Conditional independence among max-stable laws

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.spl.2015.08.008

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Statistics and Probability Letters

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Conditional independence among max-stable laws

Ioannis Papastathopoulos,∗ Kirstin Strokorb†

June 15, 2015

Abstract

Let X be a max-stable random vector with positive continuous density. It is proved that the conditional independence of any collection of disjoint subvectors of X given the remaining components implies their joint independence. We conclude that a broad class of tractable max-stable models cannot exhibit an interesting Markov structure.

Keywords: Conditional independence, exponent measure, Markov structure, max-stable random vector, Moebius inversion

2010 MSC: Primary 60G70; Secondary 62H05

1 Introduction

As pointed out by Dawid (1979) independence and conditional independence are key concepts in the theory of probability and statistical inference. A collection of (not necessarily real-valued) random variables Y_1, \ldots, Y_k on some probability space $(\Omega, \mathcal{A}, \mathbb{P})$ are called conditionally independent given the random variable Z (on the same probability space) if

$$
\mathbb{P}(Y_1 \in A_1, \ldots, Y_k \in A_k \mid Z) = \prod_{i=1}^{k} \mathbb{P}(Y_i \in A_i \mid Z) \quad \mathbb{P}\text{-a.s.,}
$$

for any measurable sets A_1, \ldots, A_k from the respective state spaces. The conditioning is meant with respect to the σ-algebra generated by Z. A particularly important example for the conditional independence to be an omnipresent attribute are the Gaussian Markov random fields that have evolved as a useful tool in spatial statistics (Lauritzen 1996, Rue & Held 2005). Here, the zeroes of the precision matrix (the inverse of the

∗School of Mathematics and Maxwell Institute, University of Edinburgh, Edinburgh, EH9 3FD Email: i.papastathopoulos@ed.ac.uk
†Institute of Mathematics, University of Mannheim, D-68131 Mannheim, Email: strokorb@math.uni-mannheim.de
covariance matrix) of a Gaussian random vector represent precisely the conditional independence of the respective components conditioned on the remaining components of the random vector. Hence, sparse precision matrices are desirable for statistical inference.

In the analysis of the extreme values of a distribution (rather than fluctuations around mean values) max-stable models have been frequently considered. We refer to Blanchet & Davison (2011), Buishand et al. (2008), Engelke et al. (2014), Naveau et al. (2009) for some spatial applications among many others. Their popularity originates from the fact that max-stable distributions arise precisely as possible limits of location-scale normalizations of i.i.d. random elements. A random vector \(X \) is called max-stable if it satisfies the distributional equality \(a_n X + b_n \overset{D}{=} \max(X^{(1)}, \ldots, X^{(n)}) \) for independent copies \(X^{(1)}, \ldots, X^{(n)} \) of \(X \) for some appropriate normalizing sequences \(a_n > 0 \) and \(b_n \in \mathbb{R} \). If the components \(X_i \) of \(X \) are standard Fréchet distributed, i.e. \(\mathbb{P}(X_i \leq x) = \exp(-1/x) \) for \(x \in (0, \infty) \), we have \(a_n = n \) and \(b_n = 0 \) and the random vector \(X \) will be called simple max-stable. It is well-known (cf. e.g. Resnick (2008)) that the distribution functions \(G \) of simple max-stable random vectors \(X = (X_i)_{i \in I} \) are in a one-to-one correspondence with Radon measures \(H \) on some reference sphere \(S_+ = \{ \omega \in [0, \infty]^I : \| \omega \| = 1 \} \) that satisfy the moment conditions \(\int \omega_i H(d\omega) = 1, i \in I \). The correspondence between \(G \) and \(H \) is given by the relation

\[
G(x) = \mathbb{P}(X_i \leq x, i \in I) = \exp \left(-\int_{S_+} \sqrt{\omega_i \frac{x_i}{x}} H(d\omega) \right), \quad x \in (0, \infty)^I.
\]

Here, \(\| \cdot \| \) can be any norm on \(\mathbb{R}^I \) and \(H \) is often called angular or spectral measure.

