Structural transformations of Li2C2 at high pressures

Citation for published version:

Digital Object Identifier (DOI):
10.1103/PhysRevB.92.064111

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Physical Review B: Condensed Matter and Materials Physics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Structural transformations of Li$_2$C$_2$ at high pressures

Ilias Efthimiopoulos,¹ Daryn E. Benson,² Sumit Konar,³ Johanna Nylén,³ Gunnar Svensson,³ Ulrich Häussermann,³,* Stefan Liebig,¹ Uwe Ruschewitz,¹ Grigory V. Vazhenin,¹ Ingo Loa,⁶ Michael Hanfland,⁶ and Karl Syassen¹

¹Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
²Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, USA
³Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
⁴Department of Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
⁵The University of Edinburgh, School of Physics and Astronomy, Centre for Science at Extreme Conditions (CSEC), King’s Buildings, Edinburgh EH9 3FD, United Kingdom
⁶European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, F 38000 Grenoble, France

(Received 6 June 2015; published 19 August 2015)

Structural changes of Li$_2$C$_2$ under pressure were studied by synchrotron x-ray diffraction in a diamond anvil cell under hydrostatic conditions and by using evolutionary search methodology for crystal structure prediction. We show that the high-pressure polymorph of Li$_2$C$_2$, which forms from the Immm ground-state structure ($Z = 2$) at around 15 GPa, adopts an orthorhombic Pnma structure with $Z = 4$. Acetylide C$_2$ dumbbells characteristic of Immm Li$_2$C$_2$ are retained in Pnma Li$_2$C$_2$. The structure of Pnma Li$_2$C$_2$ relates closely to the anticotunnite-type structure. C$_2$ dumbbell units are coordinated by nine Li atoms, as compared to eight in the antifluorite structure of Immm Li$_2$C$_2$. First-principles calculations predict a transition of Pnma Li$_2$C$_2$ at 32 GPa to a topologically identical phase with a higher Cmcm symmetry. The coordination of C$_2$ dumbbell units by Li atoms is increased to 11. The structure of Cmcm Li$_2$C$_2$ relates closely to the Ni$_2$ In-type structure. It is calculated that Cmcm Li$_2$C$_2$ becomes metallic at pressures above 40 GPa. In experiments, however, Pnma Li$_2$C$_2$ is susceptible to irreversible amorphization.

DOI: 10.1103/PhysRevB.92.064111 PACS number(s): 62.50.–p, 07.35.+k, 63.20.dk, 64.70.km

I. INTRODUCTION

Carbides of alkali and alkaline-earth metals typically occur as saltlike acetylides which consist of C$_2^-$ dumbbell anions isoelectronic to dinitrogen [1]. Recent theoretical studies suggested that acetylide carbides should transform to modifications with polymeric carbon structures at moderate pressures (below 10 GPa) [2–6]. The predicted “polycarbides” consist of carbon polyanions with chain, ribbon, or layer structures which are stabilized by electrostatic interactions with surrounding cations. Such polyanions occur typically in Zintl phases and are well known for, e.g., silicon and germanium. For carbon they represent a hitherto unknown chemical and structural feature. Polycarbides display distinct electronic structures and are predicted to be superconductors [3–5].

Yet the computational predictions deviate notably from results of experimental high-pressure studies. Hitherto investigated Li$_2$C$_2$, CaC$_2$, and BaC$_2$ have in common that acetylide C$_2$ dumbbells are retained until irreversible amorphization occurs at pressures far higher than the calculated transition pressures for polymeric carbide formation [7–9]. The discrepancy has been attributed to kinetic hindrance [3]. Prior to amorphization BaC$_2$ and Li$_2$C$_2$ undergo structural transformations at around 4 and 15 GPa, respectively, in room temperature experiments [7–9]. These transformations correspond to a “conventional” increase of coordination numbers with pressure, leading to denser packings of cations and dumbbells. In the ambient-pressure structure of BaC$_2$ Ba$^{2+}$ and C$_2^-$ ions are six-coordinated and arranged as in the NaCl structure. The rhombohedral high-pressure modification relates to the CsCl structure, with both types of ions attaining an eightfold coordination [7]. For Li$_2$C$_2$ the structure of the high-pressure form has not been conclusively characterized [8,9].

