization of Durable Microelectrodes for Quantitative Electroanalysis in Molten Salt

Ewen O. Blair, Damion K. Corrigan, Jonathan G. Terry, Senior Member, IEEE, Andrew R. Mount, and Anthony J. Walton, Senior Member, IEEE

Abstract—Microfabricated square electrodes with finely controlled highly reproducible dimensions have been developed for electrochemical analysis of high-temperature molten salt (MS). These microelectrodes have been fabricated using photolithographic techniques on silicon wafers and have been designed for operation in lithium chloride/potassium chloride eutectic salt at and ~500 °C. The electrodes are constructed from a series of patterned layers, and their development has involved a systematic study and optimization of a number of different material combinations. This has resulted in a process for making electrodes that represents a step change in capability, delivering the first robust microelectrode device capable of quantitative electroanalysis in a MS system at 500 °C. [2014-0273]

Index Terms—Microelectrodes, molten salt, microfabrication, high temperature.

I. INTRODUCTION

The use of a molten salt (MS) as an electrolytic medium delivers a number of advantages including a large potential window, high ionic (and therefore electrical) conductivity, and fast reaction kinetics [1]. These benefits facilitate the production, stabilisation, and analysis of species of interest within the areas of metal manufacturing, renewable energy, and nuclear reprocessing [2]–[5]. Chloride melts are a particularly attractive system for such applications as they have a relatively low melting point and are less corrosive than fluoride melts [6]. In spite of its favourable properties when compared to fluoride melts, LiCl-KCl eutectic (LKE) is still a challenging system in which to work. The operating temperatures are typically between 360 and 500 °C [1] and dissolved reactive species often produce a highly corrosive medium.

Macroelectrodes are the current electrode of choice for measurement of redox species in MSs. However, reproducible quantitative measurements are difficult to perform because physical properties such as wetting are not well understood and the active area of the electrode can be difficult to determine [7], [8]. The glasses employed in insulating such electrodes are also subject to failure due to thermal stress and corrosion thus changing the active electrode area over the course of measurement [9].

A number of studies report the development of electrode systems for measurement in MS. One notable study by Malinowska et al., employed gold disc electrodes capable of operating at 650 °C in molten carbonate salt. This involved device construction using laser fabrication techniques, to produce electrodes with radii between 200 µm and 1.6 mm [10]. Most crucially however these macroelectrodes still suffer from electroanalytical disadvantages including being heavily affected by solution convection, iR drop unduly influencing the response and the relatively large electrode surface area producing an unfavourable signal-to-noise ratio.

Microelectrodes (electrodes with a critical dimension in the tens of micrometres range) exhibit superior electroanalytical properties when compared to macroelectrodes [11], [12]. These include higher signal-to-noise ratio, faster response times, lower susceptibility to convection in the electrolyte, and the ability to rapidly reach a steady-state current [13], [14].

Normally, high temperature electrochemistry refers to studies carried out between 70 and 250 °C [15] and high temperature microelectrodes are usually limited to operating temperatures between 70 and 300 °C [16]–[18]. Traditional microelectrodes, where a wire is encapsulated in glass, have also been fabricated for measurements in MSs. However, these electrodes are prone to chemical attack and thermal degradation [19], as well as being difficult to make with reproducible dimensions.

Clearly microelectrodes that can function reliably in a MS have the potential to deliver accurate, quantitative analysis of the chemical species present in the salt and provide an invaluable sensor for a range of industrial/process
sensing systems, including nuclear fuel reprocessing, and electroplating.

The layer by layer nature of microfabrication presents an opportunity to systematically optimise microelectronic architectures through identification and understanding of failure mechanisms. Through this methodology devices have been designed that can operate reliably in the harsh environment of LKE. When designing microelectrodes for operation in LKE, it is necessary to consider that both chemical attack and electrochemical product generation may impact upon performance. For example, the lithium ion is very small and able to permeate, destabilise, and intercalate into a wide range of glass, ceramic, and crystalline materials [20], [21]. Therefore effective barrier materials are required. Thermal and intrinsic stress must also be managed in order to prevent cracking or delamination at high temperatures.