In general, neither does independence imply conditional independence nor does conditional independence imply independence of the subvectors of a random vector. Consider the following two simple examples which illustrate this fact in the case of Gaussian random vectors (Example 1) and max-stable random vectors (Example 2). For notational convenience, we write \(X \perp Y \) if \(X \) and \(Y \) are independent and \(X \perp Y \mid Z \) if \(X \) and \(Y \) are conditionally independent given \(Z \) and likewise use the instructive notation \(\perp_{i=1}^k X_i \) and \(\perp_{i=1}^k X_i \mid Y \) if more than two random elements are involved.

Example 1. Let \(X_1, X_2, X_3 \) be three independent standard normal random variables and, moreover, \(X_4 = X_1 + X_2 \) and \(X_5 = X_1 + X_2 + X_3 \). Then all subvectors of \((X_i)_{i=1}^5 \) are Gaussian and

\[
X_1 \perp X_2, \quad \text{but not} \quad X_1 \perp X_2 \mid X_5, \quad (1)
\]

whereas

\[
X_5 \perp X_1 \mid X_4, \quad \text{but not} \quad X_5 \perp X_1. \quad (2)
\]

Example 2. Let \(X_1, X_2, X_3 \) be three independent standard Fréchet random variables and, moreover, \(X_4 = X_1 \vee X_2 \) and \(X_5 = X_1 \vee X_2 \vee X_3 \). Then all subvectors of \((X_i)_{i=1, \ldots, 5} \) are max-stable and both relations (1) and (2) hold true also in this setting.

However, if the distribution of a max-stable random vector has a positive continuous density, then conditional independence of any two subvectors conditioned on the remaining components implies already their independence. The following theorem is the
main result of the present article. If \(X = (X_i)_{i \in I} \) is a random vector, we write \(X_A \) for the subvector \((X_i)_{i \in A} \) if \(A \subset I \). The same convention applies to non-random vectors \(x = (x_i)_{i \in I} \).

Theorem 1. Let \(X = (X_i)_{i \in I} \) be a simple max-stable random vector with positive continuous density. Then the conditional independence \(X_A \perp \perp X_B \mid X_{I \setminus (A \cup B)} \) implies the independence \(X_A \perp \perp X_B \) for any disjoint non-empty subsets \(A \) and \(B \) of \(I \).

A proof of this theorem will be given in Section 3. Beforehand, some comments are in order.

(a) First, the requirement of a positive continuous density for \(X \) is much less restrictive than requiring the spectral measure \(H \) of \(X \) to admit such a density, cf. Beirlant et al. (2004) pp. 262-264 and references therein. For instance, fully independent variables \(X = (X_i)_{i \in I} \) have a discrete spectral measure, while their density exists and is positive and continuous. A more subtle example is, for instance, the asymmetric logistic model (Tawn 1990), which admits a continuous positive density and whose spectral measure carries mass on all faces of \(S_+ \), cf. also Example 3.

(b) Secondly, both random vectors \((X_i)_{i=1,2,5} \) and \((X_i)_{i=1,4,5} \) that were considered in the Gaussian case in Example 1 have a positive continuous density on \(\mathbb{R}^d \). Hence, there exists no version for Theorem 1 for the Gaussian case.

(c) By means of the same argument that shows that pairwise independence of the components of a max-stable random vector implies already their joint independence, we may deduce a version of Theorem 1, in which more than two subvectors are considered.

Corollary 2. Let \(X = (X_i)_{i \in I} \) be a simple max-stable random vector with positive continuous density. Then the conditional independence \(\sqcup_{i=1}^k X_{A_i} \mid X_{I \setminus \bigcup_{i=1}^k A_i} \) implies the independence \(\sqcup_{i=1}^k X_{A_i} \) for any disjoint non-empty subsets \(A_1, \ldots, A_k \) of \(I \).

