Dual-Enhanced Photocatalytic Activity of Fe-Deposited Titanate Nanotubes Used for Simultaneous Removal of As(III) and As(V)

Citation for published version:

Digital Object Identifier (DOI):
10.1021/acsami.5b05263

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACS Applied Materials & Interfaces

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Supporting Information (SI)

Dual-Enhanced Photocatalytic Activity of Fe-Deposited Titanate Nanotubes Used for Simultaneous Removal of As(III) and As(V)

Wen Liua, b Xiao Zhaob Alistair G.L. Borthwickc Yanqi Wanga Jinren Nia, *

a The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China

b Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, United States

c Institute of Energy Systems, School of Engineering, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JL, UK

*Corresponding author, Tel: +86-10-6275-1185; Fax: +86-10-6275-6526

E-mail: nijinren@iee.pku.edu.cn
Contents

Figure S1. Schematic diagram of experimental set-up for photocatalysis.

Figure S2. (a) TEM, (b) HRTEM image and (c) EDS spectrum of TNTs.

Figure S3. (a) N₂ adsorption-desorption isotherms and (b) pore size distributions of Fe-TNTs.

Figure S4. Zeta potential of TNTs and Fe-TNTs as a function of pH.

Figure S5. Species distributions of (a) As(III) and (b) As(V) as a function of pH.

Figure S6. Adsorption kinetics of (a) As(III) and (b) As(V) by Fe-TNTs with various dosages. (Initial As concentration = 10 mg L⁻¹; solution pH =3.0).

Figure S7. Photo-oxidation of As(III) by TNTs under UV-light (initial dosage 0.6 g L⁻¹).

Figure S8. Photo-oxidation of As(III) by TNTs under visible light (initial dosage 0.6 g L⁻¹).

Figure S9. PL spectra of terephthalic acid with irradiation time in the presence of TNTs.

Figure S10. Monodentate and bidentate complexation of As(V) by TNTs.

Table S1 Parameters of isotherm models for As(V) adsorption by TNTs and Fe-TNTs.

Additional contents: Adsorption isotherms of As(V) by TNTs and Fe-TNTs.
Figure S2. (a) TEM, (b) HRTEM image and (c) EDS spectrum of TNTs.¹
Figure S3. (a) N$_2$ adsorption-desorption isotherms and (b) pore size distributions of Fe-TNTs.
Figure S4. Zeta potential of TNTs and Fe-TNTs as a function of pH.
Figure S5. Species distributions of (a) As(III) and (b) As(V) as a function of pH.
Figure S6. Adsorption kinetics of (a) As(III) and (b) As(V) by Fe-TNTs with various dosages. (Initial As concentration = 10 mg L⁻¹; solution pH = 3.0).
Figure S7. Photo-oxidation of As(III) by TNTs under UV-light (Material dosage = 0.6 g L\(^{-1}\)).
Figure S8. Photo-oxidation of As(III) by TNTs under visible light (Material dosage = 0.6 g L$^{-1}$).
Figure S9. PL spectra of terephthalic acid with irradiation time in the presence of TNTs.
Figure S10. Monodentate and bidentate complexation of As(V) by TNTs.
<table>
<thead>
<tr>
<th>Material</th>
<th>Isotherm models</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Langmuir</td>
<td>Two-Site Langmuir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q_m (mg g$^{-1}$)</td>
<td>b (L mg$^{-1}$)</td>
<td>R^2</td>
<td>Q_1 (mg g$^{-1}$)</td>
<td>Q_2 (mg g$^{-1}$)</td>
<td>b_1 (Lm g$^{-1}$)</td>
<td>b_2 (Lm g$^{-1}$)</td>
</tr>
<tr>
<td>Fe-TNTs</td>
<td>85.23</td>
<td>5.21</td>
<td>0.71</td>
<td>31.66</td>
<td>57.06</td>
<td>10.41</td>
<td>0.52</td>
</tr>
<tr>
<td>TNTs</td>
<td>27.54</td>
<td>9.96</td>
<td>0.99</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table S1 Parameters of isotherm models for As(V) adsorption by TNTs and Fe-TNTs.
Adsorption isotherms of As(V) by unmodified TNTs and Fe-TNTs

Adsorption isotherm experiments were conducted by varying the As(V) concentration from 1 to 50 mg L-1 at pH 3.0 and the adsorbent dosage was 0.2 g L-1. And then the mixture was shaken at 25 °C and 200 rpm for 6 h. After centrifugation and filtration, the As concentration of the sample was immediately measured using AFS. The isotherm results are analyzed using the Langmuir and two-site Langmuir models expressed as2,3

\[
Q_e = \frac{Q_m b C_e}{1 + b C_e}
\]
(S1)

and

\[
Q_e = \frac{Q_1 b_1 C_e}{1 + b_1 C_e} + \frac{Q_2 b_2 C_e}{1 + b_2 C_e}
\]
(S2)

where \(Q_e\) (mg g-1) is the As(V) adsorption capacity at equilibrium, \(Q_m\) (mg g-1) is the maximum adsorption capacity, \(b\) (L mg-1) is the Langmuir constant related to the affinity of binding sites of the adsorbent. \(Q_1\) (mg g-1) and \(Q_2\) (mg g-1) are the maximum adsorption capacities, and \(b_1\) (L mg-1) and \(b_2\) (L mg-1) are the affinity coefficients of site 1 and site 2 of the adsorbent. The total maximum adsorption capacity is obtained by summation of \(Q_1\) and \(Q_2\).

The Langmuir isotherm model provided a good fit to the adsorption of As(V) onto TNTs, with a high correlation coefficient of 0.99 (Table S1). Even so, the two-site Langmuir model provided a slightly closer fit to the isotherm data, with a correlation coefficient of 0.98. One site possessed a capacity of 31.66 mg g-1 which was attributed to TNTs given that the value was similar to that on unmodified TNTs (27.54 mg g-1). The other site with a higher adsorption capacity of 57.06 mg g-1 was attributed to
Moreover, the total As(V) adsorption capacity on Fe-TNTs was 88.72 mg g\(^{-1}\), which was much larger than that on TNTs, indicating that Fe deposition greatly enhanced the As(V) adsorption capacity on TNTs.

References