Reference [22] reports our initial study which identified the potential of microfabricated electrodes for operation in high temperature, corrosive environments such as LKE. Photolithographic techniques were chosen to fabricate MS compatible microelectrodes because they enable the manufacture of large numbers of electrodes with precise reproducible control over their geometries and positions. However, these electrodes were found to suffer from short operating lifetimes, a limited potential window of operation, and increased electrode area as they degraded, making it impossible to extract quantitative information due to uncertainty over the electrode area. The technology is further developed in this paper, taking full advantage of processes used in the fabrication of silicon integrated circuits, where the required patterns can be repeatedly defined at the sub-micrometre scale using photolithography [23].

This paper first reports the design and fabrication of a benchmark electrode capable of surviving in LKE for short periods of time (~5 mins). The failure mechanisms of the device are then identified and methods of overcoming them are described. The result is a process capable of producing devices that make possible accurate, reliable electrochemical measurements in LKE for over 30 minutes without any performance degradation. In addition, the electrochemical response of the device in the presence of the model redox agent silver (I) chloride is reported as part of the procedure to confirm the successful construction of a fully functional microelectrode with high dimensional control.

II. OBJECTIVES

This paper defines microelectrodes as electrodes where at least one critical dimension is in the tens of micrometres range (the term ultramicroelectrode is used for electrodes in the single micrometre range) [24]. To be considered a functioning microelectrode of high fidelity, the device must have the following characteristics:

1. Be chemically inert in the melt thereby minimising susceptibility to chemical attack;
2. Have an effective top insulation layer which defines the electrode area and is able to operate as such within the required range of the applied potential;
3. Maintain its overall integrity across the required potential window and over the temperature range studied;
4. Display quantitative and reproducible behaviour in its electrochemical response that typifies a microelectrode, ideally predicted by theory and corroborated by previous studies.

For this work, a range from −1.5 V to +0.5 V was selected as the potential window for operation as this allows the electrochemical detection of Uranium and Americium (which are two important species found in spent nuclear fuel) along with the detection of many industrially important metals such as Zinc and Aluminium [25]–[27].

III. DESIGN CONSIDERATIONS AND LAYOUT OF THE MICROELECTRODE

Figure 1 presents (a) the layout and (b) the cross-section of the device architecture. These show how the electrode and the contact pad dimensions are defined by the openings etched through the top insulator. The large (6 by 4 mm) contact pad was designed to enable simple, reliable connection using a crocodile clip. The separation between contact pad and electrode was designed to ensure that when the electrode was immersed in LKE, the solution did not reach the contact pad through wetting. In this work microsquare electrodes with the range of edge lengths (L) 10 µm, 20 µm, 30 µm, 50 µm, and 100 µm were studied.
IV. FABRICATION

Multiple materials were characterised in this study to identify the combinations and characteristics required for electrode systems to successfully operate in the chemically harsh environment of LKE melts at 500 °C. The electrodes were fabricated on 100 mm diameter <100> p-type silicon wafers and figure 2 shows the base fabrication process. This process starts with a 500 nm insulation layer being grown (silicon dioxide)/deposited (silicon nitride) on the wafer (figure 2(a)), which electrically isolates the silicon substrate from the electrode device. Next a layer of negative photoresist is spin coated onto the wafer and baked (figure 2(b)). Figure 2(c) shows the photoresist being selectively exposed to ultraviolet light. Subsequent development of the resist results in removal of the unexposed material, leaving the re-entrant profile in the remaining resist shown in figure 2(d). The electrode metallisation, which comprises of a 20 nm thick metal adhesion layer (titanium or titanium nitride) covered by a thicker film of the electrode metal (tungsten), is then deposited by DC magnetron sputtering (figure 2(e)). The remaining resist is then removed, which lifts off the unwanted metal and leaves behind the desired electrode metallisation pattern shown in figure 2(f). A top 500 nm thick dielectric (silicon-rich silicon nitride or stoichiometric silicon nitride) is then deposited over the metal to insulate it from the MS (figure 2(g)). Finally, a layer of positive resist is spun on to the wafer, selectively exposed (figure 2(h)) and developed (figure 2(i)). The exposed top insulator is then etched, to expose the metal electrodes and contact pad (figure 2(j)). The remaining resist is then removed and the completed device is ready for testing (figure 2(k)).