Here we present the elucidation of the high-pressure behavior of Li$_2$C$_2$ from combined synchrotron diffraction experiments and crystal structure prediction methodology. To prevent the generation of enthalpically more favorable polymeric carbides in the computations, a constrained evolutionary algorithm was employed that enforced retention of C$_2$ dumbbell units at high pressures [10]. We further show that if amorphization of Li$_2$C$_2$ were suppressed, a high-pressure form predicted here would approach metallic behavior at pressures above 40 GPa.

II. METHODS

A. Experiments

All steps of sample preparation were performed in an Ar-filled glove box (H$_2$O and O$_2$ concentration <1 ppm). Starting materials for Li$_2$C$_2$ synthesis were lithium (ABCR, 99.99%) and graphite powder (Sigma-Aldrich, 99.9998%), which was degassed at 800°C under dynamic vacuum for 24 h prior to use. Stoichiometric amounts of lithium and graphite were transferred into a purified Ta ampoule. Afterwards the ampoule was sealed in He atmosphere (800 mbar) and was placed inside a quartz ampoule, which was sealed under vacuum. The quartz ampoule was heated for 24 h at 1073 K in an air (tube furnace), after which the sample was allowed to cool by turning off the furnace. An air- and moisture-sensitive fine powder with a light-gray color was obtained. The phase purity of the sample was checked by powder x-ray diffraction (PXRD, Huber G670, Cu Kα radiation, capillary). Apart from a small amount of unreacted graphite, no impurities were detected.

*Corresponding author: ulrich.haussermann@mmk.su.se
In-situ high-pressure monochromatic PXRD experiments were performed with a membrane-driven diamond anvil cell (DAC) using a culet size of 400 microns. Powdered samples were loaded under inert gas atmosphere into a 150-μm-sized hole drilled in a stainless steel gasket. The pressure-transmitting medium (PTM) was helium. Diffraction data were collected at room temperature at the ID09 beamline of the ESRF using a MAR555 flat panel detector. The x-ray wavelength was $\lambda = 0.41558 \text{ Å}$, and the beam diameter on the sample was set to 30 μm. In order to improve powder averaging, the DAC was rocked by ±3 deg. The pressure was monitored by the ruby luminescence method [11]. The two-dimensional diffraction data were integrated using the software FIT2D [12].

All diffractograms were inspected using the STOE WINGXPOW software system [13]. DICVOL [14] within WINGXPOW was used for indexing and ENDEAOUR [15] for an ab-initio structural solution using a direct-space approach. Rietveld refinements were performed with GSAS [16]. More details of the structure solution and refinement are given in Sec. III.

B. Computations

Structure searches were carried out using the evolutionary algorithm USPEX [17–19]. The search over configurational space was constrained to structures containing C₂ acetylide units. C-C bond connectivity was enforced using the Z-matrix representation [20] available in the ab-initio code SIESTA [21]. However, computationally demanding SIESTA was only used in the initial phase of a search as a means to quickly optimize the structure by constraining the molecular geometry and degrees of freedom of the C₂ acetylide units. These calculations employed the Perdew-Burke-Ernzerhof (PBE) exchange correlation [22] as well as the single-ζ basis set. The plane-wave cutoff was set at 100 Ry, and a Monkhorst-Pack grid defined at a cutoff of 10 Å was used. The pseudopotentials used were Troullier and Martins norm-conserving pseudopotentials [23]. The final stages of a search were performed using the Vienna Ab Initio Simulation Package (VASP) [24]. The target pressure for searches was chosen to be 20 GPa. All populations contained 30 structures, and the initial population’s structures were randomly generated. All structures contained 16 atoms constrained to the chemical composition of Li₂C₂ (i.e., $Z = 4$).

