Punching Shear of Reinforced Concrete Slabs under Fire Conditions: Experiment vs. Design

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
CONFAB 2015

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
PUNCHING SHEAR OF REINFORCED CONCRETE SLABS UNDER FIRE CONDITIONS: EXPERIMENT VS. DESIGN

A. Holly K. M. Smith, The University of Edinburgh and AECOM, UK
B. T. Stratford & L. Bisby, The University of Edinburgh, UK

ABSTRACT

Shear behaviour in concrete at ambient temperature is complex, and a well-researched topic. There is even less knowledge about shear in concrete subjected to the thermal gradients due to fire, with only a few experimental studies having been conducted. Fifteen model slab-column punching shear specimens were tested at both ambient and elevated temperature. These tests are some of the first to have compared the effects of different support conditions, which aimed to replicate whole structural behaviour. This paper has presented a comparison of experimental data from a punching shear test series to both Eurocode design and Muttoni’s Critical Shear Crack Theory. The analysis shows that Eurocode design is not consistently conservative, whereas a comparison to the Critical Shear Crack Theory is. The Critical Shear Crack Theory, however, capacity comparison shows large variances. The support condition is not explicitly considered in the current flat slab design for punching shear at elevated temperature, therefore an improved design approach ought to be considered.

NOMENCLATURE

For Eurocode:

\(A_{c,y}, A_{c,z} \) = area of the concrete according to the definition of \(N_{E,d} \) (mm\(^2\))

\(C_{Rd,c} \) = Country National Annex specific factor

\(N_{Ed,y}, N_{Ed,z} \) = longitudinal forces across the full bay for internal columns and the longitudinal force across the control section for edge columns. The force may be from a load or pre-stressing action. (N)

\(v_{Rd,c} \) = design punching shear resistance of a slab without shear reinforcement along the control section (MPa)

\(d \) = effective slab depth (mm)

\(f_{ck} \) = characteristic compressive cylinder strength of concrete at 28 days (MPa)

\(k_1 \) = punching shear factor

\(Y_c \) = partial factor for concrete

\(\rho_l \) = average reinforcement ratio for longitudinal reinforcement

\(\rho_{ty}, \rho_{tz} \) = relate to the bonded tension steel in the y- and z-directions, respectively. The values should be calculated as mean values taking into account a slab width equal to the column width plus 3\(d \) each side.

\(\sigma_{cp} \) = average compressive stress in the concrete from axial load (MPa, compressive positive)

\(\sigma_{c,y}, \sigma_{c,z} \) = normal concrete stresses in the critical section in y- and z-directions (MPa, compression positive)

For CSCT failure criterion:

\(V_h \) = shear strength (N)

\(b_h \) = control perimeter set at \(\frac{d}{2} \) of the border of the support region and circular at the corners (mm)

\(d_v \) = shear-resisting effective depth (mm)

\(d_{g0} \) = reference aggregate size (16 mm)

\(d_g \) = maximum aggregate size (mm)

\(w \) = critical shear crack width (mm)

\(\psi \) = slab rotation

\(d \) = effective depth of the member (mm)

For CSCT load-rotation curve:

\(V \) = shear failure load (N)

\(V_{f,\text{lux}} \) = shear force associated with flexural capacity of slab specimen (N)

\(m_R \) = nominal moment capacity per unit width (N)

\(\rho \) = flexural reinforcement ratio

\(f_y \) = flexural reinforcement yield strength (MPa)

\(d \) = distance from extreme compression fibre to the centroid of the longitudinal tensile reinforcement (mm)
The collapse of the Gretzenbach (Switzerland) underground car park following fire [1] triggered concerns over the punching shear capacity of flat slabs at elevated temperatures. Shear behaviour in concrete at ambient temperature is complex, despite being a well-researched area. There is even less knowledge about shear in concrete subjected to thermal gradients, with only a few experimental studies having been conducted [2-5]. There is growing recognition that the shear behaviour of concrete in fire is dependent on the effects of in-plane actions that result from restrained thermal expansion, large deflection load-carrying mechanisms, and degradation of material properties.

The current Eurocode [6] design of flat reinforced concrete floor slabs for fire conditions uses the ambient design approach, with different prescriptive methods (500°C Isotherm and Zone method) to decrease the cross-sectional geometry according to the temperature penetration of the fire. Additionally, each material strength is degraded to account for elevated temperature. Alternatively, performance based design can be used.