V. EXPERIMENTAL

Once fabricated, in preparation for characterisation in LKE at 500 °C, crocodile clips were crimped to a tungsten wire for the electrical connection to a potentiostat. The crocodile clip and bond pad were then encapsulated in a heat-resistant putty to provide both physical and chemical protection of the connection. All the different variants of the device were characterised in 100g of LKE (45g of LiCl and 55g of KCl) in a vitreous carbon crucible located in a quartz cell heated in a vertical tube furnace. The LKE was melted and maintained under an argon atmosphere and cyclic voltammetry with silver (I) chloride as the redox agent was then used to determine the functionality of the devices. Silver chloride was chosen because it displays characteristic electrochemical plating and stripping behaviour on macroelectrodes in LKE at moderate voltages. It is also a simple and stable redox agent which is easily handled, making it an ideal compound for initially characterising electrochemical performance of the devices. An Ag/Ag+ reference electrode was formed by sealing a silver wire with 1% by mass Ag+ in LKE in a mullite tube. All potentials quoted in this paper are with respect to this electrode. A 1.8 mm diameter tungsten wire was employed as the counter electrode.

VI. RESULTS

A. Benchmark Device

The initial benchmark fabrication process for this work was based upon the electrodes detailed in [22]. These comprised of a 500 nm thick underlying insulation layer of LPCVD silicon-rich silicon nitride (Si-rich SiN) to insulate the electrode metal from the underlying silicon wafer. Silicon nitride was selected because it is chemically inert and physically robust [28]. Stoichiometric silicon nitride (Si3N4) has a very high intrinsic stress [29] and hence lower-stress Si-rich SiN had been selected to minimise this. A 20 nm titanium layer was used to provide adhesion [30] between the underlying insulator and the electrode metal, which consisted of a 200 nm tungsten film. Tungsten was employed because it is a common macro electrode material used for electrochemical measurements in MS as it is electrochemically inert between the
solvent limits of LKE [31]. The top insulator which defined the microelectrode and insulated the tungsten interconnect from the MS solution was also a 500 nm layer of Si-rich SiN.

Devices fabricated using this material combination were characterised by initially submerging them in LKE for half an hour at 500 °C after which they were removed and examined under a microscope. This showed no obvious signs of chemical attack (such as discoloration or surface damage). When potentials ranging between −1.5 V and +0.5 V were applied, the devices operated successfully, passing the currents associated with silver stripping (below −0.3 V) and plating (above −0.3 V) in the nA range for one to ten minutes, after which the currents increased markedly into the mA range. This increase in current was indicative of a failure in the top insulator leading to exposure of additional tungsten. Upon removal from LKE and inspection, it was found in these cases that the top insulation layer had delaminated, which was believed to have been caused by stress induced through electrochemical cycling. No delamination was observed when restricting the potential window to between −0.5 V and +0.5 V but the characteristic electrochemistry of silver plating and stripping could still be observed. However, it was also noticed that even in this reduced voltage window there were deposits of silver on the areas of the top insulator overlying the metal, as shown in figure 3(a), and the larger than expected currents persisted despite the absence of delamination events. Whilst restricting the operational voltage limits avoided delamination it indicated that the top insulator was ineffective in preventing the reduction of silver ions at the underlying tungsten according to

$$\text{Ag}^+_{(\text{solv})} + \text{e}^- \rightarrow \text{Ag}^{(s)} \quad (1)$$

Occasionally, in this restricted potential window, silver plating/stripping currents were also seen to decrease. When the device was removed from LKE and inspected, flakes of metal were missing from the microsquare as shown in figure 3(b). This implied there was also either poor adhesion between the layers or the electrode metal and/or the adhesion layer were becoming exposed to LKE and subsequently attacked leading to a reduction in the overall area of the tungsten.

In summary, the characterisation of the benchmark device highlighted the difficulties associated with performing electrochemistry in LKE with these devices and presented the following series of challenges:

1. Delamination of the top insulator;
2. Susceptibility of the electrode metal to detachment;
3. The top insulator not operating as an effective barrier to electrochemistry at the underlying metal.