Enthalpy versus pressure relations of Li₂C₂ phases were calculated using the first-principles all-electron projector augmented waves (PAW) method [25] as implemented in VASP. Exchange-correlation effects were treated within the generalized gradient approximation (GGA) using the PBE parametrization [22]. The structures were relaxed with respect to pressure, lattice parameters, and atomic positions. Forces were converged to better than 1×10^{-7} eV/Å. The integration over the Brillouin zone (BZ) was done on a grid of special k points of size $6 \times 6 \times 6$, determined according to the Monkhorst-Pack scheme and using Gaussian smearing to determine the partial occupancies for each wave function [26]. The kinetic energy cutoff was set to 675 eV. To obtain the band structure and enthalpies, the tetrahedron method with Blöchl correction was employed for BZ integration [27]. Structure relaxations and phonon calculations were performed at pressures ranging from 0 to 40 GPa. Once a structure was relaxed at a target pressure, zone-centered phonon calculations were executed using VASP’s density functional perturbation theory approach.

III. RESULTS AND DISCUSSION

A. Experimental observations

The ground-state structure of Li₂C₂, Immm Li₂C₂, relates to the antifluorite structure. Li atoms are coordinated by four dumbbell units and each dumbbell unit by eight Li ions. When recording Raman spectra of Li₂C₂ in a DAC, it was consistently observed that Immm Li₂C₂ transforms reversibly at around 15 GPa into a high-pressure modification. This is shown in Fig. 1.

The retention of the dumbbell units is evidenced by the persistence of the acetylide C-C stretching vibration (A_g). The stretching mode frequency drops discontinuously by about 20 cm⁻¹ at the transition. At higher pressures the Raman spectra became featureless and remained featureless upon decompression. This phenomenon is attributed to irreversible amorphization of Li₂C₂ at high pressures [9]. In the Raman experiments no PTM was used in order to avoid any background scattering from possible surface contamination. The nonhydrostatic pressure conditions do not appear to influence the transition into the high-pressure modification. However, pressures at which irreversible amorphization occurs varied between 17 and 25 GPa.

Figure 2 shows synchrotron PXRD patterns of Li₂C₂ across the phase transition and up to 24.7 GPa. Different from the Raman studies, pressure conditions here were hydrostatic. Below 16 GPa patterns correspond to Immm Li₂C₂. At 16.5 GPa additional reflections appear. The onset pressure of

![FIG. 1. (a) Raman spectra of polycrystalline Li₂C₂ at different pressures, (R) = decompression, and (b) observed mode frequencies as a function of pressure from two experiments (black and white circles, respectively). The broken vertical line marks the transition pressure for a reversible structural transformation. No PTM was used in order to avoid scattering by sample surface contaminations. Li₂C₂ amorphizes irreversibly at pressures between 17 GPa (black circle experiment) and 24 GPa (white circle experiment, according to Ref. [9]).]
FIG. 2. (Color online) Compilation of x-ray diffraction patterns of Li$_2$C$_2$ ($\lambda = 0.41558$ Å) across the phase transition. Numbers are pressure in GPa. Blue patterns correspond to the pure Immm phase. The arrows mark the appearance of Pnma reflections. Asterisks mark a reflection from a graphite impurity. Triangles and bars mark reflections from ruby and the PTM He, respectively.

the phase transition is in good agreement with the Raman experiments. Immm Li$_2$C$_2$ coexists with the high-pressure modification as a nonequilibrium phase mixture beyond 20 GPa. The diffraction patterns taken at the highest applied pressure still indicated the presence of crystalline Li$_2$C$_2$, although reflections are broadened significantly. The data measured at 18.7 GPa were chosen for an ab-initio structure solution, as here the best resolution with respect to reflection overlaps with Immm Li$_2$C$_2$ and broadening of reflections was found. The new diffraction peaks could be indexed with a primitive orthorhombic unit cell ($a \approx 5.1$ Å, $b \approx 4.5$ Å, $c \approx 5.9$ Å), which pointed to $Z = 4$. Due to the overlap of reflections a space group could not be determined unambiguously, but whole pattern decomposition suggested assignment of Pnma. Using a direct-space approach [15] within this space group yielded a structural model that resembled the orthorhombic room temperature modification of Rb$_2$C$_2$ ($Z = 4$) [28].

B. Elucidation of Pnma Li$_2$C$_2$

To aid the structure elucidation, crystal structure searches by USPEX were performed at a target pressure of 20 GPa, well above the experimental transition pressure and below possible amorphization under hydrostatic conditions, respectively. Previous efforts using crystal-structure prediction methodology in the structure search for high-pressure Li$_2$C$_2$ have been restricted to simulation cells containing two formula units (i.e., eight atoms) [9]. This resulted in an energetically favorable structure (with Cmc$_{21}$ symmetry) for pressures above 15 GPa. However, calculated frequencies of Raman active modes for Cmc$_{21}$ Li$_2$C$_2$ deviated considerably from experiment. When extending the simulation cells to contain four formula units (16 atoms), as suggested by the diffraction experiments, the search indeed yielded a structure with Pnma symmetry. Figure 3 shows the enthalpy differences (with respect to the Immm ground-state structure) as a function of pressure for Pnma Li$_2$C$_2$ and earlier predicted Cmc$_{21}$ Li$_2$C$_2$. At pressures around 13 GPa the enthalpy of Pnma Li$_2$C$_2$ becomes lower than the ground state. This value for the transition pressure is slightly lower than the experimental observation. The minor discrepancy may be attributed to the negligence of zero-point-energy contributions and temperature effects in our calculations. Importantly, Pnma Li$_2$C$_2$ is dynamically stable in the pressure range 10–30 GPa (see Supplemental Material [29], Fig. S1). The structural parameters at 20 GPa are compiled in Table I. Additionally, Ref. [29] contains parameters for the relaxed structures of Immm and Pnma Li$_2$C$_2$ for the complete investigated pressure range 0–40 GPa (Tables S1 and S2).

For Rietveld refinement the structural parameters of the model obtained with USPEX were used as starting parameters. The refined parameters for Pnma Li$_2$C$_2$ at 18.7 GPa are given in Table II. Details of the measurement and the refinement

FIG. 3. (Color online) Calculated enthalpy-pressure relations (per formula unit) for Li$_2$C$_2$ with respect to the Immm ground-state structure. The dotted vertical line marks the transition pressure for the transformation to the Pnma high-pressure modification.

064111-3
are summarized in Table S3 [29]. In Table III interatomic distances are compared with those of the computed structure at 20 GPa. The refinement of the Li atom positions was quite distant as compared with those of the computed structure from our diffraction data. The final fit of the 18.7 GPa data is shown in Fig. 4. Differences between the calculated and measured profiles (in particular, extra sharp reflections) can mainly be attributed to ruby and solid helium. Attempts to improve the fit by applying parameters for stress, strain, or anisotropic peak broadening gave unstable refinements and did not lead to physically meaningful results. Only the refinement of preferred orientation parameters (March-Dollase) gave a significant improvement of the fit. In Table S4 we also present the results from Rietveld refinements of the data at 7.2, 18.1, 18.7, and 19.3 GPa, respectively [29].

Figure 5 shows the pressure-volume (p-V) relations of \(\text{Immm} \) and \(\text{Pnma} \) \(\text{Li}_2\text{C}_2 \). Unit-cell parameters as a function of pressure from diffraction data are given in Tables S5 and S6 [29]. Both experimental and calculated p-V data were fitted to a three-parameter Birch-Murnaghan equation of state (EOS) expression [31]. Generally there is good agreement between calculated and experimentally determined p-V data. Computed volumes are somewhat underestimated, by 2%–2.5%. The first-order phase transition from \(\text{Immm} \) to \(\text{Pnma} \) \(\text{Li}_2\text{C}_2 \) is accompanied by a 7% volume reduction. The fitted EOS parameters are presented in Table IV. For \(\text{Immm} \) \(\text{Li}_2\text{C}_2 \) computed and experimental p-V data give virtually identical parameters. The ambient-pressure bulk modulus of this phase is around 40 GPa. For \(\text{Pnma} \) \(\text{Li}_2\text{C}_2 \) the bulk modulus extracted from the experimental data is 112 GPa at the reference pressure \(p_r = 16.5 \text{ GPa} \) \((V_r = 34.5 \text{ Å}^3) \).

Table I. Structural parameters of \(\text{Pnma} \) \(\text{Li}_2\text{C}_2 \) at 18.7 GPa (DFT optimized).

<table>
<thead>
<tr>
<th>Unit cell (Å)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Li}_2) (4c)</td>
<td>5.0133</td>
<td>4.4893</td>
<td>5.8218</td>
</tr>
<tr>
<td>(\text{Li}_2) (4c)</td>
<td>0.1623</td>
<td>0.25</td>
<td>0.9033</td>
</tr>
<tr>
<td>(\text{C}) (8d)</td>
<td>0.7535</td>
<td>0.25</td>
<td>0.9229</td>
</tr>
</tbody>
</table>

Table II. Structural parameters of \(\text{Pnma} \) \(\text{Li}_2\text{C}_2 \) at 18.7 GPa (Rietveld refinement).

<table>
<thead>
<tr>
<th>Unit cell (Å)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Li}_2) (4c)</td>
<td>5.098(2)</td>
<td>4.505(1)</td>
<td>5.909(2)</td>
</tr>
<tr>
<td>(\text{Li}_2) (4c)</td>
<td>0.1444(4)</td>
<td>0.25</td>
<td>0.938(3)</td>
</tr>
<tr>
<td>(\text{Li}_2) (4c)</td>
<td>0.9995</td>
<td>0.25</td>
<td>0.272(5)</td>
</tr>
<tr>
<td>(\text{C}) (8d)</td>
<td>0.742(1)</td>
<td>0.1163(3)</td>
<td>0.9100(6)</td>
</tr>
</tbody>
</table>

Table III. Interatomic distances (Å) in \(\text{Pnma} \) \(\text{Li}_2\text{C}_2 \).

<table>
<thead>
<tr>
<th>Atom pairs</th>
<th>Exp. structure (18.7 GPa)</th>
<th>Comp. structure (20 GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Li}_1)-(\text{Li}_1)</td>
<td>1.86–2.68 Å (4×)</td>
<td>2.39–2.62 Å (4×)</td>
</tr>
<tr>
<td>(\text{Li}_2)-(\text{Li}_2)</td>
<td>1.86–2.68 Å (6×)</td>
<td>2.39–2.62 Å (6×)</td>
</tr>
<tr>
<td>(\text{Li}_1)-(\text{C})</td>
<td>1.97 Å (2×), 2.14 Å (2×), 2.20 Å (2×)</td>
<td>1.96 Å (2×), 2.05 Å (2×), 2.15 Å (2×)</td>
</tr>
<tr>
<td>(\text{Li}_2)-(\text{C})</td>
<td>2.26 Å (2×), 2.33 Å (2×), 2.36 Å (2×)</td>
<td>2.19 Å (2×), 2.22 Å (2×), 2.39 Å (2×)</td>
</tr>
<tr>
<td>(\text{C})-(\text{Li})</td>
<td>2.55 Å (2×)</td>
<td>2.52 Å (2×)</td>
</tr>
</tbody>
</table>

\(^{*} \text{Soft constraints.} \)

C. \(\text{Cmcm} \) \(\text{Li}_2\text{C}_2 \) and structural relationships

The high-pressure-phase \(\text{Pnma} \) \(\text{Li}_2\text{C}_2 \) amorphizes reversibly in room temperature Raman experiments at \(\sim 17 \text{ GPa} \) (nonhydrostatic) but persists up to at least 25 GPa under hydrostatic conditions. Computationally, \(\text{Pnma} \) \(\text{Li}_2\text{C}_2 \) may be further compressed. Interestingly, as shown in Fig. 6, at around 32 GPa this yields a transition into another structure. The new structure is topologically equivalent to \(\text{Pnma} \) \(\text{Li}_2\text{C}_2 \) but adopts the higher-symmetry space group \(\text{Cmcm} \). The structural parameters for \(\text{Cmcm} \) \(\text{Li}_2\text{C}_2 \) and their variation with pressure are compiled in Table S7 in Ref. [29]; EOS parameters are included in Table IV.