(d) The non-degenerate univariate max-stable laws are classified up to location and scale by the one parameter family of extreme value distributions indexed by \(\gamma \in \mathbb{R} \)

\[
F_\gamma(x) = \exp(-(1 + \gamma x)^{-1/\gamma}), \quad x \in \begin{cases}
(\frac{-1}{\gamma}, \infty) & \gamma > 0, \\
\mathbb{R} & \gamma = 0, \\
(-\infty, \frac{-1}{\gamma}) & \gamma < 0.
\end{cases}
\]

Any other (not necessarily simple) max-stable random vector is obtained through a transformation of the marginals that is differentiable and strictly monotone on the respective sub-domain on \(\mathbb{R}^d \) (cf. e.g. Resnick (2008) Prop. 5.10). Hence, the above results remain valid for the general class of max-stable random vectors.

(e) Dombry & Eyi-Minko (2014) show that, up to time reversal, only max-autoregressive processes of order one can appear as discrete time stationary max-stable processes that satisfy the Markov property. This result indicates already that the conditional independence assumption is to some extent unnatural in presence of the max-stability property.
Example 3. Various classes of tractable max-stable distributions admit a positive continuous density, such that Theorem 1 and Corollary 2 apply. Popular models that are commonly used for statistical inference include the asymmetric logistic model (Tawn 1990), the asymmetric Dirichlet model (Coles & Tawn 1991), the pairwise beta model (Cooley et al. 2010) and its generalizations involving continuous spectral densities (Ballani & Schlather 2011) in the multivariate case. Moreover, most marginal distributions of spatial models such as the Gaussian max-stable model (Genton et al. 2011, Smith 1990) or the Brown-Resnick model (Hüler & Reiss 1989, Kabluchko et al. 2009) possess a positive continuous density if the parameters are non-degenerate. Hence, if any of the components of the previously mentioned extreme value models exhibit conditional independence given any of the remaining components, they must be independent.

In the remaining article we we subsume auxiliary arguments in Section 2 and give all proofs in Section 3.

2 Preparatory results on max-stable random vectors

Throughout this section let G be the distribution function of a simple max-stable random vector $X = (X_i)_{i \in I}$ that has a positive continuous density. We denote its exponent function by

$$V(x) = -\log G(x) = \int_{S_+} \max_{i \in I} \left(\frac{\omega_i}{x_i} \right) H(d\omega), \quad x \in (0, \infty)^I.$$

Lower order marginals G_A that refer to a subset A of I are obtained as $x_A \to \infty$, where x_A is the subvector of x at the respective components of $A^c = I \setminus A$. We write

$$V^A(x_A) = -\log G^A(x_A) = \lim_{x_A \to \infty} (-\log G(x)).$$

Since G is absolutely continuous, the partial derivatives

$$V^A_B(x_A) = \frac{\partial |B|}{\partial x_B} V^A(x_A), \quad B \subset A$$

exist, and they are homogeneous of order $-(|B|+1)$ (Coles & Tawn 1991). Let us further denote the set of non-empty subsets of I by $\mathcal{C}(I)$. The collection of exponent functions $(V^A)_{A \in \mathcal{C}(I)}$ is in a one-to-one correspondence with the Møbius-Inversion $(d_A)_{A \in \mathcal{C}(I)}$ of V, i.e.

$$d_A(x) = \sum_{B \in \mathcal{C}(I): A^c \subset B} (-1)^{|B \cap A|+1} V^B(x_B),$$

from which it follows that V^A can be recovered from

$$V^A(x_A) = \sum_{B \in \mathcal{C}(I): B \cap A \neq \emptyset} d_B(x).$$
Finally, we define
\[\chi_A(x_A) = \lim_{x_A \to \infty} d_A(x) = \sum_{B \in \mathcal{C}(I): B \subseteq A} (-1)^{|B|+1} V^B(x_B) = \sum_{B \in \mathcal{C}(I): A \subset B} d_B(x). \]

Then \((\chi_A)_{A \in \mathcal{C}(I)}\) is also in a one-to-one correspondence with \((V^A)_{A \in \mathcal{C}(A)}\) as well as \((d_A)_{A \in \mathcal{C}(I)}\) and the inversions are given by
\[d_A(x) = \sum_{B \in \mathcal{C}(I): A \subset B} (-1)^{|B\setminus A|} \chi_B(x_B), \]
\[V^A(x_A) = \sum_{B \in \mathcal{C}(I): B \subseteq A} (-1)^{|B|+1} \chi_B(x_B). \]

Further expressions for \(V^A, d_A\) and \(\chi_A\) are collected in Lemma 3. Note that \(\chi_A(x_A) \geq d_A(x)\) and thus,
\[d_A = 0 \iff \chi_A = 0. \] (3)

Lemma 3. The functions \(V^A\) and \(d_A\) and \(\chi_A\) (with \(A \in \mathcal{C}(I)\)) can be expressed in terms of the spectral measure \(H\) as follows:
\[V^A(x_A) = \int_{S^+} \max_{i \in A} \left(\frac{\omega_i}{x_i} \right) H(d\omega), \]
\[d_A(x) = \int_{S^+} \left[\min_{i \in A} \left(\frac{\omega_i}{x_i} \right) - \max_{j \in A^C} \left(\frac{\omega_j}{x_j} \right) \right]_+ H(d\omega), \]
\[\chi_A(x_A) = \int_{S^+} \min_{i \in A} \left(\frac{\omega_i}{x_i} \right) H(d\omega). \]

Here \(z_+ = \max(0, z)\) and \(\max(\emptyset) = 0\).

It turns out that the following two quantities are closely linked to conditional independence and independence of subvectors of \(X\), respectively. For non-empty disjoint subsets \(A, B\) of \(I\) and \(C = I \setminus (A \cup B)\), we set for \(x \in (0, \infty)^I\)
\[d_{A,B}(x) = V^{A\cup C}(x_{A\cup C}) + V^{B\cup C}(x_{B\cup C}) - V(x) - V^C(x_C) = \sum_{L \in \mathcal{C}(I): L \cap A \neq \emptyset, L \cap B \neq \emptyset, L \cap C = \emptyset} d_L(x), \]
\[\chi_{A,B}(x_{A\cup B}) = V^A(x_A) + V^B(x_B) - V^{A\cup B}(x_{A\cup B}) = \lim_{x_C \to \infty} d_{A,B}(x) = \sum_{L \in \mathcal{C}(I): L \cap A \neq \emptyset, L \cap B \neq \emptyset} d_L(x). \]

Note that \(\chi_{A,B}(x_{A\cup B}) \geq d_{A,B}(x)\) implies similarly to (3) that
\[d_{A,B} = 0 \iff \chi_{A,B} = 0. \] (4)

A similar argument as in the proof of Lemma 3 in Section 3 shows Lemma 4.
Lemma 4. The functions $d_{A,B}$ and $\chi_{A,B}$ can be expressed in terms of the spectral measure H as follows

$$
\begin{align*}
 d_{A,B}(x) &= \int_{S^+} \left[\min_{i \in A} \left(\frac{\omega_i}{x_i} \right), \max_{i \in B} \left(\frac{\omega_i}{x_i} \right) \right] + H(d\omega), \\
 \chi_{A,B}(x_{A \cup B}) &= \int_{S^+} \min_{i \in A} \left(\frac{\omega_i}{x_i} \right) \max_{i \in B} \left(\frac{\omega_i}{x_i} \right) H(d\omega).
\end{align*}
$$

General expressions for the regular conditional distributions for the distribution of a max-stable process conditioned on a finite number of sites that are based on hitting scenarios of Poisson point process representations have been computed in Dombry & Eyi-Minko (2013), Oesting (2015), Oesting & Schlather (2014) under mild regularity assumptions or in Wang & Stoev (2011) for spectrally discrete max-stable random vectors.

Since we assumed a positive continuous density for G (and hence also for G^B with $B \subset I$) the numerators and denominators in the following terms are non-zero for $x \in (0, \infty)^I$ and regular versions of the conditional probabilities $P(X_A \leq x_A \mid X_B = x_B)$ for $B \subset A \subset I$ are obtained as follows

$$
G(x_A \mid x_B) = \frac{G_{A \cup B}(x_{A \cup B})}{G_B(x_B)} = \exp \left(- \left[V_{A \cup B}(x_{A \cup B}) - V_B(x_B) \right] \right) \frac{W_{A \cup B}(x_{A \cup B})}{W_B(x_B)},
$$

where

$$
W_M^N(x_M) = \sum_{\pi \in \Pi(M)} (-1)^{\|\pi\|} \prod_{J \in \pi} V_J^N(x_N).
$$

Here $\Pi(M)$ stands for the set of partitions of M for $M \subset N \subset I$.

Proposition 5. The functions $\chi_{A,B}$ and $d_{A,B}$ are connected with the independence and conditional independence of the respective subvectors of X as follows.

- a) $X_A \perp \perp X_B \mid X_{I \setminus (A \cup B)} \Rightarrow d_{A,B} = 0$.

- b) $X_A \perp \perp X_B \iff \chi_{A,B} = 0$.

Remark. The assumption that G admits a positive continuous density on $(0, \infty)^I$ is crucial for part a) to hold true. It fails in Example 2.

Moreover, it is a simple consequence of Berman (1961/1962) and de Haan (1978) that the pairwise independence of any disjoint subvectors of the simple max-stable random vector X implies already their joint independence.

Lemma 6. If X_{A_1}, \ldots, X_{A_k} are pairwise independent subvectors of a simple max-stable random vector X (for necessarily disjoint $A_i \subset I$), then they are jointly independent.
3 Proofs

Proof of Lemma 3. The first equation is clear from the definition of V^A. The relation for d_A can be obtained as follows.

\[
d_A(x) = \sum_{B \in \mathcal{C}(I) : A^c \subset B} (-1)^{|B \cap A| + 1} V_B(x_B)
\]

\[
= \sum_{B \in \mathcal{C}(I) : A^c \subset B} (-1)^{|B \cap A| + 1} \int_{S_+} \max_{i \in B} \left(\frac{\omega_i}{x_i} \right) H(d\omega)
\]

\[
= \int_{S_+} \sum_{B \in \mathcal{C}(I) : A^c \subset B} (-1)^{|B \cap A| + 1} \max_{i \in B} \left(\frac{\omega_i}{x_i} \right) H(d\omega)
\]

\[
= \int_{S_+} \left[\min_{i \in A} \left(\frac{\omega_i}{x_i} \right) - \max_{j \in A^c} \left(\frac{\omega_j}{x_j} \right) \right] + H(d\omega).
\]

In order to obtain the last equality, we denote $a_i = \omega_i/x_i$ and distinguish two cases:

1st case: $A = I$. Then

\[
\sum_{B \in \mathcal{C}(I) : A^c \subset B} (-1)^{|B \cap A| + 1} \max_{i \in B} (a_i) = \sum_{B \in \mathcal{C}(I)} (-1)^{|B| + 1} \max_{i \in B} (a_i) = \min_{i \in I} (a_i).
\]

2nd case: $A \neq I$. Then set $b = \max_{i \in A^c} a_i$ and $c_i = \max(a_i, b)$, such that

\[
\sum_{B \in \mathcal{C}(I) : A^c \subset B} (-1)^{|B \cap A| + 1} \max_{i \in B} (a_i) = \sum_{B \in \mathcal{C}(I) : A^c \subset B} (-1)^{|B \cap A| + 1} \max_{i \in B \cap A} (c_i)
\]

\[
= \sum_{U \subset A} (-1)^{|U| + 1} \max_{i \in U} (c_i) = \sum_{U \subset A : U \neq \emptyset} (-1)^{|U| + 1} \max_{i \in U} (c_i) - b = \min_{i \in A} (c_i) - b
\]

\[
= \min_{i \in A} (\max(a_i, b)) - b = \max_{i \in A} \left(\min(a_i, b) \right) - b = \left(\min_{i \in A} (a_i) - b \right) + .
\]

The expression for χ_A follows immediately.