In the following sections each of these failure mechanisms is analysed systematically and a solution to each mode of failure is presented. The end result is an optimised device capable of operating in the LKE environment. In the following sections it can be presumed unless stated otherwise that devices were evaluated by electrochemically cycling them over the voltage range −1.5 to +0.5 V.

B. Failure Analysis

1) Stress: The delaminations observed in the benchmark device architecture indicated that excessive stress was being generated in the layered structure. There are two sources of the stress resulting from layer deposition; intrinsic (related to the internal structure of the film resulting from its deposition) and extrinsic (largely resulting from thermal-mismatch between layers). Depending on process conditions typically the intrinsic stress in Si-rich SiN is tensile and SiO2 compressive [29] with measured magnitudes of 375 ± 40MPa and 272 ± 34MPa respectively. These values agree with the literature [29] and were obtained using profilometry and the Stoney formula [32].

An example of a very successful stress relief strategy for the high level of intrinsic stress present in silicon nitride is the LOCOS process which is used for growing the field oxide in CMOS technology [33]. As noted above, SiO2 has a compressive stress and if this is matched with the tensile stress in the Si-rich SiN, wafer bow can be eliminated [29], [34]. This was consequently the approach used to relieve stress in the Si-rich SiN top insulator and thereby reduce the probability of delamination. Hence, devices were fabricated with a 500 nm thermally grown SiO2 layer in place of the 500 nm Si-rich SiN base insulation layer used in the benchmark device. It was satisfying that when these devices were electrochemically cycled in the melt the stress levels were sufficiently reduced to the point where no delamination of the top SiN insulator layer was observed.

The extrinsic stress also needs to be considered and is mainly related to the thermal expansion mismatch between the deposited layer and the silicon substrate. In the electrodes fabricated in this paper it originates from the strain resulting from the wafer cooling to its room temperature dimensions after deposition. This bi-axial thermal mismatch stress is typically less than the intrinsic stress. Assuming the strain is set by the much thicker silicon wafer it can be calculated to be 84MPa for Si-rich SiN and 151MPa for SiO2 for the wafer operating at 500 °C.

Figure 4(a) and (b) compares devices fabricated with Si-rich SiN and SiO2 underlying insulators respectively after cycling between −1.5 V and +0.5 V. It can be observed the stress relief provided by the underlying SiO2 successfully reduces the overall stress and solves the delamination problem experienced when Si-rich SiN is used as the underlying insulator.
BLAIR et al.: DEVELOPMENT AND OPTIMIZATION OF DURABLE MICROELECTRODES

Fig. 4. (a) Benchmark device with an Si-rich SiN underlying insulator where the top insulator has delaminated. (b) Device fabricated with a SiO$_2$ underlying insulator which shows no delamination of the top insulator. The two devices were electrochemically cycled for 5 minutes at 500 °C.

However, it is also well known that silicon dioxide is chemically attacked by LKE. To confirm this, when a 500 nm film of thermally grown silicon dioxide was immersed in LKE, it was completely removed in under 10 minutes. Hence, an important design consideration is that the silicon dioxide underlying layer is either never directly exposed to LKE, or its exposure is limited so as to not impact on device lifetime.

2) Adhesion Layer: To investigate the effect of metal detachment from the microsquare, a simple device consisting of a tungsten electrode metal film upon a titanium adhesion layer was connected and electrochemically cycled. In this case the electrochemical currents reduced to zero in under five minutes indicating loss of electrode metal. Figure 5(a) shows a sample following removal from the melt visually confirming this effect. As tungsten is a well-used electrode metal in LKE [30], it seems unlikely this was the source of the metal detachment. It was suspected that electrochemical dissolution of the underlying adhesion layer was responsible. To identify whether this was the case, a titanium wire was submerged into LKE and electrochemically cycled and was found to electrochemically dissolve at a potential of \(\sim 0 \) V.

Fig. 5. (a) Electrode with a strip of tungsten on a titanium adhesion layer where a large section of the titanium has been electrochemically stripped, removing the overlying tungsten. (b) A tungsten electrode with a titanium nitride adhesion layer which has been unaffected by electrochemical cycling.