Figure 7 depicts the structural relations between ground-state \(\text{Immm} \) \(\text{Li}_2\text{C}_2 \) and the \(\text{Pnma} \) and \(\text{Cmcm} \) high-pressure
phases. As mentioned earlier, the *Immm* structure relates to the antifluorite type: C\textsubscript{2} dumbbells are arranged as a quasi-cubic close packing in which Li atoms occupy the tetrahedral voids. Consequently, each C\textsubscript{2} dumbbell is surrounded by eight Li atoms and each Li atom by four dumbbell units. Alternatively, the *Immm* structure can be viewed as a stacking of layers consisting of planar, rectangular nets formed by the Li ions which are stuffed by C\textsubscript{2} dumbbells oriented perpendicularly. Layers are stacked along the *b* direction (which is the elongation direction of dumbbells) and consecutive layers A and B are related by the *I* centering.

Also within *Pnma* Li\textsubscript{2}C\textsubscript{2} Li ions form planar nets (parallel to the *ac* plane) that consist of triangle ribbons running along the *a* direction. Interatomic distances within triangles are short compared to distances in between (2.5 Å vs 3.1 Å at 20 GPa). Planar Li nets are completed to layers by perpendicularly oriented C\textsubscript{2} dumbbells interspersed between triangle ribbons. In the *Pnma* structure consecutive layers A and B are stacked in a way that C\textsubscript{2} dumbbells (e.g., in a layer A) attain a trigonal prismatic coordination by two triangles from adjacent layers above and below (layers B). A dumbbell is coordinated additionally by three Li ions which are situated in the same layer and cap the rectangular faces of the trigonal prism.

![Graph](image)

FIG. 5. (Color online) Volume versus pressure data for *Immm* Li\textsubscript{2}C\textsubscript{2} (red symbols) and *Pnma* Li\textsubscript{2}C\textsubscript{2} (blue symbols). Experimental and computed values are presented as squares and circles, respectively. The transition pressures are marked by arrows.

Consequently, compared to *Immm* Li\textsubscript{2}C\textsubscript{2} the coordination of a dumbbell by Li ions is increased to 9.

As *Immm* Li\textsubscript{2}C\textsubscript{2} relates to the antifluorite type so does the *Pnma* structure to the anticotunnite type. *Pnma* Li\textsubscript{2}C\textsubscript{2} is isosstructural to the recently discovered ternary carbides CsK\textsubscript{2}C\textsubscript{2} and CsRb\textsubscript{2}C\textsubscript{2} [32], and antifluorite–anticotunnite transitions are frequently observed for alkali metal chalcogenides A\textsubscript{2}C\textsubscript{2} at high pressures. In particular, Li\textsubscript{2}O and Li\textsubscript{2}S display this transition at around 45 and 12 GPa, respectively [30,33]. For Na\textsubscript{2}S the antifluorite ground-state structure transforms to the anticotunnite structure at even lower pressures, at around 7 GPa. At about 16 GPa another transition takes place which results in a phase with the Ni\textsubscript{2}In-type structure [34].

Interestingly, the sequence antifluorite −→ anticotunnite −→ Ni\textsubscript{2}In type is also shown by Li\textsubscript{2}C\textsubscript{2} as *Cmcm* Li\textsubscript{2}C\textsubscript{2} relates to the hexagonal Ni\textsubscript{2}In structure. The topology of planar Li-ion nets is identical in *Pnma* and *Cmcm* Li\textsubscript{2}C\textsubscript{2}. However, in the higher-symmetry *Cmcm* structure ribbons are straightened into distinct zigzag chains in which triangles are strictly oriented up and down [cf. Fig. 7(b)]. These chains run along the *c* direction. The orientation of triangles from adjacent chains yields five-membered rings which are centered by the dumbbell units. Because the trigonal prismatic environment of a dumbbell by Li triangles situated in layers above and below is maintained, its total coordination by Li ions is increased to 11 with respect to the *Pnma* structure. The coordination polyhedron corresponds to an Edshummar polyhedron, which is the signature of the Ni\textsubscript{2}In structure type [35].

To conclude the discussion of structural relationships, we address the evolution of interatomic distances with pressure [referring to the density-functional theory (DFT) optimized structures]. The C-C distance within dumbbell units is only slightly compressible. Within the *Immm* structure this distance reduces from 1.256 Å at ambient pressure to 1.239 Å at 40 GPa. This is similar for the high-pressure forms. Here this

Table IV. Equation-of-state parameters for phases of Li\textsubscript{2}C\textsubscript{2}.

<table>
<thead>
<tr>
<th>Phase</th>
<th>V\textsubscript{0} (Å3)</th>
<th>K\textsubscript{0} (GPa)</th>
<th>K\textsubscript{0}′</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immm exp</td>
<td>47.9</td>
<td>39(1)</td>
<td>3.9(2)</td>
</tr>
<tr>
<td>Pnma exp</td>
<td>V\textsubscript{0} = 34.5</td>
<td>K\textsubscript{0} = 112(5)</td>
<td>4 (fixed)</td>
</tr>
<tr>
<td>Immm calc</td>
<td>46.7</td>
<td>40.8</td>
<td>3.9</td>
</tr>
<tr>
<td>Pnma calc</td>
<td>44.13</td>
<td>34.7</td>
<td>4.9</td>
</tr>
<tr>
<td>Cmcm calc</td>
<td>42.71</td>
<td>38.7</td>
<td>4.3</td>
</tr>
</tbody>
</table>
FIG. 7. (Color online) (a) Crystal structures of Immm, Pnma, and Cmcm Li$_2$C$_2$ represented as layers consisting of planar nets formed by Li ions, which are centered by perpendicularly oriented dumbbell units. Li ions are shown as light gray circles and C atoms as red circles. Layers are stacked with an AB sequence in the dumbbell direction, as described in the text. (b) View of the structures along the layer stacking direction. A-type layers are distinguished by bold lines. B-type layers by thin lines and pale colors. (c) Coordination of C$_2$ dumbbells within the three phases. The numbers indicate the distances between the dumbbell center and surrounding Li ions in Å (referring to DFT optimized structures at 20 GPa).

distance decreases from 1.254 Å at 10 GPa to 1.244 Å at 40 GPa. The Li-Li distances defining the coordination around C$_2$ dumbbells are 2.55, 2.81, and 3.02 Å for the Immm structure at ambient pressure. They reduce to 2.35, 2.58, and 2.84 Å at 14 GPa, which is close to the calculated transition pressure. At this pressure the corresponding Li-Li distances in the Pnma structure are between 2.46 and 3.17 Å.

D. Electronic structure changes with pressure

The band structures of Immm Li$_2$C$_2$ and Pnma/Cmcm Li$_2$C$_2$ are shown in Fig. 8. At pressures below 10 GPa both the ambient- and high-pressure forms exhibit insulating properties. At ambient pressure Immm Li$_2$C$_2$ has an indirect band gap of 3.5 eV, with the bottom of the conduction band at Γ and the top of the valence band at T. The valence bands mirror the molecular orbital (MO) diagram of the acetylide anion. Their topology for Li$_2$C$_2$ is similar to CaC$_2$, whose electronic structure has been studied earlier [36,37]. The weakly dispersed band centered at −12 eV below the Fermi level corresponds to the sp$_{\sigma}$ bonding MO. Bands corresponding to the two lone-pair states (sp$_{\sigma}$u and sp$_{\sigma}$g) have dispersions of about 2 eV and are located in the range −4 to −1 eV below the Fermi level. The two π-bonding bands constitute the top of the valence band. It is clearly seen that pressure increases especially in the lone-pair–Li interactions because the dispersion of lone-pair–based bands increases most. The pressure dependence of the DFT-GGA–computed band gap is shown in Fig. 9. It decreases linearly, but Immm Li$_2$C$_2$ obviously stays insulating.

At low pressure (below 10 GPa) Pnma Li$_2$C$_2$ exhibits an indirect band gap of <2.5 eV with the bottom of the
acetylide lone pairs are coordinated by triangles of Li ions. With pressure this coordination will develop into a covalent bonding interaction between C and Li, formally corresponding to electron donation from the dumbbell C_2^- to Li$^+$, and eventually leading to metallization.

IV. CONCLUSIONS

In summary, we have employed a combination of synchrotron x-ray diffraction experiments and computational evolutionary search methodology to elucidate the high-pressure crystal structure of the acetylide carbide Li$_2$C$_2$. The observed high-pressure phase has $Pnma$ symmetry and relates to the anticottunite structure ($Z = 4$). In hydrostatic experiments $Pnma$ Li$_2$C$_2$ does not amorphize under pressures up to 25 GPa. We find that if $Pnma$ Li$_2$C$_2$ were prevented from amorphization it would transform at around 32 GPa to a higher-symmetry $Cmcm$ structure that is closely related to the Ni$_2$In type. $Cmcm$-Li$_2$C$_2$ would metallize at pressures above 40 GPa as a result of indirect band overlap. The sequence antifluorite \rightarrow anticottunite \rightarrow Ni$_2$In-type mirrors a common trend of high-pressure-phase transitions in A_2B compounds toward higher coordination.

We point out that the high-pressure behavior of the acetylide carbides Li$_2$C$_2$ and MC_2 ($M = Ca, Sr, Ba$) appears strikingly similar to the corresponding sulfides. Experimental and/or calculated transition pressures for the sequences antifluorite \rightarrow anticottunite \rightarrow Ni$_2$In-type (referring to Li$_2$C$_2$/Li$_2$S) and rock salt \rightarrow CsCl-type (referring to MC_2/MS) are remarkably close [38–43]. This may be attributed to a similar polarizability of the C_2^- and S^2- anions. However, unlike sulfides, acetylides will undergo amorphization with pressure and expected phase transitions may not be observed. The origin of the pressure-induced amorphization of acetylides is uncertain, and different scenarios can be envisioned. For example, amorphization could indicate compositional instability and phase segregation, which appears to be the case for BaC$_2$ [5]. Furthermore, it could connect with a pressure limit for stability of multiple bonded light element entities, as suggested in Ref. [7]. However, the enthalpic pressure limit for the stability of C_2^- units is rather low, as computations show clearly that with pressure carbides with polymeric anions become rapidly favored over acetylides. Specifically, for Li$_2$C$_2$ a phase with the CrB structure becomes more stable than $Immm$ Li$_2$C$_2$ at already 5 GPa [2,3]. This is far below the experimentally observed $Immm$-to-$Pnma$ phase transition (see also Fig. S2 in Ref. [29]) and it has been concluded that acetylides are distinguished by a high kinetic stability [3]. The elucidation of the origin of the kinetic stability and pressure-induced amorphization of acetylides will require the analysis of the composition and local structure of the amorphous carbides by, e.g., synchrotron extended x-ray absorption fine structure (EXAFS) and/or total scattering experiments, preferably in combination with molecular dynamics simulations.

ACKNOWLEDGMENTS

This work was supported by the Swedish Research Council through Grant No. 2012-2956 and the National Science Foundation through Grant No. DMR-1007557.
[29] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.92.064111 for (1) DFT optimized structure parameters for Immm, Pnma, and Cmcm Li2C2 for the pressure range 0–40 GPa; (2) details of the structural investigation and selected crystallographic parameters of Li2C2 at 18.7 GPa; (3) comparison of DFT optimized and experimental structure parameters (Rietveld fits) at 7.2, 18.1, 18.7, and 19.3 GPa; (4) experimental lattice parameters for Immm and Pnma Li2C2 (Le Bail fits); (5) dispersion relation and corresponding phonon density of states of Pnma Li2C2 at 20 GPa; (6) enthalpy-pressure relations of Pnma Li2C2 and Li2C2 with a CrB-type polycarbide structure.