Proof of Proposition 5. a) As before, let $C = I \setminus (A \cup B)$. Since $G(x) = \exp(-V(x))$ has a positive continuous density, we have that the conditional independence $X_A \perp \perp X_B \mid X_C$ for $C = I \setminus (A \cup B)$ implies that for all $x \in (0, \infty)^I$

\[
G(x_A|X_C) G(x_B|X_C) = G(x_{A \cup B}|X_C) \quad \mathbb{P}\text{-a.s}.
\]

Since X_C has a positive continuous density with respect to the Lebesgue-measure on $(0, \infty)^C$, it follows that

\[
G(x_A|x_C) G(x_B|x_C) = G(x_{A \cup B}|x_C) \quad \text{for all } x \in Q,
\]

where Q is a dense subset of $(0, \infty)^I$. The latter is equivalent to

\[
\exp \left(d_{A,B}(x) \right) = \frac{W_{G}^{A \cup C}(x_{A \cup C}) W_{G}^{B \cup C}(x_{B \cup C})}{W_{G}^{A \cup B \cup C}(x_{A \cup B \cup C}) W_{G}^{C}(x_{C})}, \quad x \in Q.
\]
Here, $d_{A,B} \geq 0$ and $d_{A,B}$ is homogeneous of order -1, while the components V_j^N that build the terms W_M^N are homogeneous of order $-(|J| + 1)$. Now, replacing x by $t^{-1}x$ for $t > 0$ in (5), we see that the left-hand side grows exponentially in the variable t as t tends to ∞ if $d_{A,B}(x) > 0$, while the right-hand side exhibits at most polynomial growth. Therefore, $d_{A,B}(x) = 0$ for $x \in Q$. It follows that $d_{A,B} = 0$ by the locally uniform continuity of $d_{A,B}$, which can be seen from Lemma 4.

b) Both sides are equivalent to $G^A(x_A)G^B(x_B) = G^{A\cup B}(x_{A\cup B})$ for all $x \in (0, \infty)^I$. □

Proof of Theorem 1. The hypothesis follows from Proposition 5 and (4). □

Proof of Lemma 6. It suffices to show that for $x_{A_i} \in (0, \infty)^{A_i}$, $i = 1, \ldots, k$ and $r \in (0, \infty)$

$$P(X_{A_1} \leq x_{A_1}, \ldots, X_{A_k} \leq x_{A_k}) = \prod_{i=1}^k P(X_{A_i} \leq x_{A_i}).$$

Using the notation $r_i = \sum_{j_i \in A_i} x_{j_i}^{-1}$, $u_{j_i} = (r_i x_{j_i})^{-1}$ for $j_i \in A_i$ and $Y_i = \bigvee_{j_i \in A_i} u_{j_i} X_{j_i}$, $i = 1, \ldots, k$, we can rewrite this equality in the form

$$P(Y_1 \leq r_1^{-1}, \ldots, Y_k \leq r_k^{-1}) = \prod_{i=1}^k P(Y_i \leq r_i^{-1}),$$

where the random vector (Y_1, \ldots, Y_k) is simple max-stable (de Haan 1978) and has pairwise independent components due to our assumptions. Hence, by Berman (1961/1962) Theorem 2, the Y_i are jointly independent, which entails the relation above. □

Proof of Corollary 2. $\perp \perp \bigcap_{i=1}^k X_{A_i} \mid X_{I \setminus \bigcup_{i=1}^k A_i}$ implies $X_{A_{i_1}} \perp \perp X_{A_{i_2}} \mid X_{I \setminus \bigcup_{i=1}^k A_i}$ for $i_1 \neq i_2$ and hence $X_{A_{i_1}} \perp \perp X_{A_{i_2}}$ by Theorem 1. The hypothesis follows if we apply Lemma 6 to the X_{A_i}, $i = 1, \ldots, k$. □

Acknowledgments

Ioannis Papastathopoulos acknowledges funding from the SuSTaIn program - Engineering and Physical Sciences Research Council grant EP/D063485/1 - at the School of Mathematics of the University of Bristol.

References

9