For the seed layer to be responsible for the electrode film removal, LKE must be able to reach the underlying titanium adhesion layer. The sporadic nature of this effect suggests it was most likely due to defects/pinholes in the electrode metal film. As pinholes are difficult to completely remove, it is advantageous to employ an adhesion layer which is not electrochemically dissolved by LKE over the required potential range. Titanium nitride is known to offer good corrosion resistance and is an often used barrier material [35], [36].

To investigate the chemical and electrochemical response of deposited TiN in the salt, 20 nm of TiN was sputtered onto 500 nm of LPCVD Si-rich SiN and diced into strips. After being submerged in the salt, the TiN showed no signs of dissolution. The sample was then subjected to cyclic voltammetry for 15 minutes at a sweep rate of 200 mV s$^{-1}$. The titanium nitride was not electrochemically dissolved when cycled between \(-1.5\) V and \(+0.5\) V. Finally, to confirm the improved resistance of a combined tungsten metal layer and TiN adhesion layer to the salt, a device fabricated without a top insulator but with a 20 nm TiN adhesion layer and 200 nm tungsten layer was cycled in the melt for 30 minutes in the same potential window. The response was unchanged with time indicating resistance of the adhesion layer to electrochemical dissolution in LKE, as shown in figure 5(b). This confirmed that TiN was a suitable adhesion layer for these devices.

3) Top Insulator: It was observed that the Si-rich SiN top insulator was not particularly robust and often failed to insulate successfully from the molten salt. It was possible that this was due to the Si-rich SiN not acting as an impermeable chemical barrier. It was expected that stoichiometric silicon nitride (Si$_3$N$_4$) would provide a better barrier to LKE than Si-rich SiN. This is because (a) Si-N bonds are more covalent in character than Si-Si bonds, making them more resistant to chemical attack, and (b) the material is denser than other Si$_x$N$_y$ ratios [37].

Figure 6 shows a device with a Si$_3$N$_4$ top insulator after removal from the melt following half an hour of cycling. It can be observed that there is no visible degradation and the top insulation layer of the device shows no silver deposited on the surface.
SiO2 underlying insulator, the TiN adhesion layer, and the device and the final optimised device, which incorporated the length was considered to be a good indicator of a high-fidelity microsquare edge length. The extraction of the expected edge efficient, the defined microelectrode edge length (L in fig 7(a) was 6.6 mm. Such a large discrepancy between the edge length calculated for the benchmark electrode silver (I) chloride at 457 °C [39] in LKE and equation (2), is given by [38]

\[i_L = 2.341nFDcL, \]

where \(i_L \) is the limiting current, \(n \) is the number of electrons transferred, \(F \) is Faraday’s constant, \(D \) is the diffusion coefficient, \(c \) is the concentration of the redox agent and \(L \) is the microsquare edge length. The extraction of the expected edge length was considered to be a good indicator of a high-fidelity electrode and was used below for both the original benchmark device and the final optimised device, which incorporated the SiO2 underlying insulator, the TiN adhesion layer, and the Si3N4 top insulator.

Figure 7(a) shows the cyclic voltammogram from a benchmark electrode. It is important to note the high magnitude of the current and the disparity between charges passed during plating and stripping (often 5-10 times more current was passed in plating than stripping). The explanations for these two phenomena were silver plating on the metal areas was passed in plating than stripping). The explanations for these two phenomena were silver plating on the metal areas transfer, and illustrated in figure 3(a) and/or with delamination of the device was observed. These devices also produced the desired quantitative electrochemical response, as reported in the next section.

VII. Electrode Performance - Electrochemical Characterisation of Silver (I) Chloride in LKE

After fabrication of the electrodes they were quantitatively characterised to identify fully functioning devices. To confirm the fabricated microelectrode was of the correct dimensions, the edge length was determined using the established expression for the limiting current for a square microelectrode, which is given by [38]

\[i_L = 2.341nFDcL, \]

where \(i_L \) is the limiting current, \(n \) is the number of electrons transferred, \(F \) is Faraday’s constant, \(D \) is the diffusion coefficient, \(c \) is the concentration of the redox agent and \(L \) is the microsquare edge length. The extraction of the expected edge length was considered to be a good indicator of a high-fidelity electrode and was used below for both the original benchmark device and the final optimised device, which incorporated the SiO2 underlying insulator, the TiN adhesion layer, and the Si3N4 top insulator.