Eurocode clause 2.4.2 Member analysis, states that “(4) Only the effects of thermal deformations resulting from thermal gradients across the cross-section need be considered. The effects of axial or in-plane thermal expansions may be neglected. (5) The boundary conditions at supports and ends of member, applicable at time $t=0$, are assumed to remain unchanged throughout the fire exposure” [6]. This approach has the potential danger that boundary conditions or large displacement mechanisms are not considered. Each reinforced-concrete element is designed for fire in isolation, rather than considering the whole structural interaction of a building.

The drawbacks of the current Eurocode punching shear design for elevated temperature is criticised in [7], which states that “the aforementioned [ambient design] code equations were obtained on a semi-empirical basis, by operating a regression of the available experimental data: an immediate extension of these expressions to the case of fire is, therefore, highly questionable, to say the least.”

In 2009, [8] outlined their concerns regarding “indirect effects ensuing from the redistribution of the internal forces” on punching shear in fire. The indirect actions are assessed by modelling a fire scenario of an underground car park and [9] found that “the fire scenario has an important impact on the increase of the axial load”.

This paper presents the experimental findings from fifteen different slab-column specimens in punching shear subjected to fire. These tests are the first to have compared the effects of different support conditions, aiming to replicate whole structural behaviour. A purpose-built reaction frame allowed the support conditions of the specimens to be either simply-supported or restrained against axial expansion and rotation. Slab thickness and reinforcement ratio were also investigated. Load was applied to a column stub and the slabs were heated using an array of propane gas radiant panels.

2. EXPERIMENTAL PROGRAMME

Fifteen flat slab specimens, 1400 by 1400 mm with central column stubs were tested in punching shear at both ambient and elevated temperatures. The slab support type, thickness, and reinforcement ratio were altered as detailed in Table 1. No shear reinforcement was provided and the orthogonal flexural reinforcement was based on the ambient design methods of [10]. The test configuration, instrumentation, specimens and sequence are detailed in [11].

A purpose-built reaction frame allowed the boundary support conditions to be altered. As shown in Figure 1, the support conditions were either restrained (fixed against in-plane expansion

\[f_c = \text{average compressive cylinder strength of concrete (MPa)} \]
\[r_s = \text{radius of circular isolated slab element (mm)} \]
\[r_q = \text{radius of the load introduced at the perimeter (mm)} \]
\[r_c = \text{radius of circular column (mm)} \]
\[\psi = \text{slab rotation} \]
\[E_f = \text{flexural reinforcement Young’s modulus (MPa)} \]
and edge moment), or unrestrained (allowed to expand, and free to rotate). The test arrangement is shown in Figure 2.

Table 1.
Test programme and geometric characteristics of the slab-column specimens.

<table>
<thead>
<tr>
<th>Specimen ID</th>
<th>Fire scenario</th>
<th>Support type</th>
<th>Slab thickness (mm)</th>
<th>Flexural reinforcement ratio (%)</th>
<th>Reinforcement diameter Ø and spacing (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU50-0.8</td>
<td>Ambient</td>
<td>Unrestrained</td>
<td>50</td>
<td>0.8</td>
<td>6Ø at 114</td>
</tr>
<tr>
<td>AU75-0.8</td>
<td>Ambient</td>
<td>Unrestrained</td>
<td>75</td>
<td>0.8</td>
<td>6Ø at 65</td>
</tr>
<tr>
<td>AU100-0</td>
<td>Ambient</td>
<td>Unrestrained</td>
<td>100</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>AU100-0.8</td>
<td>Ambient</td>
<td>Unrestrained</td>
<td>100</td>
<td>0.8</td>
<td>6Ø at 42</td>
</tr>
<tr>
<td>AU100-1.5</td>
<td>Ambient</td>
<td>Unrestrained</td>
<td>100</td>
<td>1.5</td>
<td>8Ø at 42</td>
</tr>
<tr>
<td>HU50-0.8</td>
<td>Heated</td>
<td>Unrestrained</td>
<td>50</td>
<td>0.8</td>
<td>6Ø at 114</td>
</tr>
<tr>
<td>HU75-0.8</td>
<td>Heated</td>
<td>Unrestrained</td>
<td>75</td>
<td>0.8</td>
<td>6Ø at 65</td>
</tr>
<tr>
<td>HU100-0</td>
<td>Heated</td>
<td>Unrestrained</td>
<td>100</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>HU100-0.8</td>
<td>Heated</td>
<td>Unrestrained</td>
<td>100</td>
<td>0.8</td>
<td>6Ø at 42</td>
</tr>
<tr>
<td>HU100-1.5</td>
<td>Heated</td>
<td>Unrestrained</td>
<td>100</td>
<td>1.5</td>
<td>8Ø at 42</td>
</tr>
<tr>
<td>HR50-0.8</td>
<td>Heated</td>
<td>Restrained</td>
<td>50</td>
<td>0.8</td>
<td>6Ø at 114</td>
</tr>
<tr>
<td>HR75-0.8</td>
<td>Heated</td>
<td>Restrained</td>
<td>75</td>
<td>0.8</td>
<td>6Ø at 65</td>
</tr>
<tr>
<td>HR100-0</td>
<td>Heated</td>
<td>Restrained</td>
<td>100</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>HR100-0.8</td>
<td>Heated</td>
<td>Restrained</td>
<td>100</td>
<td>0.8</td>
<td>6Ø at 42</td>
</tr>
<tr>
<td>HR100-1.5</td>
<td>Heated</td>
<td>Restrained</td>
<td>100</td>
<td>1.5</td>
<td>8Ø at 42</td>
</tr>
</tbody>
</table>

Figure 1
Schematic of the test support conditions (showing A. unrestrained and B. fully restrained).

Figure 2
Heated test setup with the insulation removed.

3. EXPERIMENTAL RESULTS

The test series results are presented in detail in [11], with key results shown in Table 2. The
ambient slabs were continuously loaded to failure. The heated specimens were loaded to 70% of their respective ambient capacity (in accordance with Eurocode 1-2 [6]). This load was held constant, whilst the slabs were heated for two hours. The slabs that failed during the two hours heating were immediately unloaded. The applied load was maintained on the specimens that did not fail, whilst they were allowed to cool until temperatures throughout the depth dropped below 150°C. Residual strength tests were conducted the following day on these specimens.

4. ANALYSIS AND DISCUSSION

This section compares the Eurocode 2 design punching shear capacity for both ambient and elevated temperature to the experimental results. The critical shear crack theory (CSCT) is also compared to the experimental results. This is an ambient model, but its predictions have been modified by reducing the concrete and steel properties according to Eurocode 2, Part 1-2 material properties at elevated temperature.

<table>
<thead>
<tr>
<th>Specimen ID</th>
<th>Failure load (kN)</th>
<th>Residual capacity (kN)</th>
<th>Burn time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU50-0.8</td>
<td>54.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AU75-0.8</td>
<td>101.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AU100-0</td>
<td>43.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AU100-0.8</td>
<td>226.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AU100-1.5</td>
<td>279.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HU50-0.8</td>
<td>-</td>
<td>55.7</td>
<td>120</td>
</tr>
<tr>
<td>HU75-0.8</td>
<td>-</td>
<td>90.7</td>
<td>121</td>
</tr>
<tr>
<td>HU100-0</td>
<td>38.9</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>HU100-0.8</td>
<td>174.8</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>HU100-1.5</td>
<td>237.0</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>HR50-0.8</td>
<td>-</td>
<td>64.4</td>
<td>121</td>
</tr>
<tr>
<td>HR75-0.8</td>
<td>-</td>
<td>115.5</td>
<td>120</td>
</tr>
<tr>
<td>HR100-0</td>
<td>-</td>
<td>82.2</td>
<td>99</td>
</tr>
<tr>
<td>HR100-0.8</td>
<td>-</td>
<td>245.1</td>
<td>120</td>
</tr>
<tr>
<td>HR100-1.5</td>
<td>233.2</td>
<td>-</td>
<td>105</td>
</tr>
</tbody>
</table>

4.1 EUROCODE 2 DESIGN PUNCHING SHEAR CAPACITY

The ambient temperature punching shear stress design resistance of slabs without shear reinforcement is given by Equation 1 [12].

\[
v_{Rd,c} = C_{Rd,c}k(100\rho_1f_{ck})^{1/3} + k_1\sigma_{cp} \geq (v_{min} + k_1\sigma_{cp})
\]

(Equation 1)

The only temperature-dependent variable in Equation 1 is the characteristic compressive cylinder concrete strength at 28 days (f_{ck}). The ambient temperature strength was measured to be 51 MPa. Table 3 gives the maximum temperature recorded in each test (at surface level), and the corresponding reduced concrete strength at these temperatures according to [6].

<table>
<thead>
<tr>
<th>Specimen ID</th>
<th>Max. temp. (°C)</th>
<th>Characteristic compressive strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Reduction factor</td>
</tr>
<tr>
<td>AU50-0.8</td>
<td>500</td>
<td>0.600</td>
</tr>
<tr>
<td>HR50-0.8</td>
<td>630</td>
<td>0.405</td>
</tr>
<tr>
<td>HU75-0.8</td>
<td>480</td>
<td>0.630</td>
</tr>
<tr>
<td>HR75-0.8</td>
<td>560</td>
<td>0.510</td>
</tr>
<tr>
<td>HU100-0.8</td>
<td>130</td>
<td>0.985</td>
</tr>
<tr>
<td>HR100-0.8</td>
<td>435</td>
<td>0.698</td>
</tr>
<tr>
<td>HU100-1.5</td>
<td>208</td>
<td>0.942</td>
</tr>
<tr>
<td>HR100-1.5</td>
<td>510</td>
<td>0.585</td>
</tr>
</tbody>
</table>

The partial concrete factor is taken as 1 to allow for comparison to the experimental values. Other parameters used in Equation 1 were:

\[C_{Rd,c} = 0.18 \]
\[k = 2 \]
\[k_1 = 0.1 \]
\[\sigma_{cp} = \frac{N_{Ed}}{A_c} \] (where \(N_{Ed} \) is the in-plane force, equal in both the \(y \) and \(z \) directions of the slab for this case, and \(A_c \) is the slab cross-sectional area)
Table 4 gives further parameters used to calculate the punching shear capacity.

For the unrestrained slab tests, the in-plane force was approximately zero. For the restrained slabs, however, compressive in-plane force developed during heating. The reaction frame was instrumented to measure the boundary reaction in-plane forces and moments during the tests; however, reliable measurements were not obtained. This data however, was used here to make a support type comparison.

Though Eurocode 2 design does not explicitly assess for varying support conditions, it is assumed the second term in Equation 1 is sufficient to make a comparison for both support conditions as the boundary reaction forces are considered by using the unrestrained and restrained experimental boundary reaction forces in the calculation.

To obtain the punching shear capacity \((V) \) from the shear stress resistance \((v_{rd,c}) \) calculated in Equation 1, the area defined by the slab thickness and the punching shear perimeter \((u) \). The punching shear perimeter is calculated using Eurocode 2, Part 1-1 [12] basic control section, which has been linearly extrapolated to the unheated surface.

Figure 3 compares the shear capacities obtained during the experiments with the Eurocode 2 predictions. Upon first inspection, it is concerning that the design code is not consistently conservative. However on closer inspection, Eurocode is not conservative for many of the small, thinner specimens. The 50 and 75 mm thick specimens failed in flexure-shear mechanisms [11], whereas the thicker 100 mm slabs failed in pure shear. Additionally, the thinner specimens are likely to be smaller than those used in formulating the empirical Equation 1, and are potentially affected by size effects [13]. Eurocode shear design predicts shear capacities similar to the measured failure loads for the 100 mm thick slabs, which failed in pure punching shear mechanisms.

Figure 4 gives the ratio of the Eurocode design calculation to the experimentally measured shear capacity (with conservative results \(< 1.0\)). The Eurocode calculated capacities for the ambient and elevated temperature tested, 100 mm unrestrained slabs do not vary greatly in Figure 3. This is caused by the heated unrestrained slab-column specimens having failed soon after ignition, therefore the concrete strength is not significantly degraded prior to failure. Figure 4 shows the respective difference between the two support cases when at elevated temperature. The unrestrained are consistently not conservative, whereas the restrained are conservatively predicted by Eurocode. It is comforting that the restrained supported slabs are consistently conservatively predicted by Eurocode, as real building supports are probably closer to the restrained than unrestrained support case.

Figure 4
Ratio of Eurocode 2 design shear capacity to experimental punching shear capacity.
4.2 CRITICAL SHEAR CRACK THEORY CAPACITY

In [14], Muttoni and Fernández Ruiz describe the CSCT proposed for draft 2010 fib Model Code. The authors present an ambient mechanical model that gives consistent and compact design formulations for shear and punching shear in members with and without shear reinforcement, as well as non-symmetrical loading conditions.

The CSCT is supported by 146 actual size punching shear tests. Figure 5 shows that there is good agreement between the model and 99 experimental test results, at ambient temperature.

The CSCT is based on a critical crack that penetrates through an inclined concrete compressive strut, which transfers the load on the slab to the column (Figure 6). For members without shear reinforcement, the shear strength is governed by the crack width and roughness of the shear crack. The model is based on kinematic equilibrium equations at failure of the free-body rotation of the slab relative to the column.

Figure 5
Comparison of 99 experimental test results to Muttoni’s CSCT [14].

<table>
<thead>
<tr>
<th>Specimen ID</th>
<th>Average effective depth, d (mm)</th>
<th>ρ_t</th>
<th>N_{Ed} (N)</th>
<th>A_c (mm2)</th>
<th>σ_{cp} (MPa)</th>
<th>$\nu_{d,c}$ (MPa)</th>
<th>V (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU50-0.8</td>
<td>35</td>
<td>0.007</td>
<td>2960</td>
<td>70000</td>
<td>0.04</td>
<td>1.19</td>
<td>66</td>
</tr>
<tr>
<td>AU75-0.8</td>
<td>62</td>
<td>0.007</td>
<td>6250</td>
<td>105000</td>
<td>0.06</td>
<td>1.19</td>
<td>126</td>
</tr>
<tr>
<td>AU100-0.8</td>
<td>83</td>
<td>0.008</td>
<td>27300</td>
<td>140000</td>
<td>0.20</td>
<td>1.25</td>
<td>218</td>
</tr>
<tr>
<td>AU100-1.5</td>
<td>81</td>
<td>0.014</td>
<td>12600</td>
<td>140000</td>
<td>0.09</td>
<td>1.52</td>
<td>263</td>
</tr>
<tr>
<td>HU50-0.8</td>
<td>31</td>
<td>0.008</td>
<td>-2680</td>
<td>70000</td>
<td>-0.04</td>
<td>1.04</td>
<td>57</td>
</tr>
<tr>
<td>HU75-0.8</td>
<td>58</td>
<td>0.007</td>
<td>3670</td>
<td>105000</td>
<td>0.03</td>
<td>1.04</td>
<td>111</td>
</tr>
<tr>
<td>HU100-0.8</td>
<td>81</td>
<td>0.008</td>
<td>-1270</td>
<td>140000</td>
<td>-0.01</td>
<td>1.24</td>
<td>215</td>
</tr>
<tr>
<td>HU100-1.5</td>
<td>86</td>
<td>0.014</td>
<td>24200</td>
<td>140000</td>
<td>0.17</td>
<td>1.48</td>
<td>256</td>
</tr>
<tr>
<td>HR50-0.8</td>
<td>31</td>
<td>0.008</td>
<td>24200</td>
<td>70000</td>
<td>0.35</td>
<td>0.93</td>
<td>52</td>
</tr>
<tr>
<td>HR75-0.8</td>
<td>55</td>
<td>0.008</td>
<td>31400</td>
<td>105000</td>
<td>0.30</td>
<td>1.01</td>
<td>107</td>
</tr>
<tr>
<td>HR100-0.8</td>
<td>82</td>
<td>0.008</td>
<td>20200</td>
<td>140000</td>
<td>0.14</td>
<td>1.11</td>
<td>193</td>
</tr>
<tr>
<td>HR100-1.5</td>
<td>82</td>
<td>0.014</td>
<td>41100</td>
<td>140000</td>
<td>0.29</td>
<td>1.29</td>
<td>223</td>
</tr>
</tbody>
</table>

Table 4
Eurocode 2 punching shear capacity parameters.
“developing suitable moment-curvature and axial force in-plane strains provides a general frame to investigate some phenomena like the increase of the punching shear strength in slabs with restricted horizontal expansion..., the behaviour and strength of flat slabs under fire conditions..., or the increase of the punching shear strength for slabs transferring large column loads”[14].

Figure 7
Calculation of the punching shear capacity by Muttoni’s CSCT [7].

The CSCT model will here be compared to the unrestrained ambient and elevated temperature test results. The CSCT failure criterion and load-rotation curve for an ambient, unrestrained member without shear stirrups is given by Equations 2 and 3, respectively [16].

Failure criterion:

\[
\frac{V_R}{b_0 \cdot d_v \cdot \sqrt{f_c}} = \frac{3/4}{1 + 15 \frac{w}{d_{g0} + d_g}}
\]

where:

\[
w = \psi \cdot d
\]

(Equation 2)

Load-rotation curve:

\[
V = V_{flex} \left(\frac{\psi \cdot d \cdot E_s}{1.5 r_s f_y} \right)^{2/3}
\]

where:

\[
V_{flex} = 2 \pi m_R \frac{r_s}{r_q - r_c}
\]

\[
m_R = \rho f_y d^2 \left(1 - \frac{\rho f_y}{2 f_c} \right)
\]

(Equation 3)

The load-rotation curve assumes the slab specimens are circular; however, it can be modified with Equation 4, as outlined by [17], to consider rectangular slab sections.

\[
r_{a,eq} = \frac{2b}{\pi}, r_{Q,eq} = b_Q
\]

where for this analysis:

\[
r_{a,eq} = r_c = \text{radius of circular column (mm)}
\]

\[
r_{Q,eq} = r_q = \text{radius of the load introduced at the perimeter (mm)}
\]

\[
b = \text{column width (mm)}
\]

(Equation 4)

The variables in the CSCT that would vary with temperature are the concrete characteristic compressive cylinder strength \(f_c\), the flexural reinforcement compressive cylinder strength \(f_y\) and Young’s modulus \(E_s\). Table 5 gives the ambient steel properties measured.

Table 5
Ambient flexural reinforcement properties.

<table>
<thead>
<tr>
<th>Ribbed reinforcement diameter (mm)</th>
<th>Type of steel</th>
<th>(f_y) (MPa)</th>
<th>(E_s) (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>cold worked</td>
<td>549.6</td>
<td>200</td>
</tr>
<tr>
<td>8</td>
<td>hot rolled</td>
<td>571.1</td>
<td>222</td>
</tr>
</tbody>
</table>

The ambient steel yield strength and Young’s modulus were reduced according to the maximum test temperature, to give elevated temperature properties that were used in the CSCT calculations. The Eurocode 2 class X reduction factors were used.

Other variables used in the calculations that were common to all the tests were:

\[
b = 120 \text{ mm}
\]

\[
r_q = 655 \text{ mm}
\]

\[
r_s = 700 \text{ mm}
\]

\[
r_c = 76 \text{ mm}
\]

\[
d_g = 10 \text{ mm}
\]

width of the slab = 1400 mm
Tables 7 and 8 give the parameters involved in calculating the punching shear capacity (see Equations 2, 3 and 4). Figures 8 show the intersecting capacity and load-rotation curves that define the ambient temperature punching shear capacities; whilst Figure 9 shows those for the elevated temperature capacities. The elevated temperature decreases the steel stiffness, thereby decreasing the shear capacity for equivalent slab rotation angles.
The CSCT has been applied to the heated tests by simply degrading the steel and concrete material properties using the Eurocode reduction factors and recorded temperatures. However, this does not consider the restrained thermal stresses and in-plane axial forces, which require a more detailed re-evaluation of the mechanics in the CSCT at higher temperatures.

5. CONCLUSIONS

Fifteen model slab-column punching shear specimens were tested at either ambient or elevated temperature. The boundary support conditions of the specimens were altered to be either fully restrained or unrestrained.

This paper presents a comparison of the experimental capacities from the punching shear test series to the Eurocode design method, following the method for elevated temperature design. The paper also compares the results to Muttoni’s critical shear crack theory, which is modified for elevated temperatures by degrading the material properties.

The smaller (50 and 75 mm thick) specimens failed in flexure-shear mechanisms rather than pure punching shear, unlike the 100 mm thick slab-columns. Eurocode design was not conservative for the thinner specimens. The results demonstrated that with regard to the 100 mm thick specimens, Eurocode design was only conservative for the restrained condition and not the unrestrained.

A comparison to the critical shear crack theory shows that it is consistently conservative in comparison to the experimental results. The model has large capacity variances for the 100 mm thick specimens, although these are consistent with the original comparison with test data. More detailed consideration is required of the effects of restrained thermal expansion in the model.

ACKNOWLEDGEMENTS

This PhD project was supported by funding from the EPSRC, together with additional follow-up funding provided by EPSRC and AECOM.
REFERENCES

2. [Kordina, K.], [1997] ‘Über das Brandverhalten punktgestützter Stahlbetonplatten (On the Fire Behaviour of Reinforced Concrete Flat Slabs)’, [Deutscher Ausschuss für Stahlbeton (DAfStb), Berlin (Germany), Heft 479, p.106]