In contrast, figure 7(b) shows a cyclic voltammogram from an optimised electrode with \(L = 20 \mu \text{m} \). The most immediate thing to note is that the current scale on figure 7(b) is now in the order of nA as opposed to \(\mu \text{A} \) in figure 7(a), which in itself is indicative of a microelectrode. Also evident in figure 7(b) is the sharp stripping peak and limiting current, arising from the diffusion-controlled mass transport, characteristic of microelectrodes. Using equation (2), an edge length of 19.6 \(\mu \text{m} \) was calculated at 450 °C for the optimised electrode. This is a highly satisfying finding, as \(L \) is within 2% of the designed value, well within the tolerance reported for high fidelity ambient microelectrode systems [40]. This compares favourably with the electrodes in [10], where the electrode radius was determined electrochemically to be 40% larger than expected under ambient conditions. It should also be noted that the charge passed during silver plating was the same (0.7 \(\mu \text{C} \)) as that passed during stripping. When this device was cycled using a range of scan rates, the electrochemical response also proved to be independent of scan rate further indicating that the device was performing as expected for a 20 \(\mu \text{m} \) square microelectrode. Finally, the device was cycled in the melt for 30 minutes with no change in the electrochemical response. Visual inspection after electrochemical cycling showed an unblemished top insulator film with tungsten metal still present in the previously defined electrode area. These analyses confirmed the successful production of working optimised devices overcoming the limitations identified in [7]–[19].

A more comprehensive electrochemical characterisation of these electrodes is presented in a companion publication [41].

VIII. Discussion

Analysis of three key failure mechanisms provided an insight into the operation of microfabricated microelectrodes in the high temperature environment of LKE MS. This approach guided development of optimised devices that functioned in this environment for at least half an hour.

It has been shown that intrinsic stress is the most important stress related factor when operating in the LKE environment. In the role of underlying insulator; the Si-rich SiN layer contributes less thermal stress than the SiO2. However the intrinsic stress is much higher and results in device delamination. There was a concern that dicing into individual chips exposed the SiO2 insulator to LKE along the cut edges. However no detrimental effect has been observed over the time courses investigated to date.

The necessity of an electrochemically inert adhesion layer implies that there is infiltration of salt through the electrode metal, most likely via pinholes. For a robust device it is clear that the total performance of the material layers used must be considered, even if they are not in apparent direct contact with the salt.

The use of stoichiometric silicon nitride (Si3N4) as the top insulator provides a superior dielectric barrier compared
This behaviour is not observed when a stoichiometric Si$_3$N$_4$ larger than expected as a result of incomplete passivation. Whilst the Si-rich SiN film had lower internal stress, when it was not simply pinholes or defects in the top insulation layer, but the superior chemical resistance of Si$_3$N$_4$. It was not simply pinholes or defects in the top insulation layer, and the use of stoichiometric silicon nitride as the top insulator provides effective passivation. The results of this technology are highly suited to online process control in flowing MS media and in stirred reaction vessels.

The engineering yield of the reported optimised devices is close to 100% and when left in the melt for two weeks with no electrical activation the devices appeared completely unaffected. As expected, when electrically activated, the device lifetime is heavily affected by the size of the potential window over which it was scanned and the temperature of the melt. A variation in electrode lifespan has been observed with the overwhelming majority of devices surviving between 0.5 hours and 2.5 hours of electrochemical activation when scanned between -1.5 V and $+0.5$ V. There have been a few device failures within 10 minutes and these short lifetimes are almost certainly due to latent defects. The failure rates can be further reduced by lowering particulate levels and in future devices tighter process controls are being implemented in order to improve operational lifetimes.

IX. CONCLUSION

This systematic study of layer material combinations for the manufacture of MS compatible microelectrodes has highlighted a number of important issues and challenges. Effective stress relief is shown to prevent thin film delamination, use of an electrochemically inert adhesion layer prevents loss of electrode metal, and the use of stoichiometric silicon nitride as the top insulator provides effective passivation. The results of the material testing is summarised in table 1.

This paper has described the first microelectrode device capable of operating over extended periods in the chemically harsh environment of LKE at 500 °C. The impact of this technology is therefore highly suitable to online monitoring in MS and with the prospect of pyrochemical processing of nuclear fuel becoming a widely adopted technique, there is the potential for significant impact. We are currently developing sensors to enable real time monitoring for process control in flowing MS media and in stirred reaction vessels.

Table I

<table>
<thead>
<tr>
<th>Material</th>
<th>Contribution to device performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon dioxide</td>
<td>Chemically removed in melt, good underlying insulator in combination with silicon nitride top insulator due to stress relieving effect.</td>
</tr>
<tr>
<td>Silicon-rich silicon nitride</td>
<td>Increased overall stress compared to SiO$_2$ when used as bottom insulator, incomplete passivation when employed as top insulator.</td>
</tr>
<tr>
<td>Stoichiometric silicon nitride</td>
<td>Higher stress than silicon-rich silicon nitride but provides effective passivation when employed as the top insulator.</td>
</tr>
<tr>
<td>Titanium</td>
<td>Subject to electrochemical dissolution at 0V upon contact with LKE.</td>
</tr>
<tr>
<td>Titanium nitride</td>
<td>Was an effective adhesion layer with no electrochemical dissolution into LKE.</td>
</tr>
</tbody>
</table>

with the Si-rich SiN used in the previously reported process. Whilst the Si-rich SiN film had lower internal stress, when it is employed as the top insulator the measured currents are larger than expected as a result of incomplete passivation. This behaviour is not observed when a stoichiometric Si$_3$N$_4$ top insulator is employed. The dramatic improvement in passivation between the two silicon nitride layers also suggests it was not simply pinholes or defects in the top insulation layer, but the superior chemical resistance of Si$_3$N$_4$.

REFERENCES

Andrew R. Mount is currently a Professor and the Head of Physical Chemistry with the University of Edinburgh, Edinburgh, U.K. He was the Royal Society of Edinburgh/SEELLD Support Research Fellow. He has authored over 70 papers and holds 10 patents. He has interests and expertise in electrochemical production, and the combination of spectroscopic (in particular, fluorescence) and electrochemical characterization.

He has collaborated with the National Nuclear Laboratory, Cumbria, U.K., for the last 10 years, as an Electrochemical Consultant on electroanalysis in room and high temperature molten salt systems. During this period, he has also been a Principal Investigator and an active member of the management team in over £9M of successful multidisciplinary projects to develop optical and electrochemical sensors and devices, directly supervising six PDRAs and involving dual and multisite supervision. He is the Chair of the RSC Electrochemistry Group; a member of the RSC Faraday Standing Committee on Conferences; the Founding Member of the Centre for Materials Science, Edinburgh; the Edinburgh Materials Microanalysis Centre, Edinburgh; and the Centre for Science at Extreme Conditions, Edinburgh; and a reviewer with the Oak Ridge National Laboratory, Oak Ridge, TN, USA. He was the Chair of the Faraday Discussion 149 (2010).

Anthony J. Walton (SM’88) is currently a Professor of Microelectronic Manufacturing with the School of Engineering, University of Edinburgh, Edinburgh, U.K. Over the past 25 years, he has been actively involved with the semiconductor industry in a number of areas associated with silicon processing that includes both integrated circuit technology and microsystems. In particular, he has been intimately involved in the development of technologies and their integration with CMOS. He played a key role in setting up the Scottish Microelectronics Centre, Edinburgh, which is a purpose-built facility for research and development and commercialization. He has authored over 350 papers.

He has received best paper awards from the IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, the Proceedings of the International Society of Hybrid Manufacturers, the International Journal of Molecular Sciences, and the IEEE International Conference on Microelectronic Test Structures (ICMTS), and received the IET Nanobiotechnology Premium Award. He is a Fellow of the Royal Society (Edinburgh). He served as the Chairman for a number of conferences, including the European Solid-State Devices Research Conference in 1994 and 2008, and ICMTS in 1989 and 2008. He serves on numerous technical committees. He is an Associate Editor of the IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING.