Generalised helicity formalism, higher moments and the $B \rightarrow K_{J_K}(\rightarrow K) \bar{\ell}_1 \ell_2$ angular distributions

Citation for published version:
Gratrex, J., Hopfer, M. & Zwicky, R. 2016, 'Generalised helicity formalism, higher moments and the $B \rightarrow K_{J_K}(\rightarrow K) \bar{\ell}_1 \ell_2$ angular distributions' Physical Review D.

Link:
Link to publication record in Edinburgh Research Explorer

Published In:
Physical Review D

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Generalised helicity formalism, higher moments and the $B \to K_{J_K}(\to K \pi)\bar{\ell}_1\ell_2$ angular distributions

James Gratrexa, Markus Hopfera,b, and Roman Zwickya

a Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, Scotland
b Institut für Physik, Karl-Franzens-Universität Graz, Universitätsplatz 5, 8010 Graz, Austria

E-Mail: j.gratrex@ed.ac.uk, markus.hopfer@emtensor.com, roman.zwicky@ed.ac.uk.

We generalise the Jacob-Wick helicity formalism, which applies to sequential decays, to effective field theories of rare decays of the type $B \to K_{J_K}(\to K \pi)\bar{\ell}_1\ell_2$. This is achieved by reinterpreting local interaction vertices $\bar{b}\Gamma'\mu_1..\mu_n\bar{\ell}\Gamma\mu_1..\mu_n\ell$ as a coherent sum of $1 \to 2$ processes mediated by particles whose spin ranges between zero and n. We illustrate the framework by deriving the full angular distributions for $B \to K\bar{\ell}_1\ell_2$ and $B \to K^*(\to K \pi)\bar{\ell}_1\ell_2$ for the complete dimension-six effective Hamiltonian for non-equal lepton masses. Amplitudes and decay rates are expressed in terms of Wigner rotation matrices, leading naturally to the method of moments in various forms. We discuss how higher-spin operators and QED corrections alter the standard angular distribution used throughout the literature, potentially leading to differences between the method of moments and the likelihood fits. We propose to diagnose these effects by assessing higher angular moments. These could be relevant in investigating the nature of the current LHCb anomalies in $R_K = B(B \to K\mu^+\mu^-)/B(B \to Ke^+e^-)$ as well as angular observables in $B \to K^+\mu^+\mu^-$.

Contents

1. Introduction 1

2. Generalised Helicity Formalism for Effective Theories 2
 2.1. The basic idea of the Helicity Formalism and its Extension 2
 2.2. Effective Theories rewritten as a coherent Sum of Sequential Decays 4

3. Angular distribution and Wigner D-functions 7
 3.1. $B \to K^\ast (\to K\pi) \bar{\ell}_1 \ell_2$.. 7
 3.2. $B \to K \bar{\ell}_1 \ell_2$.. 11

4. Method of total and partial Moments 11
 4.1. Method of total Moments .. 12
 4.2. Partial Moments ... 13

5. Including higher Partial Waves 15
 5.1. Double Partial Wave Expansion .. 15
 5.2. Qualitative discussion of Effects of higher Spin Operators in H^{eff} 16
 5.3. Qualitative discussion of QED Corrections 17
 5.4. On the Importance of testing for higher Moments for $B \to K^{(*)}\bar{\ell}\ell^-$ 19

6. Conclusions 21

A. Results relevant for all decay modes 22
 A.1. Decomposition of $SO(3,1)$ into $SO(3)$ up to spin 2 22
 A.2. Additional Remarks on effective Hamiltonian 23
 A.3. Definitions and Results of Leptonic Helicity Amplitudes 23

B. Details on Kinematics for Decay Modes 25

C. Specific Results for $B \to K^\ast (\to K\pi) \bar{\ell}_1 \ell_2$ 26
 C.1. Fourfold Differential Decay Rate 26
 C.2. $G_m^{l_1,l_2}$ in terms of Helicity Amplitudes for $m_{\ell_1} = m_{\ell_2} = m_\ell$ 28
 C.3. $G_m^{l_1,l_2}$ in terms of Helicity Amplitudes for $m_{\ell_1} \neq m_{\ell_2}$ 29
 C.4. Explicit Helicity Amplitudes in terms of Form Factors 31

D. Specific Results for $B \to K \bar{\ell}_1 \ell_2$ 32
 D.1. Explicit $B \to K$ Helicity Amplitudes in terms of Form Factors 33

E. $\Lambda_b \to \Lambda (\to (p,n)\pi) \bar{\ell}_1 \ell_2$ Angular Distribution 34
1. Introduction

Helicity amplitudes (HAs), as defined by Jacob and Wick [1], describe \(A \rightarrow BC (1 \rightarrow 2) \) transitions and have definite transformation properties under rotation. The key idea is that the angular and helicity information are equivalent to each other. Angular decay distributions follow (e.g. [2–4]) from evaluating the HAs with \(B \) and \(C \) in the forward direction, with the angular information encoded in Wigner \(D \) matrix functions, reminiscent of the Wigner-Eckart theorem.

The intent of this paper is to generalise this method to decays of the type \(A \rightarrow (B_1B_2)C \) which are schematically described by local interactions of the form

\[
H^{\text{eff}} \sim (AC)_{\mu_1...\mu_n} (B_1B_2)^{\mu_1...\mu_n}.
\]

(1)

We do so by rewriting the \(1 \rightarrow 3 \) decay as a sequence of \(1 \rightarrow 2 \) processes, by inserting multiple complete sets of polarisation states between the Lorentz contractions of \(AC \) and \(B_1B_2 \) above. This leads to a reinterpretation of the decay in terms of a sum over intermediate particles of spin \(J \), where \(J \) can range from 0 up to \(n \) depending on the specific structure of the operators.

Symbolically we may write

\[
A(A \rightarrow (B_1B_2)C) = \sum_{J \geq 0} n \sum_{J \geq 0} A(A \rightarrow B_J(\rightarrow B_1B_2)C),
\]

(2)

with \(A \) denoting the amplitude. We refer to this case as the \(B \)-particle factorisation approximation. At the formal level, the main work is the decomposition of the Lorentz tensors into irreducible objects under the spatial rotation group (reminiscent of the 3 + 1 decomposition of cosmological perturbation theory for example).

Important examples of such decays are given by the rare radiative decays \(B \rightarrow K\ell^+\ell^- \) and \(B \rightarrow K^*(\rightarrow K\pi)\ell^+\ell^- \). Besides evaluating non-perturbative matrix elements to these decays (e.g. [5–17]), it has become clear that it is beneficial to consider general properties of amplitudes entering the angular distributions (e.g. [18–21]). Our work can be seen to be part of the latter category.

We evaluate the \(B \rightarrow K^{(*)}\ell^+\ell^- \) angular decay distributions within the generalised helicity framework developed in this paper, providing an alternative method to traditional techniques using Dirac trace technology [22, 23]. An important consequence of the manner in which we derive the distribution is that it lends itself to the methods of moments (MoM), which use the decomposition of the distribution into orthogonal functions to obtain observables independently of each other. This is a complementary method to the likelihood fit to extract the dynamical information from the decay, and was recently studied from an experimental viewpoint in [24].

We discuss the impact of including higher partial waves in both the \((K\pi) \)- and especially the dilepton-system. The latter give rise to corrections, in the form of higher moments, to the standard form of the angular distribution used in the literature. The sources of higher dilepton partial waves are higher spin operators and electroweak corrections, both of which we discuss qualitatively. The two sources can be distinguished by their different behaviour in higher partial moments. We encourage experimental investigation of higher moments from various viewpoints. In particular, we discuss how higher moments can be used to diagnose the size of QED effects in \(B \rightarrow K\ell^+\ell^- \) (with \(\ell = e, \mu \)) and test leakage of \(J/\Psi \)-contributions into the lower dilepton-spectrum. Both are of importance in view of \(R_K \) as well as the angular anomalies.
in the low dilepton-spectrum, which have recently been reported by the LHCb collaboration in [25] and [26,27] respectively.

The paper is organised as follows. In section 2 the methodology is introduced ending with a formal expression for the fourfold decay distribution in terms of rotation matrices and HAs. Specific angular distributions for $B \rightarrow K(\ast)\bar{\ell}_1\ell_2$, with more detailed results in appendices C and D, are given in section 3. The method of total and partial moments is presented in section 4. Section 5 contains the discussion of including higher partial waves; a qualitative assessment of higher spin operators and QED corrections is presented in subsections 5.2 and 5.3 respectively. The relevance of testing for higher moments is emphasised in subsection 5.4. The paper ends with conclusions 6. Additional material such as the leptonic HAs and a few brief remarks on $\Lambda_b \rightarrow \Lambda(\rightarrow (p,n)\pi)\ell_1\ell_2$ is presented in appendices A.3 and E respectively. In appendix B we provide the kinematic conventions for computation of the angular distribution by the sole use of Dirac trace technology.

2. Generalised Helicity Formalism for Effective Theories

We first review the standard helicity formalism in Sec. 2.1, and qualitatively apply it to sequential $1 \rightarrow 2$ decays in Sec. 2.1.1, specialising to the spin configuration relevant for our decays at the end. In Sec. 2.2 the formalism is extended to include decays like $B \rightarrow KJ\bar{\ell}_1\ell_2$ described by effective field theories for $b \rightarrow s\bar{\ell}_1\ell_2$ transitions. The framework can be straightforwardly applied to the entire zoo of semi-leptonic and rare flavour decays such as $B \rightarrow D(\ast)\ell_1\ell_2, D \rightarrow (\pi,\rho)\mu\mu, D \rightarrow (\pi,\rho)\mu\nu, K \rightarrow \pi\mu\mu$ etc., and can also be extended to include initial particles with non-zero spin.

2.1. The basic idea of the Helicity Formalism and its Extension

The discussion in this section is standard and we refer the reader to [2–4] for more extensive reviews, as well as the pioneering paper of Jacob and Wick [1]. In a $1 \rightarrow 2$ (say $A \rightarrow B_1B_2)$ decay a particle of spin J_A and helicity M_A decays into two particles of momentum \vec{p}_1 and \vec{p}_2 with helicities λ_1 and λ_2 respectively. In the centre-of-mass frame ($\vec{p}_1 = -\vec{p}_2$) the system can be characterised by the two helicities and the direction (i.e. the solid angles θ and ϕ). By inserting a complete set of two-particle angular momentum states the corresponding matrix element can be written

$$A(A \rightarrow B_1B_2) = \sum_{j,m} \langle \theta, \phi, \lambda_1, \lambda_2 | J_A, M_A \rangle = \sum_{j,m} \langle \theta, \phi, \lambda_1, \lambda_2 | j, m, \lambda_1, \lambda_2 \rangle \langle j, m, \lambda_1, \lambda_2 | J_A, M_A \rangle$$

as a product of Wigner D-functions and a HA $A^{J_A}_{M_A,\lambda_1,\lambda_2}$. The Wigner matrix is a $(2J_A + 1)$-dimensional $SO(3)$ representation in the helicity basis. The essence is that the distribution of the amplitude over the angles is then governed by the rotation matrix as a function of the helicities. In practice one only needs to compute the HA.

[1] Throughout this work, we use non-equal leptons $\ell_1 \neq \ell_2$, in order to accommodate semi-leptonic decays of the type $B \rightarrow \rho\ell\nu$ as well as the potential lepton flavour violation [28], motivated by the R_K measurement.
The process $B \rightarrow J/\Psi(\rightarrow \ell^+\ell^-)K^*(\rightarrow K\pi)$ constitutes a well-known example of a sequential $1 \rightarrow 2$ decay where the formalism can be applied [29]. The idea of this paper is to extend this formalism to the case where the $\ell_1\ell_2$-pair emerges from a local interaction vertex $O_{ij} \sim \delta_{ji} s_{\ell}\ell_{\ell}$ with effective Hamiltonian $H^\mathrm{eff} \sim \sum_{ij} C_{ij} O_{ij}$. This is achieved by reinterpreting the local interaction vertex as originating from a sum of particles whose spin depends on the number of Lorentz contractions between the Γ_{ij} structures.

2.1.1. Helicity formalism for $BJ_B \rightarrow KJK(\rightarrow K_1 K_2)\gamma_{J_{\gamma}}(\rightarrow \bar{\ell}_1 \ell_2)$

Let us consider the following sequential decay

$$BJ_B \rightarrow KJK(\rightarrow K_1 K_2)\gamma_{J_{\gamma}}(\rightarrow \bar{\ell}_1 \ell_2) \tag{4}$$

where J_B, J_γ and J_K denote the spin of the particles B, γ_{J} and J_K. The notation is close to the main application of this paper but we emphasise that at this point the methodology is completely general. Assuming the decay to be a series of sequential $1 \rightarrow 2$ decays the amplitude can be written in terms of a product of $1 \rightarrow 2$ HAs times the corresponding Wigner functions

$$A(\Omega_B, \Omega_1, \Omega_K | \lambda_B, \lambda_{K_1}, \lambda_{K_2}, \lambda_1, \lambda_2) \sim \sum_{\lambda_{\gamma}, \lambda_K} D^B_{\lambda_B, \lambda_{\gamma} - \lambda_K} (\Omega_B) H_{\lambda_{\gamma}, \lambda_K} D^{J_K}_{\lambda_K, \lambda_{K_2} - \lambda_{K_1}} (\Omega_K) K_{\lambda_{K_1}, \lambda_{K_2}, \lambda_1, \lambda_2} \bar{D}^{J_{\gamma}}_{\lambda_{\gamma}, \lambda_{\ell}} (\Omega_{\ell}) \ell_{\lambda_1, \lambda_2} \tag{5}$$

where the λ_i are helicity indices, and

$$\lambda_{\ell} \equiv \lambda_1 - \lambda_2 \tag{6}$$

is a shorthand that we use frequently throughout the paper. The helicities of the internal particles γ_{J} and K_J have to be coherently summed over. The Wigner D-functions

$$D^j_{m', m} (\Omega = (\alpha, \beta, \gamma)) = \langle jm' | e^{-iaJ_x} e^{-ibJ_y} e^{-i\gamma J_z} | jm \rangle \tag{7}$$

are irreducible $SO(3)$-representations of dimension $2j + 1$. The J_i are the generators of angular momentum, and the states $| j, m \rangle$ carry angular momentum j and helicity m, and are orthonormalised $\langle j, m | j', m' \rangle = \delta_{jj'} \delta_{mm'}$. To avoid proliferation of indices we denote complex conjugation by a bar instead of the more standard asterisk.

Adaptation to $J_B = 0$ and $K_1 = K$ and $K_2 = \pi$ In order to ease the notation slightly we move straight to the case $B \rightarrow KJ(\rightarrow K\pi)\gamma_{J_{\gamma}}(\rightarrow \bar{\ell}_1 \ell_2)$. The relation $D^{J_B=0}_{\lambda_B=0, \lambda_{\gamma} - \lambda_K} (\Omega) = \delta_{\lambda_{\gamma}, \lambda_K}$ implies equality of helicities

$$\lambda \equiv \lambda_{\gamma} = \lambda_K \tag{8}$$

One may therefore reduce $H_{\lambda_{\gamma}, \lambda_K} \rightarrow H_{\lambda}$, which is the quantity known as the HA in the $B \rightarrow K^*\ell^+\ell^-$-literature and carries the non-trivial dynamic information. The HA $K_{\lambda_{K_1}, \lambda_{K_2}}$ reduces to a scalar constant (denoted by $g_{K_1 K_2 \pi}$) since $K_1 \rightarrow K$, $K_2 \rightarrow \pi$ are both scalar particles. The third HA $C_{\lambda_{K_1}, \lambda_{K_2}}$ depends on the interaction vertex of the leptons, but is trivial to calculate once the interaction is known. We may rewrite the amplitude (5) as

$$A(B \rightarrow KJK(\rightarrow K\pi)\gamma_{J_{\gamma}}(\rightarrow \bar{\ell}_1 \ell_2)) \sim \sum_{\lambda=J_K} D^{J_K}_{\lambda=0} (\Omega_K) D^{J_{\gamma}}_{\lambda, \lambda_{\ell}} (\Omega_{\ell}) A^{J_{\gamma}}_{\lambda, \lambda_1, \lambda_2} \tag{9}$$
where the angles, depicted in Fig. 1, are $\Omega_K = (0, \theta_K, 0)$ and $\Omega_\ell = (\phi_\ell, \theta_\ell, -\phi_\ell)$.

In the LFA the amplitude $A_{\lambda_1,\lambda_2}^{J_\ell} \sim H_\lambda L_{\lambda_1,\lambda_2}|J_\gamma \rangle$ is the product of the hadronic and leptonic matrix elements. The angle ϕ_ℓ is the helicity angle and is usually called simply ϕ. Before commenting on different conventions of the angles we quote the fourfold differential decay

$$\frac{d^4\Gamma}{dq^2d\cos \theta_\ell d\cos \theta_K d\phi} \sim \sum_{\lambda_1,\lambda_2} |A|^2 \sim$$

$$\frac{1}{2} \sum_{\lambda_1,\lambda_2=\pm1/2, \lambda'=\pm J_\gamma} A_{\lambda_1,\lambda_2}^{J_\gamma} \bar{A}_{\lambda',\lambda_1,\lambda_2}^{J_\gamma} \bar{D}_{\lambda,0}^{J_K J_\gamma} (\Omega_K) D_{\lambda',0}^{J_\gamma J_\ell} (\Omega_\ell) \bar{D}_{\lambda',\lambda}^{J_K J_\gamma} (\Omega_\ell) D_{\lambda',\lambda}^{J_\gamma J_\ell} (\Omega_\ell),$$

in terms of amplitudes and Wigner D-functions. Conventions of θ_ℓ and ϕ are not uniform in the literature. In particular the LHCb collaboration uses conventions that differ from the standard convention in the theory community [30,31] as follows

$$\phi^{\text{LHCb}} = \phi, \quad \phi^{\text{theory}} = \pi - \phi, \quad \theta^{\text{LHCb}}_\ell = \theta_\ell, \quad \theta^{\text{theory}}_\ell = \pi - \theta_\ell.$$

We use the convention of the LHCb collaboration since it is traditional in the helicity formalism. The resulting global sign changes in the various angular functions, defined in App. C, are summarised in Tab. 3.

2.2. Effective Theories rewritten as a coherent Sum of Sequential Decays

In this section we give the formal steps to derive the expression of the angular distributions. The reader interested in the final result can directly proceed to Sec. 3.

The amplitude (9) is of a completely general form for the decay where γJ_γ is an actual particle of spin J_γ. In $B \rightarrow K^* (\rightarrow \pi K^0) \ell_1 \ell_2$ a part of the amplitude is in this form where the photon corresponds to the intermediate state ($\gamma_1 = \gamma$). In general there are effective vertices,
so-called contact terms, where the intermediate particles are not present. In the interest of clarity we quote the effective Hamiltonian for $b \rightarrow s\ell\ell$

$$H_{\text{eff}}^\text{c} = c_H H_{\text{eff}}^\text{c}, \quad c_H \equiv -\frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} V_{tb} V_{tb}^\ast,$$

$$\hat{H}_{\text{eff}} = \sum_{i=V, A, S, P, T} \left(C_i O_i + C_i' O_i'\right). \quad (13)$$

Above G_F is Fermi’s constant, α the fine structure constant, V_{tb} are Cabibbo-Kobayashi-Maskawa (CKM) elements and the operators are

$$O_{S(P)} = s_L b \bar{\ell} (\gamma_5) \ell, \quad O_{V(A)} = s_L \gamma^\mu b \bar{\ell} \gamma_\mu (\gamma_5) \ell, \quad O_T = s_L \sigma^{\mu\nu} b \bar{\ell} \sigma_{\mu\nu} \ell,$$

where $O' = O|_{s_L \rightarrow s_R}$, the labels refer to the lepton interaction vertex, $q_{L, R} \equiv 1/2(1 \mp \gamma_5) q$, $\bar{\ell}, \ell \rightarrow \bar{\ell}_1, \ell_2$ for different lepton flavours and a few additional relevant remarks deferred to App. A.2. In passing we add that the notation $O_{y(10)} = O_{V(A)}$ is more common throughout the literature. In the case where electroweak corrections are neglected at the matrix element level one may factorise the hadronic from the leptonic part. We refer to the latter as lepton pair factorisation approximation (LFA) (B-particle factorisation approximation in the introduction). Schematically (13) is written as a product of a hadronic part H and a leptonic part L with a certain number of Lorentz contractions between them:

$$H_{\text{eff}} \sim \sum_{a=1}^{N_0} H^a L^a + \sum_{b=1}^{N_1} H^b L^b + \sum_{c=1}^{N_2} H^c L^{\mu_1\mu_2}.$$

(15)

The sum over a, b and c extends over operators with 0, 1 and 2 Lorentz contractions between quark and lepton operators. In the example of $C_9 O_9 = H^b L^a$ we would have $H^b = C_9 b \gamma_\mu s_L$ and $L^a = \bar{\ell} \gamma_\mu \ell$. On a formal level we might think of O_9 as originating from integrating out a vector and a scalar particle, in the sense that the Lorentz contraction over index μ can be written as the sum of products of a spin-one and a timelike spin-0 polarisation vector. More formally this is expressed by the well-known completeness relation

$$g^{\mu\nu} = \sum_{\lambda, \lambda' \in \{t, \pm 0\}} \omega(\lambda) \bar{\omega}(\lambda') G_{\lambda\lambda'}, \quad G_{\lambda\lambda'} = \text{diag}(1, -1, -1, -1),$$

(16)

where the first entry in $G_{\lambda\lambda'}$ refers to $\lambda = \lambda' = t$ and an explicit parametrisation is given by

$$\omega(\pm) = (0, \pm 1, i, 0)/\sqrt{2}, \quad \omega(0) = (q_2, 0, 0, q_0)/\sqrt{q^2}, \quad \omega(t) = (q_0, 0, 0, q_2)/\sqrt{q^2}.$$

(17)

The polarisation vectors $\omega(\pm, 0)$ correspond to the Jacob-Wick phase convention [1]. Let us pause a moment and emphasise that intermediate results do depend on the convention. The latter enter the definition of the HAs and this has to be taken into account when comparing to HAs appearing in the literature. We choose the Jacob-Wick convention, as in [18], since it is compatible with the Condon-Shortley convention which is standard for Clebsch-Gordan coefficients and Wigner matrices (e.g. [32]).

We may think of ω as being associated with the Lorentz group $SO(3, 1)$. In the rest frame $q_2 = 0$ the timelike polarisation tensor transforms as a scalar under the restriction of $SO(3, 1)$ to spatial rotations $SO(3)$.\footnote{Formally the branching rule for the Lorentz four vector $(1/2, 1/2)$ is $(1/2, 1/2)_{SO(3, 1)}|_{SO(3)} \rightarrow (1 + 3)_{SO(3)}$.} For an effective operator with n Lorentz indices the relation (16) can be inserted n times to obtain a HA with n helicity indices. More precisely, the
The decay to two leptons is treated as being mediated by an effective particle γ_{J_γ} of spin J_γ. The factor $g_{K,\pi\gamma}$ has no dependence on helicities and depends only on the dynamics of the K^* decay.

In the notation used throughout the literature $H^{\rho} = \langle H^{\rho}_a | \epsilon^\rho = \langle H^{\rho}_a | \epsilon^\rho \rangle_{\gamma J_\gamma}$ is known as the timelike HA.

\[\mathcal{A} \propto \sum_{\lambda,J_\gamma} g_{K,\pi\gamma} \]

\[\begin{array}{c}
K(\lambda_K = 0) \\
g_{K,\pi\gamma} \\
K_{J_\lambda}(\lambda) \\
\gamma_{J_\gamma}(\lambda) \\
H_\lambda(B \rightarrow K_{J_\gamma}) \\
\ell_1(\lambda_1) \\
\ell_2(\lambda_2) \\
\end{array} \]

\[\pi(\lambda_\pi = 0) \]

\[\sum_{\lambda,J_\gamma} K(\lambda_K = 0) \gamma_{J_\gamma}(\lambda) \]

\[\pi(\lambda_\pi = 0) \]

\[L_{\lambda_1 \lambda_2} \]

\[\lambda \]

\[\lambda_1 \lambda_2 \]
\[A^J_{\lambda_1,\lambda_2} A^J_{\lambda_1,\lambda_2} \bar{D}^{JK}_{\lambda_1,\lambda_2} (\Omega_K) D^{J_{\ell}}_{\lambda} (\Omega_{\ell}) \bar{D}^{J_{\ell}}_{\lambda} (\Omega_{\ell}) D^{J_{\ell}}_{\lambda} (\Omega_{\ell}) , \]

with additional coherent sums over the spins \(J_\gamma \)

\[\sum_{\lambda_1,\lambda_2=1/2} \frac{1}{2} \sum_{\lambda_1,\lambda_2=-1/2} \sum_{J_\gamma=0,\lambda=-\min(J_\gamma,J_{\ell})} \sum_{J_{\ell}=0,\lambda=-\min(J_\gamma,J_{\ell})} \]

and likewise for the sum over \(J'_\gamma, \lambda' \).

3. Angular distribution and Wigner D-functions

We now apply the method introduced in the previous section to decays governed by the \(b \to s \bar{t}_1 \ell_2 \) effective Hamiltonian (13). First we consider the decay \(B \to K^* (\to K \pi) \bar{\ell}_1 \ell_2 \), and then in Sec. 3.2 we present similar results for \(B \to K \ell_1 \ell_2 \). The related decay \(\Lambda_b \to \Lambda (\to N\pi) \bar{\ell}_1 \ell_2 \), where \(N = (p,n) \), can also be treated within this formalism, and will be briefly considered in App. E.

3.1. \(B \to K^* (\to K \pi) \bar{\ell}_1 \ell_2 \)

The use of the effective Hamiltonian (13) in the LFA restricts the partial waves to \(J_\gamma = 0,1 \) terms in Eq. (18). The discussion of higher partial waves (\(J_\gamma \geq 2 \)) is deferred to Sec. 5. The matrix element for (13) is then given by the sum of an \(S^\ell \)- and \(P^\ell \)-wave amplitude (with the subscript \(\ell \) referring to the partial wave in the angle \(\theta_\ell \)):

\[\hat{\mathcal{M}}_{\lambda_1,\lambda_2} = \langle K^* (\to K \pi) \bar{\ell}_1 (\lambda_1) \ell_2 (\lambda_2) | \hat{H}^{\text{eff}} | B \rangle = \frac{\sqrt{3}}{4\pi} \left[A^0_{0,\lambda_1,\lambda_2} \bar{d}^{1\lambda}_0 (\Omega_K) \delta_{\lambda_1,\lambda_2} + \sum_{\lambda = \pm,0} A^1_{\lambda,\lambda_1,\lambda_2} \bar{d}^{1\lambda}_0 (\Omega_K) \bar{d}^{1\lambda}_0 (\Omega_{\ell}) \right] , \]

where the hat denotes the effective Hamiltonian without the \(c_H \) prefactor (13). The \(K^* \) has spin 1 and is therefore always in a \(P_K \)-wave in the \(\theta_K \)-angle, with analogous meaning for the \(K \) subscript as before. Above we have used \(\bar{d}^{\lambda}_{0,\lambda} (\Omega) = \delta_{0,\lambda} \) to impose \(\delta_{\lambda_1,\lambda_2} \) on the scalar part of the matrix element. The principal objects to be calculated is the amplitude \(A^J_{\lambda,\lambda_1,\lambda_2} \). For \(\hat{H}^{\text{eff}} \) (13) the \(S^\ell \) - and \(P^\ell \)-wave amplitudes (that is to say \(A^0 \) and \(A^1 \) respectively) are written as

\[A^0_{0,\lambda_1,\lambda_2} = H_S^X \mathcal{L}^S_{\lambda_1,\lambda_2} + H_P^X \mathcal{L}^P_{\lambda_1,\lambda_2} , \]

\[A^1_{\lambda,\lambda_1,\lambda_2} = H_X^P \mathcal{L}^P_{\lambda_1,\lambda_2} + H_X^T \mathcal{L}^T_{\lambda_1,\lambda_2} + H_X^T \mathcal{L}^T_{\lambda_1,\lambda_2} , \]

where the leptonic and the hadronic HAs are

\[H_X^X = \langle K^* (\lambda) | \bar{d} \Gamma^X_s | B \rangle , \quad \mathcal{L}^X_{\lambda_1,\lambda_2} = \langle \bar{\ell}_1 (\lambda_1) \ell_2 (\lambda_2) | \bar{t} \Gamma^X_e | 0 \rangle \]

the expressions in (19) contracted with the corresponding polarisation vectors. Explicit results, as well as a more precise prescription concerning \(\Gamma^X \), given in Appendices A.3 and C.4 in Eqs. (A.12) and (C.9) respectively. Squaring the matrix element in (23), summing over external
The definitions of the Γ^X and their associated spin $J_{\gamma}(X)$. The contributions $J_{\gamma}(X) = 0, 1$ give rise to the S_γ- and P_γ-wave amplitudes respectively. The basic polarisation vector ω_μ is given in (17) and the composed ones can be found in Eq. (A.5). The usage of the helicity index λ_X is specified when the leptonic and hadronic HAs are defined in Eqs. (A.12,C.9,D.4). Note that the additional structure $\Gamma^{T_5} = i\sigma_{\mu\nu}\gamma_5$ can be absorbed into the other tensor structures due to the identity $\sigma^{\alpha\beta}\gamma_5 = \frac{2i}{\sqrt{2}}\epsilon^{\alpha\beta\mu\nu}\sigma_{\mu\nu}$ (with the $\epsilon_{0123} = +1$ convention for the Levi-Civita tensor). The following shorthands have been used: $\gamma^{\mu}_{L,R} \equiv \gamma^{\mu}P_{L,R}$, $\sigma_{\mu\nu} = i/2[\gamma_\mu, \gamma_\nu]$ and $P_{L,R} = (1 \mp \gamma_5)/2$.

Helicities and averaging over final-state spins, one obtains an angular distribution

$$I_{K^*}(q^2, \Omega_K, \Omega_\ell) \equiv \frac{32\pi}{d\Omega} \frac{d^4\Gamma}{d\Omega d\cos\theta_\ell d\cos\theta_K d\phi} = \frac{32\pi}{3} N \sum_{\lambda_1, \lambda_2} |\tilde{M}_{\lambda_1, \lambda_2}|^2,$$

with I_{K^*} being a shorthand and $32\pi/3$ is a convenient normalisation factor. The factor N, \[
N \equiv |c_H|^2 \kappa_{\text{kin}}, \quad \kappa_{\text{kin}} \equiv \frac{\sqrt{\lambda_\ell \lambda_\ell}}{2\pi^3 m_B^2 q^2},
\]
is the product of the prefactor resulting from the effective Hamiltonian c_H (13) and the kinematic phase space factor. The matrix element is defined in (23). Above $\lambda \equiv \lambda(m_B^2, m_B^2, q^2)$ and $\lambda_\ell \equiv \lambda(q^2, m^2_L, m^2_\ell)$ where $\lambda(a, b, c)$ is the Källén-function defined in (B.1) and related to the absolute value of the three-momentum of the K^* and the lepton pair by (B.2).

3.1.1. Angular Distribution

The squared matrix element initially contains a plethora of different products of four Wigner functions. However, these correspond to pairs of direct products that can be reduced to single Wigner functions by the Clebsch-Gordan series

$$D^l_{m,n}(\Omega) D^l_{p,q}(\Omega) = \sum_{J=|l-|J|=M=-J} \sum_{N=-J}^J (2Jl)_{MNP} C^{Jjl}_{Mnp} C^{Jjl*}_{M,N} D^J_{M,N}(\Omega) .$$

Applied separately over the angles $\Omega_K = (0, \theta_K, 0)$ and $\Omega_\ell = (\phi, \theta_\ell, -\phi)$, along with the identity $D^l_{m,m'}(\Omega) = (-1)^{m'-m} D^l_{-m,-m'}(\Omega)$, this allows the angular distribution to be written in the compact form

$$I^{(0)}_{K^*}(q^2, \Omega_K, \Omega_\ell) = \text{Re} \left[G^{0,0}_0(q^2)\Omega^{0,0}_0 + G^{0,1}_0(q^2)\Omega^{0,1}_0 + G^{0,2}_0(q^2)\Omega^{0,2}_0 + G^{2,0}_0(q^2)\Omega^{2,0}_0 + G^{2,1}_0(q^2)\Omega^{2,1}_0 + G^{2,2}_0(q^2)\Omega^{2,2}_0 + G^{2,2}_1(q^2)\Omega^{2,2}_1 + G^{2,2}_2(q^2)\Omega^{2,2}_2 \right] ,$$

Table 1: The definitions of the Γ^X and their associated spin $J_{\gamma}(X)$. The contributions $J_{\gamma}(X) = 0, 1$ give rise to the S_γ- and P_γ-wave amplitudes respectively. The basic polarisation vector ω_μ is given in (17) and the composed ones can be found in Eq. (A.5). The usage of the helicity index λ_X is specified when the leptonic and hadronic HAs are defined in Eqs. (A.12,C.9,D.4). Note that the additional structure $\Gamma^{T_5} = i\sigma_{\mu\nu}\gamma_5$ can be absorbed into the other tensor structures due to the identity $\sigma^{\alpha\beta}\gamma_5 = \frac{2i}{\sqrt{2}}\epsilon^{\alpha\beta\mu\nu}\sigma_{\mu\nu}$ (with the $\epsilon_{0123} = +1$ convention for the Levi-Civita tensor). The following shorthands have been used: $\gamma^{\mu}_{L,R} \equiv \gamma^{\mu}P_{L,R}$, $\sigma_{\mu\nu} = i/2[\gamma_\mu, \gamma_\nu]$ and $P_{L,R} = (1 \mp \gamma_5)/2$.

<table>
<thead>
<tr>
<th>Γ^X</th>
<th>Γ^S</th>
<th>Γ^T</th>
<th>$\Gamma^{L,R}$</th>
<th>Γ^{T_5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_{\gamma}(X)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The squared matrix element initially contains a plethora of different products of four Wigner functions by the Clebsch-Gordan series. However, these correspond to pairs of direct products that can be reduced to single Wigner functions by the Clebsch-Gordan series

$$D^l_{m,n}(\Omega) D^l_{p,q}(\Omega) = \sum_{J=|l-|J|=M=-J} \sum_{N=-J}^J (2Jl)_{MNP} C^{Jjl}_{Mnp} C^{Jjl*}_{M,N} D^J_{M,N}(\Omega) .$$

Applied separately over the angles $\Omega_K = (0, \theta_K, 0)$ and $\Omega_\ell = (\phi, \theta_\ell, -\phi)$, along with the identity $D^l_{m,m'}(\Omega) = (-1)^{m'-m} D^l_{-m,-m'}(\Omega)$, this allows the angular distribution to be written in the compact form

$$I^{(0)}_{K^*}(q^2, \Omega_K, \Omega_\ell) = \text{Re} \left[G^{0,0}_0(q^2)\Omega^{0,0}_0 + G^{0,1}_0(q^2)\Omega^{0,1}_0 + G^{0,2}_0(q^2)\Omega^{0,2}_0 + G^{2,0}_0(q^2)\Omega^{2,0}_0 + G^{2,1}_0(q^2)\Omega^{2,1}_0 + G^{2,2}_0(q^2)\Omega^{2,2}_0 + G^{2,2}_1(q^2)\Omega^{2,2}_1 + G^{2,2}_2(q^2)\Omega^{2,2}_2 \right] ,$$

8
where the superscript (0) is a reminder that only S- and P-wave contributions were used to describe the amplitude (23). The angular functions Ω are given in terms of Wigner D functions

$$\Omega^{l_K\ell} \equiv \Omega^{l_K\ell}_{m,0} (\Omega_K, \Omega_\ell) \equiv D^{l_K}_{m,0} (\Omega_K) D^{\ell}_{m,0} (\Omega_\ell) = D^{l_K}_{m,0} (\Omega'_K) D^{\ell}_{m,0} (\Omega'_\ell).$$

The variables $\Omega_K = (\phi, \theta_K, -\phi)$ and $\Omega'_\ell = (0, \theta_\ell, 0)$ form an angular reparametrisation that will prove convenient when we discuss partial moments. The label l_K corresponds to the $(K\pi)$-system, ℓ_ℓ to the dilepton system, and the common index m is the azimuthal component ϕ of either partial wave. The observables $G^{l_K\ell}_{m,0}$ are functions of q^2 and the relation to the standard observables in the literature is given in Sec. 3.1.2. The explicit Wigner D-functions used above are given by

$$D^{0}_{0,0} (\Omega) = 1, \quad D^{2}_{0,0} (\Omega) = \frac{1}{2} (3 \cos^2 \theta - 1), \quad D^{2}_{2,0} (\Omega) = \sqrt{\frac{3}{8}} e^{-2i\phi \sin^2 \theta},$$

$$D^{1}_{0,0} (\Omega) = \cos \theta, \quad D^{1}_{1,0} (\Omega) = -\frac{1}{\sqrt{2}} e^{-i\phi} \sin \theta, \quad D^{2}_{1,0} (\Omega) = -\sqrt{\frac{3}{8}} e^{-i\phi} \sin 2 \theta,$$

and can be related to spherical harmonics $Y_{lm} (\theta, \phi)$ or associated Legendre polynomials $P_{lm}(x)$ as

$$D^{l}_{m,0} (\phi, \theta, -\phi) = \sqrt{\frac{4\pi}{2l+1}} Y_{lm} (\theta, \phi) = \sqrt{\frac{(l-m)!}{(l+m)!}} P_{lm}(\cos \theta) e^{-im\phi}.$$

We comment briefly on four features of the angular distribution (29), all of which are encoded by the double Clebsch-Gordan series (28) but which can also be seen to emerge from the underlying physics:

- The second helicity index of all Wigner D-functions in the angular distribution is zero.
 The latter is the difference of the helicities of the final state particles which is zero since the latter are summed incoherently $(\lambda_1 - \lambda_2) = 0$.

- The first helicity index m is identical in all pairs of Wigner D-functions appearing in the angular distribution. This index contains the helicities of the internal particles, summed coherently. One can also see this as a property of the freedom of defining the reference plane for the angle ϕ.

- The range of the indices l_K and l_ℓ is fixed between the range $0, \ldots, 2 \max[J_K, \ell]$. Including only up to $J_\gamma = 1$ contributions emerging from the dimension-six effective Hamiltonian (13) hence imposes $0 \leq \ell_\ell \leq 2$, and likewise $J_K = 1$ imposing $0 \leq l_K \leq 2$.

- The absence of angular structures with $l_K = 1$ is specific to this decay, due to the final state consisting of (pseudo)scalar mesons.

The first three features are universal features of such decay chains and apply even if some of the particles involved are fermions, for example in the decay $\Lambda_b \rightarrow \Lambda (\rightarrow (p, n)\pi) \ell_1 \ell_2$, see App. E.

3.1.2. Relation of the $G^{l_K\ell}_{m,0}$ to standard literature observables

The functions $G^{l_K\ell}_{m,0}$, omitting the explicit q^2-dependence hereafter, are defined in terms of the standard basis of observables $J_i(q^2)$ [30] by

$$G^{0,0}_0 = \frac{4}{9} (3 (J_{1c} + 2J_{1s}) - (J_{2c} + 2J_{2s})), \quad G^{0,1}_0 = \frac{4}{3} (J_{6c} + 2J_{6s}), \quad G^{0,2}_0 = \frac{16}{9} (J_{2c} + 2J_{2s}),$$
\[G_{0}^{2,0} = \frac{4}{9} (6 (J_{1c} - J_{1s}) - 2 (J_{2c} - J_{2s})) , \quad G_{0}^{2,1} = \frac{8}{3} (J_{6c} - J_{6s}) , \quad G_{0}^{2,2} = \frac{32}{9} (J_{2c} - J_{2s}) , \]
\[G_{1}^{2,1} = \frac{16}{\sqrt{3}} J_{5} , \quad G_{1}^{2,2} = \frac{32}{3} J_{4} , \quad G_{2}^{2,2} = \frac{32}{3} J_{3} , \]

(33)

where we have defined \(J_{3,4,5} \equiv (J_{3,4,5} + i J_{9,8,7}) \).

The twelve quantities (33), keeping in mind that the last three are complex, have been rewritten in several ways in the literature. A frequently-used form is the set of observables given in [33], constructed to be insensitive to form factors, and related to the \(G_{m\ell}^{K,J} \) as follows:\footnote{The extension of these relations to CP-odd and CP-even combinations, in the spirit of [34], is straightforward, see Sec. 4 of [33].}

\[\langle P_{1}\rangle_{\text{bin}} = \sigma_{3} \frac{\langle \text{Re} \left[G_{2}^{2,2} \right] \rangle_{\text{bin}}}{N_{\text{bin}}}, \quad \langle P_{2}\rangle_{\text{bin}} = \sigma_{0} \frac{\langle \text{Re} \left[G_{0}^{2,1} - \frac{1}{2} G_{0}^{2,2} \right] \rangle_{\text{bin}}}{3/2 N_{\text{bin}}}, \]
\[\langle P_{3}\rangle_{\text{bin}} = \sigma_{0} \frac{\langle \text{Im} \left[G_{2}^{2,2} \right] \rangle_{\text{bin}}}{N_{\text{bin}}}, \quad \langle P'_{4}\rangle_{\text{bin}} = \sigma_{4} \frac{\langle \text{Re} \left[G_{1}^{2,2} \right] \rangle_{\text{bin}}}{2 N'_{\text{bin}}}, \quad \langle P'_{8}\rangle_{\text{bin}} = \sigma_{8} \frac{\langle \text{Im} \left[G_{1}^{2,2} \right] \rangle_{\text{bin}}}{2 N'_{\text{bin}}}, \]
\[\langle P'_{5}\rangle_{\text{bin}} = \sigma_{5} \frac{\langle \text{Re} \left[G_{1}^{2,1} \right] \rangle_{\text{bin}}}{2 \sqrt{3} N'_{\text{bin}}}, \quad \langle P'_{6}\rangle_{\text{bin}} = \sigma_{7} \frac{\langle \text{Im} \left[G_{1}^{2,1} \right] \rangle_{\text{bin}}}{2 \sqrt{3} N'_{\text{bin}}}, \]

(34)

where we defined
\[\langle f(q^{2}) \rangle_{\text{bin}} = \int_{\text{bin}} dq^{2} f(q^{2}) , \]

as the integral over \(q^{2} \) bins of the observable of interest, and
\[N_{\text{bin}} \equiv 4 \left\langle G_{0}^{0,2} - \frac{1}{2} G_{0}^{2,2} \right\rangle_{\text{bin}} , \quad N'_{\text{bin}} = \sqrt{- \left\langle G_{0}^{0,2} - \frac{1}{2} G_{0}^{2,2} \right\rangle_{\text{bin}} \left\langle G_{0}^{0,2} + G_{0}^{2,2} \right\rangle_{\text{bin}}} . \]

(35)

The \(\sigma_{i} \) are \(J_{\ell} \)-dependent signs, defined in the appendix in Tab. C.1 and accounting for sign changes between angular conventions. Three other combinations of the \(G_{m\ell}^{K,J} \) can be related to the branching fraction \(\frac{d\Gamma}{dq^{2}} \), the forward-backward asymmetry \(A_{\text{FB}} \) and the longitudinal polarisation fraction \(F_{L} \) [30]:

\[\left\langle \frac{d\Gamma}{dq^{2}} \right\rangle_{\text{bin}} = \frac{3}{4} \left\langle G_{0}^{0,0} \right\rangle_{\text{bin}} , \quad \left\langle A_{\text{FB}} \right\rangle_{\text{bin}} = \frac{1}{2} \sigma_{6} \left\langle \frac{G_{0}^{0,1}}{G_{0}^{0,0}} \right\rangle_{\text{bin}} , \]
\[\left\langle F_{L} \right\rangle_{\text{bin}} = \frac{\left\langle G_{0}^{0,0} \right\rangle_{\text{bin}} + \left\langle G_{0}^{2,0} \right\rangle_{\text{bin}}}{3 \left\langle G_{0}^{0,0} \right\rangle_{\text{bin}}} . \]

(36)

The observables in Eqs. (34,35,36) correspond to the twelve \(J_{\ell} \).
3.2. \(B \to K\bar{\ell}_1\ell_2 \)

Having shown the \(B \to K^*\bar{\ell}_1\ell_2 \) HA analysis in detail we are going to be rather brief on \(B \to K\bar{\ell}_1\ell_2 \). Skipping the step in (5) we directly write down the \(S_\ell \)- and \(P_\ell \)-wave amplitudes (analogue of Eq. (24))

\[
\begin{align*}
A_{0,\lambda_1,\lambda_2}^0 &= H_{B\to K}^5 L_{\lambda_1,\lambda_2}^S + H_{B\to K}^L L_{\lambda_1,\lambda_2}^L; \\
A_{0,\lambda_1,\lambda_2}^1 &= H_{B\to K}^R L_{\lambda_1,\lambda_2}^L + H_{B\to K}^R L_{\lambda_1,\lambda_2}^R + H_{B\to K}^R L_{\lambda_1,\lambda_2}^T,
\end{align*}
\]

where the \(L_{\lambda_1,\lambda_2}^\lambda \) are the same as in the \(B \to K^*\bar{\ell}_1\ell_2 \) decay, and the hadronic HAs are taken over the same set of operators, but defined instead for \(B \to K \) transitions. A further possible term \(H_{B\to K}^R \) in \(A_{0,\lambda_1,\lambda_2}^0 \) has been deliberately excluded, as it in fact vanishes (see App. D.1 for details).

The reduced matrix element is then the sum of the \(S_\ell \)- and \(P_\ell \)-wave amplitude

\[
\mathcal{M}_{\lambda_1,\lambda_2} = \frac{1}{\sqrt{4\pi}} (A_{0,\lambda_1,\lambda_2}^0 \delta_{\lambda_1,\lambda_2} + A_{0,\lambda_1,\lambda_2}^1 \bar{D}_{0,\lambda_2}(\Omega_\ell)),
\]

where \(\Omega_\ell = (0, \theta_\ell, 0) \) in this case. The angular distribution (with \(0 \leq \theta_\ell \leq \pi \)) is given by squaring the matrix element

\[
I_K(q^2, \theta_\ell) = \frac{d^2 \Gamma}{dq^2 d\cos \theta_\ell} = \mathcal{N} \sum_{\lambda_1,\lambda_2} |\mathcal{M}_{\lambda_1,\lambda_2}|^2.
\]

Using (38) one obtains

\[
I_K^{(0)} = G^{(0)}(q^2) + G^{(1)}(q^2)P_1(\cos \theta_\ell) + G^{(2)}(q^2)P_2(\cos \theta_\ell)
\]

\[
= G^{(0)}(q^2) + G^{(1)}(q^2) \cos \theta_\ell + G^{(2)}(q^2) \frac{1}{2} (3 \cos^2 \theta_\ell - 1),
\]

where we used \(P_1(\cos \theta_\ell) = D_{0,0}^L(\Omega_\ell) \) and \(D_{0,0}^L(\Omega_\ell) = 1 \). For convenience, we have given results in terms of the explicit angle \(\theta_\ell \) using Eq. (31). The superscript (0) is again a reminder that the restriction to \(\ell_\ell \leq 2 \) is a consequence of only including \(S_\ell \)- and \(P_\ell \)-waves in (38). The explicit functions \(G^{(0,1,2)} \), whose \(q^2 \)-dependence we omit hereafter, are given in App. D in Eq. (D.1) in terms of HAs.\(^5\)

4. Method of total and Partial Moments

The MoM is a powerful tool to extract the angular observables \(G_{\eta_1}^{(K,\ell)} \) by the use of orthogonality relations. In \(B \) physics, for example, the method has been applied to \(B \to J/\Psi(\to \ell\ell)K^*(\to K\pi) \) type decays \[29\] during the first \(B \)-factory era.

In the angular information on \(B \to K^*\ell\ell \) has been extracted through the likelihood fit method, at the level of \(I_K^{(0)} \) [27], and it has also been suggested for analysis at the amplitude level [36]. A possible advantage of the MoM over the likelihood fit is that it is

\(^5\)The observables \(G^{(\ell)} \) and the angular coefficients used in the literature [35] are related by \(a(q^2) = G^{(0)} - \frac{1}{2} G^{(2)} \), \(b(q^2) = G^{(1)} \) and \(c(q^2) = \frac{3}{2} G^{(2)} \) where \(I_K^{(0)} = a + b \cos \theta_\ell + c \cos^2 \theta_\ell \).
less sensitive to theoretical assumptions. More precisely, one can test each angular term independent of the rest of the distribution. Generically the fourfold angular distribution can be expanded over the complete set of functions $\Omega_{m,l}^{K,\ell}$ (30)

$$I_{K^*}(q^2, \Omega_K, \Omega_\ell) = \sum_{l_K, l_\ell \geq 0} \sum_{m=0}^{\min(l_K, l_\ell)} \text{Re} \left[G_m^{K,l_\ell} \Omega_m^{K,l_\ell}(\theta_K, \theta_\ell, \phi) \right],$$

of which the distribution $I_{K^*}^{(0)}$ (29) is a subset. Note that the sum over m does not need to be continued for negative values since I_{K^*} is real-valued. By using the orthogonality properties of the Wigner D-functions (e.g. [37]) with $\Omega = (\alpha, \beta, \gamma)$

$$\int_{-1}^{1} d\cos \beta \int_{0}^{2\pi} d\alpha \int_{0}^{2\pi} d\gamma D_{m,n}^{l}(\Omega) \bar{D}_{p,q}^{j}(\Omega) = \frac{8\pi^2}{2j+1} \delta_{ji} \delta_{mp} \delta_{nq},$$

the MoM allows to extract the observables G_m^{K,l_ℓ} from the angular distribution. In particular one can test for the absence of all higher moments and therefore test very specifically the orthogonality does not hold in the generic case and different subset of angles, referred to as partial moments, is discussed in section 4.2. In the latter case method of (total) moments or simply MoM with results given in Sec. 4.1. Integrating over a subset of angles, referred to as partial moments, is discussed in section 4.2. In the latter case orthogonality does not hold in the generic case and different G_m^{K,l_ℓ} enter the same moment.

Elements of the MoM have previously been applied to $\Lambda_b \to \Lambda (\to (p, n)\pi) \ell_1 \ell_2$ [38] and more systematically to the other channels discussed in this paper, crucially including a study of how to account for detector-resolution acceptance effects, in [24]. Our study differs from the latter in that we start at the level of the HAs, and obtain the distribution (41) through a direct computation, whereas the other studies proceed backwards and directly expand the decay distribution in the orthogonal basis of associated Legendre polynomials. Our approach is therefore advantageous in that it provides additional insight, by clarifying the structure of the decay distribution (29) and what type of physics goes beyond it. This is an aspect we return to in Sec. 5.

4.1. Method of total Moments

In order to condense the notation slightly we define the scalar product

$$\langle f(\Omega)|g(\Omega)\rangle_{\theta_K, \theta_\ell, \phi} \equiv \frac{1}{8\pi} \int_{-1}^{1} d\cos \theta_K \int_{-1}^{1} d\cos \theta_\ell \int_{0}^{2\pi} d\phi \bar{f}(\Omega)g(\Omega),$$

normalised such that $\langle 1|1 \rangle = 1$. Using $\langle f(\Omega)|g(\Omega)\rangle_{\theta_K, \theta_\ell, \phi}$ we can thus extract all observables G_m^{K,l_ℓ} separately from each other, by taking moments\(^6\)

$$M_{m}^{K,l_\ell} \equiv \langle \Omega_{m,l_\ell}^{K,l_\ell}|I_{K^*}(q^2, \Omega_K, \Omega_\ell)\rangle_{\theta_K, \theta_\ell, \phi} = c_{m}^{K,l_\ell} G_{m}^{K,l_\ell},$$

where

$$c_{m}^{K,l_\ell} = \frac{1 + \delta_{m0}}{2(2l_K + 1)(2l_\ell + 1)}.$$

Using the equation above the terms in (29) are given in Tab. 2. Furthermore, the orthogonality

\(^6\)The moments M_{m}^{K,l_ℓ} and the quantities $S_{l_\ell, l_K, m}$ introduced in [24] are related as follows: $8\pi G_{m}^{0,0} S_{l_\ell, l_K, m} = G_{m}^{2,0,0} / c_{m}^{2,0,0}$.
\[
\begin{array}{cccccccccc}
M_{m,l}^{I_{K}^{t}\ell} & G_{0}^{0,0} & \frac{1}{5} G_{0}^{0,1} & \frac{1}{5} G_{0}^{0,2} & \frac{1}{15} G_{0}^{2,1} & \frac{1}{24} G_{0}^{2,2} & \frac{1}{20} G_{0}^{2,1} & \frac{1}{5} G_{1}^{2,2} & \frac{1}{5} G_{2}^{2,2}
\end{array}
\]

Table 2: Moments \(M_{m,l}^{I_{K}^{t}\ell} \) in terms of \(G_{m,l}^{I_{K}^{t}\ell} \) as defined by Eq. (44) with factor of proportionality \(c_{m,l}^{I_{K}^{t}\ell} \) evaluated with (45).

condition also implies that

\[
M_{m}^{j,j'} = 0, \quad \forall m \text{ and } j \geq 3 \text{ or } j' \geq 3, \quad M_{m}^{1,j'} = 0, \quad \forall j', m.
\]

Hence the higher and \(l_{K} = 1 \) moments vanish, providing a very specific test of the theoretical assumptions behind \(I_{K}^{(0)} \).

4.2. Partial Moments

The results given previously show how to extract the individual \(G_{m,l}^{I_{K}^{t}\ell} \). We propose the method of partial moments whereby one integrates only over a subset of angles. The distributions might be regarded as generalisations of uni- and double-angular distributions as these in turn can be viewed as partial moments with respect to unity. The method is effectively a hybrid between the likelihood fit and the total MoM. To this end we define the further scalar products

\[
\langle f(\Omega)|g(\Omega)\rangle_{\theta,\phi} = \frac{1}{4\pi} \int_{-1}^{1} d\cos \theta \int_{0}^{2\pi} d\phi \bar{f}(\Omega)g(\Omega),
\]

\[
\langle f(\Omega)|g(\Omega)\rangle_{\theta_{K}\theta_{l}} = \frac{1}{4} \int_{-1}^{1} d\cos \theta_{K} \int_{-1}^{1} d\cos \theta_{l} \bar{f}(\Omega)g(\Omega),
\]

again normalised such that \(\langle 1|1 \rangle = 1 \). The orthogonality relation (42) can then be rewritten as

\[
\langle D_{p,0}^{l_{K}}(\Omega_{l})|D_{m,0}^{j_{l}}(\Omega_{l})\rangle_{\theta_{l}\phi} = \frac{1}{2l + 1} \delta_{jl} \delta_{mp}.
\]

4.2.1. Integrating over \(\theta_{l}, \phi \): \(k_{m}^{l_{K}}(\theta_{K}) \)-moments

The partial moment over \(\theta_{l} \) and \(\phi \) is defined and given by

\[
k_{m}^{l_{K}}(\theta_{K}) \equiv \langle D_{m,0}^{l_{K}}(\Omega_{l})|I_{K^{*}}(q^{2},\Omega_{K},\Omega_{l})\rangle_{\theta_{l}\phi} = \frac{1}{2(2l_{K} + 1)} \sum_{l_{K}\geq 0} D_{m,0}^{l_{K}}(\Omega_{K}) G_{m,l}^{I_{K}^{t}\ell}
\]

Assuming the distribution (29) \(l_{K} = 0, 2 \) there are six non-vanishing moments

\[
k_{0}^{0}(\theta_{K}) = G_{0}^{0,0} + G_{0}^{2,0} D_{0,0}^{2,0}(\Omega_{K}) = G_{0}^{0,0} + \frac{1}{2} (3 \cos^{2} \theta_{K} - 1) G_{0}^{2,0},
\]

\[
k_{1}^{0}(\theta_{K}) = \frac{1}{3} G_{0}^{0,1} + \frac{1}{3} G_{0}^{0,2} D_{0,0}^{2,0}(\Omega_{K}) = \frac{1}{3} \left(G_{0}^{0,1} + \frac{1}{2} (3 \cos^{2} \theta_{K} - 1) G_{0}^{2,1} \right),
\]

\[
k_{0}^{2}(\theta_{K}) = \frac{1}{5} G_{0}^{0,2} + \frac{1}{5} G_{0}^{2,2} D_{0,0}^{2,0}(\Omega_{K}) = \frac{1}{5} \left(G_{0}^{0,2} + \frac{1}{2} (3 \cos^{2} \theta_{K} - 1) G_{0}^{2,2} \right),
\]

\[
k_{1}^{1}(\theta_{K}) = \frac{1}{6} G_{1}^{2,1} D_{1,0}^{2,0}(\Omega_{K}) = -\frac{1}{6} \sqrt{\frac{3}{8}} \sin 2\theta_{K} G_{1}^{2,1},
\]

\[
k_{1}^{1}(\theta_{K}) = \frac{1}{6} G_{1}^{2,1} D_{1,0}^{2,0}(\Omega_{K}) = -\frac{1}{6} \sqrt{\frac{3}{8}} \sin 2\theta_{K} G_{1}^{2,1},
\]
\[
\begin{align*}
 k_1^2(\theta_K) &= \frac{1}{10} G_1^2 D_{1,0}^2 (\Omega_K) = -\frac{1}{10} \sqrt{\frac{3}{8}} \sin 2\theta_K G_1^{2,2}, \\
 k_2^2(\theta_K) &= \frac{1}{10} G_2^2 D_{2,0}^2 (\Omega_K) = \frac{1}{10} \sqrt{\frac{3}{8}} \sin^2 2\theta_K G_2^{2,2},
\end{align*}
\]
where we used \(D_{0,0}^0 (\Omega_K) = 1 \). As was the case in the MoM, with respect to the distribution \(I_K^{(0)} \) higher partial moments vanish
\[
k_m^l(\theta_K) = 0 \quad \forall l \geq 3, \forall m .
\] (51)

4.2.2. Integrating over \(\theta_K, \phi \): \(p_m^l(\theta) \)-moments

The partial moment over \(\theta_K \) and \(\phi \) is defined in complete analogy with the previous partial moment (49) by,
\[
p_m^l(\theta) \equiv \langle D_m^{l,0} (\Omega_K) | I_K^{(0)} (q^2, \Omega_K^l, \Omega_K^r) \rangle_{\theta_K, \phi} = \frac{1 + \delta_{m0}}{2 (2l_K + 1)} \sum_{l \geq 0} D_m^l (\Omega_K) G_m^{l, l_K},
\] (52)
where we make use of the reparametrisation of angles given in (30). Again assuming the distribution (29) \((l = 0, 1, 2)\) there are four non-vanishing moments
\[
\begin{align*}
p_0^l(\theta) &= C_0^0 + C_0^1 D_{0,0}^1 (\Omega_K^l) + C_0^2 D_{0,0}^2 (\Omega_K^l) \\
&= C_0^0 + \cos \theta \theta^0 + \frac{1}{2} (3 \cos^2 \theta - 1) C_0^2, \\
p_0^l(\phi) &= \frac{1}{5} \left(G_0^2 + G_0^1 D_{0,0}^1 (\Omega_K^l) + G_0^2 D_{0,0}^2 (\Omega_K^l) \right) \\
&= \frac{1}{5} \left(G_0^2 + \cos \theta \theta^2 + \frac{1}{2} (3 \cos^2 \theta - 1) G_0^2 \right), \\
p_2^l(\theta) &= \frac{1}{10} \left(G_1^2 D_{1,0}^1 (\Omega_K^l) + G_2^1 D_{1,0}^2 (\Omega_K^l) \right) \\
&= -\frac{1}{10} \sqrt{2} \left(\sin \theta \theta^2 + \sqrt{\frac{3}{4}} \sin \theta \theta^2 \right), \\
p_2^l(\phi) &= \frac{1}{10} \left(G_1^2 D_{2,0}^2 (\Omega_K^l) \right) = \frac{1}{10} \sqrt{\frac{3}{8}} \sin^2 \theta \theta^2,
\end{align*}
\] (53)
where we used \(D_{0,0}^0 (\Omega_K^l) = 1 \). With respect to the distribution \(I_K^{(0)} \) higher partial moments vanish
\[
p_m^l(\theta) = 0 , \quad \forall l \geq 3, \forall m \text{ and } l_K = 1, \forall m .
\] (54)

4.2.3. Integrating over \(\theta_K, \theta_\ell \): \(p_m^{l_K, l_\ell}(\phi) \)-moments

Finally, we can consider projecting on to moments of the form \(D_m^{l,0} (\Omega_K) D_{m',0}^{l',0} (\Omega_\ell) \) with respect to \(\theta_K, \theta_\ell \). In this case the full orthogonality relation (42) no longer holds, but due to (28) there exist selection rules as to which of the \(G_m^{l_K, l_\ell} \) can contribute to the partial moments
\[
p_m^{l_K, l_\ell}(\phi) \equiv \langle D_m^{l,0} (0, \theta_K, 0) D_{m',0}^{l',0} (0, \theta_\ell, 0) | I_K^{(0)} (q^2, \Omega_K, \Omega_\ell) \rangle_{\theta_K, \theta_\ell}.
\] (55)
Assuming $I_L^{(0)}$, a few non-vanishing moments are
\[

p_{0,0}^{0}(\phi) = \frac{1}{6} \left(6G_0^{0,0} + \text{Re}[e^{-2i\phi}G_2^{2,2}] \right), \quad p_{0,0}^{0.1}(\phi) = \frac{1}{3} G_0^{0.1}, \quad p_{0,0}^{0.2}(\phi) = \frac{1}{30} \left(6G_0^{0,2} - \text{Re}[e^{-2i\phi}G_2^{2,2}] \right),
\]
\[
p_{0,1}^{2.1}(\phi) = \frac{1}{15} G_1^{2.1}, \quad p_{1,0}^{2.1}(\phi) = \frac{1}{15} \text{Re}[e^{-i\phi}G_1^{2.1}], \quad p_{1,0}^{2.2}(\phi) = \frac{1}{25} \text{Re}[e^{-i\phi}G_1^{2.2}].
\]

A consequence of the fact that the full orthogonality of the Wigner functions has been lost is that higher moments contain lower G-functions. As an interesting example we quote
\[
p_{1,0}^{4.2}(\phi) = \frac{1}{9\sqrt{10}} \left(G_0^{0,1} + G_0^{2,1} \right) = \frac{4}{9\sqrt{10}} J_{6c}.
\]

This quantity is of some interest since $J_{6c} = 0$ in the SM, as it involves scalar and tensor operators at the level of the dimension-six effective Hamiltonian (13).

5. Including higher Partial Waves

The compact form of the angular distribution $I_L^{(0)}$ (29) is a consequence of the LFA and the restriction to the P_K-wave in the $(K\pi)$-channel. In this section we elaborate on the consequences of going beyond these approximations. The double partial wave expansion is outlined in Sec. 5.1 followed by a qualitative discussion of the effect of higher spin operators and the inclusion of electroweak effects in sections 5.2 and 5.3 respectively. In Sec. 5.4 we emphasise how testing for higher moments can be used to diagnose the size of QED corrections. Throughout this section we change the notation from $\bar{\ell}_1\ell_2 \to \ell^+\ell^-$ for the sake of familiarity and simplicity.

5.1. Double Partial Wave Expansion

In order to discuss the origin of generic terms in the full distribution (41), it is advantageous to return to the amplitude level. Somewhat symbolically we may rewrite the amplitude (20), omitting the sum over J_γ, as
\[
A(B \rightarrow KJ(\lambda)(\rightarrow K\pi)\ell^+(\lambda_1)\ell^-(\lambda_2)) = A_{\lambda_1\lambda_2}^{I_{\ell},J_K} D_{\lambda,0}^{I_K} (\Omega_K) \hat{D}_{\lambda,0}^{I_{\ell}} (\Omega_\ell)
\]
with $\lambda_\ell = \lambda_1 - \lambda_2$ as defined in (6). The two opening angles θ_K and θ_ℓ allow for two separate partial wave expansions. The partial waves in the θ_K- and θ_ℓ-angles are denoted by S_K, P_K, \ldots and S_ℓ, P_ℓ, \ldots respectively.

Throughout this work we mostly restricted ourselves to $K_J = K^*$ thereby imposing $J_K = 1$ i.e. a P_K-wave. The signal of K^* is part of the $(K\pi)$ P_K-wave. The importance of considering the S_K-wave interference through $K_0^*(800)$ (also known as $\kappa(800)$) was emphasised a few years ago in [39]. The separation of the various partial waves in the $(K\pi)$-channel is a problem that can be solved experimentally e.g. [40]. We refer the reader to Ref. [19] for a generic study of the lowest partial waves at high q^2.

15
Figure 3: Examples of virtual QED corrections to $B \to K\ell^+\ell^-$, where either a photon is exchanged between the decaying b-quark and a final state lepton, with effective operators $\mathcal{O}_{9,10}$ (left) or \mathcal{O}_7 (middle), or a second photon is emitted by the charm loop (right). Other topologies relevant for higher moments include the interaction of the leptons with the spectator as well as the B- and $K^{(*)}$-meson.

The second partial wave expansion originates from the lepton angle θ_ℓ which will be the main focus hereafter. By restricting ourselves to the dimension-six effective Hamiltonian Eq. (13) as well as the LFA only S_ℓ- and P_ℓ-waves were allowed (cf. Eq. (23)), bounding $t_\ell \leq 2$ in (41). This pattern is broken by the inclusion of higher spin operators and non-factorisable corrections between the lepton pair and the quarks. It is therefore important to be able to distinguish these two effects from each other.

5.2. Qualitative discussion of Effects of higher Spin Operators in H^{eff}

Operators of higher dimension are suppressed and neglected in the standard analysis. Operators of higher spin in the lepton and quark parts are necessarily of higher dimension and bring in new features. An operator of (lepton- and quark-pair) spin j is given by

$$O^{(j)} = \bar{b} \Gamma^{(j)}_{\mu_1...\mu_j} s \bar{\ell} \Gamma^{(j)}_{\mu_1...\mu_j} \ell$$

with $\Gamma^{(j)}_{\mu_1...\mu_j} = \gamma_\mu_1 D^+_{\mu_2} \ldots D^+_{\mu_j}$, $D^+ = \overrightarrow{D} - \overleftarrow{D}$, with \overrightarrow{D} the directional covariant derivative and curly brackets denoting symmetrisation in the Lorentz indices. In passing let us note that in this notation $O^{(1)} = O_V \equiv O_9$ with O_V defined in (13). The operator (59) is of dimension $d_O^{(j)} = 4 + 2j$ and the corresponding Wilson coefficients are suppressed by powers of m_W. Neglecting electroweak corrections and including the dimensional estimate of the matrix elements the leading relative contributions are given by $(m_b/m_W)^{2(j-1)}$ where $(m_b/m_W) \sim 6 \cdot 10^{-3}$.

Operators of the form (59) present new opportunities to test physics beyond the SM provided that their contribution is larger than that of the breaking of lepton factorisation through electroweak corrections. The operator $O^{(2)}$, for example, gives rise to non-vanishing moments of the type $G_2^{2,4}$ in $B \to K^*(\to K\pi)\ell^+\ell^-$ and $G_4^{4,4}$ in $B \to K_2(\to K\pi)\ell^+\ell^-$, [42] both of which are absent in the LFA.
5.3. Qualitative discussion of QED Corrections

The $B \to K\ell^+\ell^-$ process allows to discuss the consequences of going beyond the LFA in a simplified setup, and is of particular relevance because of a recent LHCb measurement [25].

In the LFA (39) the single opening angle θ_ℓ of the decay is restricted to $l_\ell \leq 2$ moments in $I^{(0)}_K$ (41). More precisely, $l_\ell \leq 2j$ with $O^{(j)}$ as in (59) (see also the discussion following Eq. (29)). From the viewpoint of a generic $1 \to 3$ decay there is no reason for this restriction, as it is only the sum of the total (orbital and spin) angular momentum that is conserved. However, in the LFA the $B \to K[\ell^+\ell^-]$ decay mimics a $1 \to 2$ process, imposing this constraint. This pattern is broken by exchanges of photons and W- and Z-bosons, as depicted in Fig. 3 for a few operators relevant to the decay. The W and Z are too heavy to impact on the matrix elements, but their effect is included in the Wilson coefficient (see for instance Ref. [43] for the electroweak corrections to $O_A \equiv O_{10} \sim b\gamma_\mu s_\ell \bar{\ell} \gamma^\mu \gamma_5 \ell$).

As stated above QED corrections turn the decay into a true $1 \to 3$ process, and this necessitates a reassessment of the kinematics. By crossing the process can be written as a $2 \to 2$ process

$$B(p_B) + \ell^-(-\ell_1) \to K(p) + \ell^-(\ell_2),$$

with Mandelstam variables $s = (p + \ell_2)^2$, $t = (\ell_1 + \ell_2)^2 = q^2$ and $u = (p + \ell_1)^2$,

$$s[u] = \frac{1}{2} \left[(m_B^2 + m_K^2 + 2m_\ell^2 - q^2) \pm \beta_\ell \sqrt{\lambda (m_B^2, m_K^2, q^2) \cos \theta_\ell} \right],$$

obeying the Mandelstam constraint $s + t + u = m_B^2 + m_K^2 + 2m_\ell^2$. Crucially, the kinematic variables s and u become explicit functions of the angle θ_ℓ. In a generic computation the latter enter (poly)logarithms, which when expanded give contributions to any order l_ℓ in the Legendre polynomials. The latter statement applies at the amplitude level and therefore also to the decay distribution (40)

$$\frac{d^2 \Gamma(B \to K\ell^+\ell^-)}{dq^2 \, d\cos \theta_\ell} = \sum_{l_\ell \geq 0} G^{(l_\ell)} P_{l_\ell}(\cos \theta_\ell).$$

The $B \to K\ell\ell$ moments are simply given by

$$M^{(l_\ell)}_{\ell\ell} = \int_{-1}^1 d \cos \theta_\ell P_{l_\ell}(\cos \theta_\ell) \frac{d^2 \Gamma(B \to K\ell^+\ell^-)}{dq^2 \, d\cos \theta_\ell} = \frac{1}{2l_\ell + 1} G^{(l_\ell)}_{\ell\ell}$$

where we have introduced a lepton-subscript for further reference. In the SM the effects are dependent on the lepton mass, for example through logarithms of the form $\ln(m_\ell/m_b)$ times the fine structure constant. There are new qualitative features of which we would like to highlight the following two:

- Both vector and axial couplings $O_{V(A)} = O_{9(10)}$ (13) contribute to any moment $l_\ell \geq 0$. In the LFA l_ℓ-odd terms (forward-backward asymmetric) arise from broken parity through interference of O_V and O_A (13). The physical interpretation is that there is a preferred direction for charged leptons in the presence of the charged quarks of the decay. In the

\footnote{By the latter we mean that no electroweak gauge bosons are exchanged between the lepton pair and other particles when calculating the matrix element. This is the same approximation that is relevant for the endpoint relations [18,41].}
where we have implicitly used μ parametrically as Wilson coefficients from the initial matching procedure and the mixing due to QED behaves tower of the higher spin operators O.

In the SM one therefore expects QED effects to dominate over those due to higher spin operators, except for j moments due to QED. In the SM theory where QED corrections arising from modes from m_W to m_b can be absorbed into a tower of the higher spin operators $O^{(j)}$ (59). The leading contribution to the corresponding Wilson coefficients from the initial matching procedure and the mixing due to QED behaves parametrically as

$$C^{(j)} = \frac{O^{(1)}}{(m_W)^2} + \alpha f_j \left(\frac{m_W^2}{m_b^2} \right)^{(j-1)} \frac{O^{(1)}}{(m_W)^2}, \quad \text{for } j \geq 1,$$

(64)

where we have implicitly used $\mu_F = m_b$ in $\langle H^{\text{eff}} \rangle \sim C^{(j)}(\mu_F) \langle O^{(j)}(\mu_F) \rangle$. Above α is the fine structure constant and f_j parametrizes the comparatively moderate fall-off of the higher moments due to QED. In the SM one therefore expects QED effects to dominate over those due to higher spin operators, except for $j = 2$ where they could be comparable [42]. At the level of matrix elements this hierarchy could even shift further towards QED as a result of $\ln(m_{\ell}/m_b)$-effects.

The discussion of $B \rightarrow K^* (\rightarrow K\pi)\ell\bar{\ell}$ is similar, but involves the kinematics of a $1 \rightarrow 4$ decay. The decay distribution becomes a generic function of all three angles θ_ℓ, θ_K and ϕ. It should be added that the selection of the $K^* \rightarrow K\pi$ signal (P_{K^*}-wave) restricts $l_K = 0, 2$.

8With conventions for the Passarino-Veltman function $C_0(p_1^2, p_2^2, p_3^2, m_1^2, m_2^2, m_3^2)$ such that the two-particle cuts begin at $p_1^2 \geq (m_1 + m_2)^2$, $p_2^2 \geq (m_2 + m_3)^2$ and $p_3^2 \geq (m_3 + m_1)^2$.

9We have refined this analysis by taking into account that the b and s-quark only carry a fraction of the momentum of the corresponding mesons. This amounts to the substitution $p_{\ell B} \rightarrow (p_{\ell B} - xp)^2$ and $s[u] \rightarrow (s[l] + xp)^2$ with x being the momentum fraction carried by the s-quark. For the vertex diagrams one expects the Feynman mechanism (i.e. $x \approx 0$) to dominate. This changes when spectator corrections are taken into account.
5.4. On the Importance of testing for higher Moments for $B \to K^{(*)}\ell^+\ell^-$

We have stressed throughout the text that it is of importance to probe for moments that are vanishing in the decay distributions $I^{(0)}_K$, (29) $B \to K^*(\to K\pi)\ell\ell$ and $I^{(0)}_K$ (39) $B \to K\ell\ell$ respectively. In this section we highlight specific cases of current experimental anomalies in exclusive decay modes where their nature might be clarified using an analysis of (higher) moments.

5.4.1. Diagnosing QED background to R_K

In the SM the decays $B^+ \to K^+e^+e^-$ and $B^+ \to K^+\mu^+\mu^-$ are identical up to phase-space lepton mass effects and electroweak corrections. The observable

$$R_K\big|_{q^2_{\min},q^2_{\max}} \equiv \frac{\mathcal{B}(B^+ \to K^+\mu^+\mu^-)}{\mathcal{B}(B^+ \to K^+e^+e^-)} \big|_{[q^2_{\min},q^2_{\max}]}$$

has been put forward in Ref. [44] as an interesting test of lepton flavour universality (LFU). Above q^2_{\min}/q^2_{\max} stands for the bin boundaries. Neglecting electroweak corrections the SM prediction is $R_K\big|_{[1,6]} GeV^2 \simeq 1.0003(1)$ [45], which is at 2.6σ-tension with the LHCb measurement at 3fb$^{-1}$ [25]

$$R_K = 0.745^{+0.099}_{-0.074}(\text{stat}) \pm 0.036(\text{syst}) .$$

Previous measurements [46, 47], with much larger uncertainties, were found to be consistent with the SM as well as (66). This led to investigations of physics beyond the SM with $C_{\gamma\gamma}^\ell \neq C_{\mu\mu}^\ell$ amongst other variants for which we quote a few recent works [48–55] as well as the general review [56] for further references.

Let us summarise the aspects of QED corrections which are of relevance for the discussion below: i) they break lepton factorisation and therefore give rise to higher moments, and ii) they depend on the lepton mass, for example through logarithmic terms of $\ln(m_\ell/m_b)$. In view of the lack of a full QED computation\(^{10}\) we suggest diagnosing the size of QED corrections, as well as their lepton dependence, by experimentally assessing higher moments.\(^{11}\) The latter is directly relevant for R_K. Let us be slightly more concrete and define the normalised angular functions as follows $\tilde{G}^{(l)}_{\ell\ell} \equiv G^{(l)}_{\ell\ell}/(2G^{(0)}_{\ell\ell})$ (62) (in this convention $2G^{(0)}_{\ell\ell} = d\Gamma(B \to K\ell\ell)/dq^2$, $\dot{G}^{(1)}_{\ell\ell} = A_{FB}$ and $\dot{G}^{(2)}_{\ell\ell} = (F_H - 1)/2$ in the notation of [35]). We would like to stress the following points:

- **How to distinguish QED corrections from higher dimensional operators:** both contributions give rise to higher moments but crucially the QED corrections dominate for moments of increasing l_ℓ, cf. the discussion at the end of Sec. 5.3 and specifically Eq. (64).

\(^{10}\)A partial result, photon emission from initial and final state, was reported in [57].

\(^{11}\)Collinear photon emission in the inclusive case was studied recently in [58]. The additional photon of course leads to terms which go beyond the $I^{(0)}_K$ angular distribution. Note, in view of the presence of these terms through virtual corrections they also have to present in real emission by virtue of the Bloch-Nordsieck QED infrared cancellation theorem [59]. The authors [58] find within their approximation that the third and fourth moment are two orders of magnitude smaller than the leading contributions. This is in the expected parametric range but one cannot draw precise conclusions on the size of this effect for the exclusive channels discussed in this paper.
A J_{γ}-wave at the amplitude level contributes to a $l_\ell = J_{\gamma} + 1$ moment through interference with the SM P_ℓ-wave. We conclude that QED and higher spin operators could be comparable for $\hat{G}_{}^{(3)}_{\ell\ell}$ but for $\hat{G}_{}^{(l_e \geq 3)}_{ee}$ one would expect the former to dominate.\footnote{Another criterion could be that corrections from higher spin operators are uniform in the lepton mass provided that lepton flavour universality is unbroken. This is though delicate since the measurement of R_K questions this aspect.}

- Lepton-flavour dependence of QED corrections: differences between $\hat{G}_{}^{(l_e \geq 3)}_{\ell\mu}$ and $\hat{G}_{}^{(l_e \geq 3)}_{ee}$ in the range above $q^2 > 1$ GeV2 indicate the importance of the flavour dependence. This gives an indication on how much the branching fractions (zeroth moments) and therefore R_K is affected by QED through lepton mass effects. Note that due to $\ln(m_\ell/m_\nu)$-effects it is conceivable that $\hat{G}_{}^{(l_e \geq 3)}_{\ell\mu}$ is smaller, say $O(1\%)$, but that $\hat{G}_{}^{(l_e \geq 3)}_{ee}$ is larger. Note for example that $\hat{G}_{}^{(1)}_{\ell\mu} = A_{FB}$ is consistent with the SM prediction excluding QED, which is $O(m_\mu)$, within errors in the few percent range \cite{60}.

5.4.2. Combinatorial background in $B \to K^* \mu\mu$ below the narrow charmonium resonance region

A characteristic feature of $B \to K^{(*)}\ell^+\ell^-$ transitions is the large contribution to the branching fraction through the intermediate narrow charmonium states J/Ψ and $\Psi(2S)$. For example $\mathcal{B}(B \to KJ/\Psi)\mathcal{B}(J/\Psi \to \mu^+\mu^-) \simeq (8 \cdot 10^{-4})(6 \cdot 10^{-2}) \simeq 5 \cdot 10^{-5}$ is three orders of magnitude larger than the measured differential branching fraction, $d\mathcal{B}(B \to K^*\mu^+\mu^-)/dq^2 \simeq 2 \cdot 10^{-8}/$ GeV2 \cite{61}, well below the narrow charmonium resonances region. It is therefore legitimate to be concerned with possible combinatorial backgrounds in this region.

Assuming that such backgrounds are relevant this raises the question as to how they can be distinguished from the signal event. In the case where they can be absorbed into the background fit-function they would not impact on the analysis. Whether or not this is the case is a non-trivial question. Pragmatically, however, background events can be expected to perturb the hierarchy of the moments as compared to the true signal event. One would expect the background events to fall off only slowly for higher moments in the lepton partial wave.\footnote{Similar things can be said about the hadronic partial wave, but as the detection of the P_ℓ-wave is part of the signal selection the presence of such higher waves would have less influence. However, the remaining background might impact on the S_ℓ-wave, which does matter since the S_ℓ-wave enters the analysis.}

Hence the size of these effects can be diagnosed through the measurement of higher moments as a function of q^2, independent of model assumptions. By the latter we mean that higher moments peaking below the charmonium resonances will be indicative of the type of combinatorial background mentioned above.

A possible example of such backgrounds is the process $B \to K\mu^+\mu^-\gamma$ where the photon is not detected but energetic enough to cause a significant downward shift in $q^2 = (\ell_1 + \ell_2)^2$. Such an event would be rejected as a $B \to K\mu^+\mu^-$ signal because the reconstructed B-mass $m_{K\mu\mu}$ would fall outside the signal window (i.e. $m_{K\mu\mu} < m_B - \Delta$ and $\Delta \simeq O(100$ MeV)). If additionally a π-meson from the underlying event is detected, the event could conspire to enter the signal window of $B \to K^*(\to K\pi)\mu^+\mu^-$ (i.e. $m_{K\pi\mu\mu} \simeq m_B$ and $m_{K\mu} \simeq m_{K^*}$). It is therefore conceivable that the small chance of the events described above is overcome by the enhancement by three orders of magnitude of the J/Ψ transition. If such events are present and not rejected then this leads to a bias in $B \to K^*(\to K\pi)\mu^+\mu^-$ transitions below the narrow...
charmonium resonances. More precisely, denoting the momentum of the undetected photon by r, the shift in q^2 is as follows

$$q^2 \simeq m^2_{J/\Psi} = (\ell_1 + \ell_2 + r)^2 \rightarrow q^2_{\text{signal}} \equiv (\ell_1 + \ell_2)^2 < m^2_{J/\Psi}.$$

This is particularly relevant as some of the anomalies from the LHCb measurements, in particular the angular observable P_5', are most pronounced in bins just below the J/Ψ-resonance [26,27]. To what extent such operators correspond to new physics in $O_9 \equiv O_V$ [62,63] or effects from charm resonances [64] is a difficult question since they contribute to the same helicity amplitude. They can be distinguished from each other by analysing the q^2-spectrum of the observables and by the determination of the strong phases which can originate from the charm resonances [64]. This could be through the determination of the complex valued residues of the resonance poles [64], or simply the strong phase in the region below the q^2-resonance through $\text{Im}[G^{2,1}_{1,1}] \sim P'_6$, which corresponds to the imaginary part of $\text{Re}[G^{2,1}_{1,1}] \sim P'_3$ (34).

6. Conclusions

In this work we have generalised the standard helicity formalism to effective field theories of the $b \to s\ell\ell$-type. The framework applies to any semi-leptonic and radiative decay. The formalism was used to derive the angular distributions $I^{(0)}_{K^*}$ (29) and $I^{(0)}_{K}$ (40) for non-equal lepton masses with the full dimension-six effective Hamiltonian, including in particular scalar and tensor operators. Explicit results for $B \to K^*\ell_1\ell_2$ and for $B \to K\ell_1\ell_2$ can be found in appendices C and D respectively. Comments on discrepancies with the literature in tensor interactions are reported in App. C.1.2.

The approach clarifies how the lepton factorisation approximation determines the specific form of the angular distributions $I^{(0)}_{K^*}$ and $I^{(0)}_{K}$, and how these distributions are extended by the inclusion of virtual and real QED corrections, as well as higher-spin operators in the effective Hamiltonian. Higher-dimensional spin operators provide new opportunities to search for physics beyond the SM. We have argued that, within the SM, QED effects and higher-spin operators can be distinguished from each other by their differing fall-off behaviour in increasingly higher moments in the θ_ℓ-angle.14

Assessing higher moments can shed light on current anomalies with respect to the SM. We have argued (cf. Sec. 5.4.1) that higher moments in $B \to K\ell^+\ell^-$ ($\ell = e, \mu$) are a window into QED corrections and therefore of importance with regard to the R_K measurement [25]. In view of tensions of angular prediction in $B \to K^*\mu^+\mu^-$ with experiment [26,27], the higher moments can be of help in assessing their origin, such as the possible leakage of J/Ψ events into the lower nearby q^2-bins (cf. Sec. 5.4.2). As another example we mention the $R(D^{(*)}) = \mathcal{B}(B \to D^{(*)}\tau\nu)/\mathcal{B}(B \to D^{(*)}\mu\nu)$ ratio measurement [65–67], suggestive of some tension with the SM. A higher moment analysis could again be useful in assessing the impact of QED, lepton mass or cross channel backgrounds on these results.

To measure and bound higher moments is relevant as their contributions can bias likelihood fits. We therefore encourage the investigation of higher moments in several experimental channels from the various perspectives discussed above.

14 In addition higher-spin operators can be distinguished from QED corrections by universality in the lepton flavour. However, it should be kept in mind that lepton-universality is questioned by the R_K measurement.
Acknowledgements

We are grateful to Simon Badger, Marcin Chrzaszcz, Peter Clarke, Martin Gorbahn, Enrico Lunghi, Matthias Neubert, Kostas Petridis, Alexey Petrov, Maurizio Piai, Steve Playfer and in particular to Greig Cowan for many useful discussions. JG acknowledges the support of an STFC studentship (grant reference ST/K501980/1). MH acknowledges support from the Doktoratskolleg “Hadrons in Vacuum, Nuclei and Stars” of the Austrian Science Fund, FWF DK W1203-N16.

Note added While this paper was in its final phase a paper using the helicity formalism for $B \rightarrow K^{*}\ell\ell$ appeared [68]. The paper uses the standard Jacob-Wick formalism and therefore includes HAs of definite spin. This is an approximation that holds up to lepton mass corrections in the SM and does not allow the inclusion of scalar operators for example.

A. Results relevant for all decay modes

A.1. Decomposition of $SO(3,1)$ into $SO(3)$ up to spin 2

The aim of this appendix is to give some more detail about the decomposition (16) and in particular extend it to the two-index case, which includes the discussion of spin 2,1,0.

In Sec. 2.2 it was shown that insertion of the completeness relation (16) corresponds to the decomposition, or branching rule,

$$(1/2, 1/2)_{SO(3,1)} \bigg|_{SO(3)} \rightarrow (1 + 3)_{SO(3)} ,$$

(A.1)

where $(1/2, 1/2)$ is the irreducible vector Lorentz representation. We remind the reader that the irreducible Lorentz representations, denoted by (j_1, j_2), are characterised by the eigenvalues of the two Casimir operators of $SO(3,1)$. Inserting the completeness relation twice therefore corresponds to taking the tensor product $(1/2, 1/2) \otimes (1/2, 1/2)$ which decomposes as

$$((1/2, 1/2) \otimes (1/2, 1/2))_{SO(3,1)} = [[[1,1]] \oplus [(1,0) \oplus (0,1)] \oplus (0,0)]_{SO(3,1)} \bigg|_{SO(3)} \rightarrow

([1 \cdot 5 \oplus 1 \cdot 3 \oplus 1 \cdot 1] \oplus [2 \cdot 3] \oplus 1 \cdot 1)_{SO(3)} = (1 \cdot 5 \oplus 3 \cdot 3 \oplus 2 \cdot 1)_{SO(3)} .$$

(A.2)

The double completeness relation

$$g_{\alpha \beta \gamma \delta} = \delta_{\alpha \beta \gamma \delta} + \delta^{t}_{\alpha \beta \gamma \delta} + \delta^{tt}_{\alpha \beta \gamma \delta}$$

(A.3)

can be decomposed

$$\delta_{\alpha \beta \gamma \delta} = \sum_{j=0}^{2} \sum_{\lambda=-j}^{j} \omega_{\alpha \gamma}^{j,\lambda} \omega_{\beta \delta}^{j,\lambda} , \quad \delta^{t}_{\alpha \beta \gamma \delta} = - \sum_{\lambda=-1}^{1} \omega_{\alpha \gamma}^{t,\lambda} \omega_{\beta \delta}^{t,\lambda} , \quad \delta^{tt}_{\alpha \beta \gamma \delta} = \omega_{\alpha \gamma}^{tt} \omega_{\beta \delta}^{tt} ,$$

(A.4)

into parts containing zero, one and two timelike polarisation vectors

$$\omega_{\alpha \gamma}^{t,\lambda} = \frac{1}{\sqrt{2}} (\omega_{\alpha}(t) \omega_{\gamma}(\lambda) - \omega_{\gamma}(t) \omega_{\alpha}(\lambda)) , \quad \omega_{\alpha \gamma}^{tt} = \omega_{\alpha}(t) \omega_{\gamma}(t) ,$$

$$\omega_{\alpha \gamma}^{j,\lambda} = \sum_{\lambda_1, \lambda_2=-1}^{1} C_{\lambda_1 \lambda_2}^{j,11} \omega_{\alpha}(\lambda_1) \omega_{\gamma}(\lambda_2) ,$$

(A.5)
with \(\lambda = \lambda_1 + \lambda_2 \) in the first term and \(\omega_\alpha(\lambda) \) as given in Eq. (17). A few explanations seem in order. The minus sign in front of \(\delta_{\alpha\beta\gamma\delta} \) in (A.4) is due to there being an odd number of timelike polarisation vectors. The first, second and third term in (A.3) correspond respectively to the \((1, 1)-\), \([(1, 0) \oplus (0, 1)]-\) and \((0, 0)-\)terms in (A.2). It is convenient to rewrite the double completeness relation (A.3) in a form that makes the decomposition into the different spins \(j \) explicit

\[
g_{\alpha\beta} g_{\gamma\delta} = \sum_{j=0}^{2j} \sum_{\lambda=\pm j} \epsilon^{j,\lambda}_{\alpha\gamma} \cdot \epsilon^{j,\lambda}_{\beta\delta} . \tag{A.6}
\]

Above the scalar product “\(\cdot \)” stands for

\[
\epsilon^{j,\lambda}_{\alpha\gamma} \cdot \epsilon^{j,\lambda'}_{\beta\delta} = \delta_{j1} \left[\omega^{0,0}_{\alpha\gamma} \omega^{0,0}_{\beta\delta} + \omega^{tt}_{\alpha\gamma} \omega^{tt}_{\beta\delta} \right] + \delta_{j1} \left[\omega^{1,\lambda}_{\alpha\gamma} \omega^{1,\lambda'}_{\beta\delta} - \omega^{1,\lambda}_{\alpha\gamma} \omega^{1,\lambda'}_{\beta\delta} \right] + \delta_{j2} \left[\omega^{2,\lambda}_{\alpha\gamma} \omega^{2,\lambda'}_{\beta\delta} \right] . \tag{A.7}
\]

The single completeness relation (16) in the analogous notation of (A.6) reads

\[
g_{\alpha\beta} = \sum_{j=0}^{2j} \sum_{\lambda=\pm j} \epsilon^{j,\lambda}_{\alpha} \epsilon^{j,\lambda}_{\beta} , \tag{A.8}
\]

with \(\epsilon^{j,\lambda}_{\alpha} = \delta_{j1} \omega_\alpha(\lambda) + \delta_{j0} \omega_\alpha(t) \).

A.2. Additional Remarks on Effective Hamiltonian

Here we collect a few additional remarks to the effective \(b \rightarrow s\ell\ell \) Hamiltonian quoted in Eqs.(13,14). Contributions proportional to \(V_{ub} V_{us}^* \) have been neglected. The chromoelectric and chromomagnetic operators \(O_7 \) and \(O_8 \), along with the contributions of the four-quark operators \(O_1, \ldots, O_6 \), can be absorbed into \(O_V \) through defining an effective Wilson coefficient \(C_{V}^{\text{eff}} = C_9 \). We can rewrite \(O_T^{(i)} = 1/2(O_T \pm O_T^5) \), with the latter defined as

\[
O_T = \bar{b}\sigma_{\mu\nu} s\ell\sigma_{\mu\nu} \ell \, , \quad O_T^5 = \frac{i}{2} \epsilon^{\alpha\beta\mu\nu} \bar{b}\sigma_{\alpha\beta} s\ell\sigma_{\mu\nu} \ell , \tag{A.9}
\]

and the relation between the Wilson coefficients is therefore

\[
C_T = \frac{1}{2}(C_T + C_T^5) \, , \quad C_T^5 = \frac{1}{2}(C_T + C_T^5) , \tag{A.10}
\]

in the sense that \(C_T O_T + C_T^5 O_T^5 = C_T O_T + C_T^5 O_T^5 \).

A.3. Definitions and Results of Leptonic Helicity Amplitudes

The calculation of the Leptonic Helicity amplitudes is an important part of the generalised helicity formalism described in this paper, and the method for their calculation is outlined in [3]. In the Dirac basis of the Clifford algebra, with \(\sigma^i \) as the usual \(2 \times 2 \) Pauli matrices,

\[
\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \, , \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} \, , \quad \gamma_5 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \tag{A.11}
\]

the particle \(u \) and anti-particle \(\nu \) spinor are given by

\[
u \left(\frac{1}{2} \right) = \begin{pmatrix} \sqrt{E_1 + m_{\ell_1}}, 0, \sqrt{E_1 - m_{\ell_1}}, 0 \end{pmatrix}^T = (\beta_1^+, 0, \beta_1^-, 0)^T ,
\]

\[
u \left(\frac{1}{2} \right) = \begin{pmatrix} \sqrt{E_1 + m_{\ell_1}}, 0, \sqrt{E_1 - m_{\ell_1}}, 0 \end{pmatrix}^T = (\beta_1^+, 0, \beta_1^-, 0)^T ,
\]

\[
\begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} \, , \quad \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} \, , \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \tag{A.11}
\]

the particle \(u \) and anti-particle \(\nu \) spinor are given by

\[
u \left(\frac{1}{2} \right) = \begin{pmatrix} \sqrt{E_1 + m_{\ell_1}}, 0, \sqrt{E_1 - m_{\ell_1}}, 0 \end{pmatrix}^T = (\beta_1^+, 0, \beta_1^-, 0)^T ,
\]
with implicit definition of $\beta^\pm \equiv \sqrt{E_i \pm m_{\ell_i}}$. The spinors are normalised as $\bar{u}(\lambda_1)u(\lambda_2) = \delta_{\lambda_1\lambda_2}2m_{\ell_1}$ and $\bar{v}(\lambda_1)v(\lambda_2) = -\delta_{\lambda_1\lambda_2}2m_{\ell_2}$. The leptonic HAs (19) contracted with polarisation vectors give rise to the HAs $L_{\lambda_1\lambda_2}$

\[
L_{X,\lambda_1\lambda_2}^X \equiv \langle \bar{\ell}_1(\lambda_1)\ell_2(\lambda_2)|\ell T X \ell|0 \rangle = \bar{u}(\lambda_2)\Gamma^X v(\lambda_1),
\]

(A.12)

(where $\ell_2 = e^-$ for example) and the $\Gamma^X|_{\lambda_X \rightarrow \lambda_1 - \lambda_2}$ are as defined in Tab. 3.1, with the replacement $\omega \rightarrow \bar{\omega}$. Using all the equations above the evaluation of the lepton HAs is then straightforward and the results are presented below, for lepton masses $m_{\ell_1} \neq m_{\ell_2}$ in the first set of matrices and $m_{\ell_1} = m_{\ell_2} \equiv m_{\ell}$ in the second set. The expressions for $m_{\ell_1} \neq m_{\ell_2}$ can be applied to studies of lepton flavour-violating processes in all the decay modes considered in this paper within the lepton factorisation approximation, and are also applicable to decays involving an $l\bar{\nu}$ in the final state e.g. $B \rightarrow D l\bar{\nu}$. The first row (column) corresponds to $\lambda_1(\lambda_2) = -\frac{1}{2}$ and the second row (column) corresponds to $\lambda_1(\lambda_2) = +\frac{1}{2}$.

\[
L_{\lambda_1\lambda_2}^L = \begin{pmatrix}
-\frac{(\beta^+_1 - \beta^-_1)(\beta^-_2 + \beta^+_2)}{2} & \frac{(\beta^+_1 + \beta^-_1)(\beta^-_2 + \beta^+_2)}{2} \\
\frac{(\beta^-_1 + \beta^+_1)(\beta^-_2 + \beta^+_2)}{2} & -\frac{(\beta^-_1 - \beta^+_1)(\beta^-_2 + \beta^+_2)}{2}
\end{pmatrix} \rightarrow \begin{pmatrix}
m_{\ell} & \sqrt{q^2} (1 + \beta_\ell) \\
\sqrt{q^2} (1 - \beta_\ell) & m_{\ell}
\end{pmatrix},
\]

\[
L_{\lambda_1\lambda_2}^R = \begin{pmatrix}
-\frac{(\beta^-_1 - \beta^+_1)(\beta^-_2 + \beta^+_2)}{2} & \frac{(\beta^-_1 + \beta^+_1)(\beta^-_2 + \beta^+_2)}{2} \\
\frac{(\beta^-_1 + \beta^+_1)(\beta^-_2 + \beta^+_2)}{2} & -\frac{(\beta^-_1 - \beta^+_1)(\beta^-_2 + \beta^+_2)}{2}
\end{pmatrix} \rightarrow \begin{pmatrix}
m_{\ell} & \sqrt{q^2} (1 - \beta_\ell) \\
\sqrt{q^2} (1 + \beta_\ell) & m_{\ell}
\end{pmatrix},
\]

\[
L_{\lambda_1\lambda_2}^S = \begin{pmatrix}
\beta^-_1 \beta^-_2 + \beta^+_1 \beta^-_2 & 0 \\
0 & \beta^-_1 \beta^+_2 + \beta^+_1 \beta^-_2
\end{pmatrix} \rightarrow \begin{pmatrix}
\sqrt{q^2} \beta_\ell & 0 \\
0 & \sqrt{q^2} \beta_\ell
\end{pmatrix},
\]

\[
L_{\lambda_1\lambda_2}^t = \begin{pmatrix}
\beta^+_1 \beta^-_2 - \beta^-_1 \beta^-_2 & 0 \\
0 & \beta^-_1 \beta^-_2 - \beta^+_1 \beta^+_2
\end{pmatrix} \rightarrow \begin{pmatrix}
2m_{\ell} & 0 \\
0 & -2m_{\ell}
\end{pmatrix},
\]

\[
L_{\lambda_1\lambda_2}^{T_0} = \begin{pmatrix}
\sqrt{2} (\beta^-_1 \beta^+_2 + \beta^+_1 \beta^-_2) & 2 (\beta^-_1 \beta^-_2 - \beta^+_1 \beta^+_2) \\
2 (\beta^-_1 \beta^-_2 - \beta^+_1 \beta^+_2) & -\sqrt{2} (\beta^-_1 \beta^+_2 + \beta^+_1 \beta^-_2)
\end{pmatrix} \rightarrow \begin{pmatrix}
\sqrt{2q^2} \beta_\ell & 0 \\
0 & -\sqrt{2q^2} \beta_\ell
\end{pmatrix},
\]

\[
L_{\lambda_1\lambda_2}^{T_1} = \begin{pmatrix}
-\sqrt{2} (\beta^-_1 \beta^-_2 + \beta^+_1 \beta^+_2) & 2 (\beta^-_1 \beta^-_2 - \beta^+_1 \beta^+_2) \\
2 (\beta^-_1 \beta^-_2 - \beta^+_1 \beta^+_2) & -\sqrt{2} (\beta^-_1 \beta^+_2 + \beta^+_1 \beta^-_2)
\end{pmatrix} \rightarrow \begin{pmatrix}
-\sqrt{2q^2} & -4m_{\ell} \\
-4m_{\ell} & -\sqrt{2q^2}
\end{pmatrix},
\]

(A.13)
where we have used $\beta_+^+ \beta_1^- \rightarrow E \beta_\ell$ for $m_{\ell_1,2} \rightarrow m_{\ell}$ since $E^2 = q^2 / 4$, where E is the energy of either lepton in the rest frame of the lepton pair. Note that the scalar transitions S and t are necessarily diagonal since $\lambda_1 = \lambda_1 - \lambda_2 = 0$.

B. Details on Kinematics for Decay Modes

While within the formalism described in this paper it is not essential to consider the full kinematics of the decay, as the evaluation of the hadronic and leptonic HAs can be performed within their respective rest frames, we collect here the kinematics used in calculating the angular distribution using the Dirac trace technology approach [22, 23] in order to facilitate comparison. The Källén function that often appears in our results is given by

$$\lambda(a, b, c) \equiv a^2 + b^2 + c^2 - 2(ab + ac + bc),$$

which is related to the absolute value of the spatial momentum by

$$|p_2^2| = |p_3^2| = \frac{\sqrt{\lambda(m_1^2, m_2^2, m_3^2)}}{2m_1}. \quad (B.1)$$

Note that $\lambda_\ell \equiv \lambda(q^2, m_\ell^2, m_\ell^2) = q^2 \beta_\ell = \sqrt{q^2 (q^2 - 4m_\ell^2)}$. The vectors $q = \ell_1 + \ell_2$ and $Q = \ell_1 - \ell_2$ in the CMF ($\ell_1 + \ell_2 = 0$) of the $\ell^+ \ell^-$-system read

$$q^\mu = \sqrt{q^2} (1, 0, 0, 0), \quad Q^\mu = \sqrt{q^2} \beta_\ell (0, \sin \theta_\ell \cos \phi, \sin \theta_\ell \sin \phi, \cos \theta_\ell), \quad (B.2)$$

where $\beta_\ell = \sqrt{1 - 4m_\ell^2/q^2}$ and we work in the equal lepton mass case in this appendix. The corresponding expressions in the B-meson rest frame are given by

$$q^\mu = (q_0, 0, 0, q_z), \quad Q^\mu = \beta_\ell \left(q_z \cos \theta_\ell, \sqrt{q^2} \sin \theta_\ell \cos \phi, \sqrt{q^2} \sin \theta_\ell \sin \phi, q_0 \cos \theta_\ell\right), \quad (B.3)$$

and the corresponding on-shell polarisation vectors are identical to the ones given in (17) up to complex conjugation.

For the K^*-system we have with $p = p_K + p_\pi = p_B - q$ and $P = p_K - p_\pi$ in the K^* rest frame

$$p^\mu = (m_{K^*}, 0, 0, 0), \quad P^\mu = (E_K - E_\pi, 2p_K \sin \theta_K, 0, -2p_K \cos \theta_K), \quad (B.4)$$

where $m_{K^*} = E_K + E_\pi$, $p_K = \lambda^{1/2}(m_{K^*}^2, m_{K^*}^2, m_\pi^2)/(2m_{K^*})$ is the absolute value of the K three-momentum, and $E_K - E_\pi = (m_{K^*}^2 - m_\pi^2)/m_{K^*}$. The polarisation vectors for the massive on-shell K^* are given by

$$\eta^\mu(0) = (0, 0, 0, -1), \quad \eta^\mu(\pm) = (0, \pm1, -i, 0)/\sqrt{2}. \quad (B.5)$$

Correspondingly translated to the rest frame of the B-meson this reads

$$p^\mu = (p_0, 0, 0, p_z), \quad P^\mu = \left(f(p_0, p_z), 2p_K m_{K^*} \sin \theta_K, 0, f(p_z, p_0)\right)/m_{K^*}, \quad (B.6)$$

with the shorthand $f(x, y) = x(E_K - E_\pi) - 2yp_K \cos \theta_K$, and the K^* polarisation vectors become $\eta^\mu(0) = (-p_z, 0, 0, -p_0)/m_{K^*}$ and $\eta^\mu(\pm)$ unaffected by the Lorentz transformation.
C. Specific Results for $B \to K^* (\to K\pi) \bar{\ell}_1 \ell_2$

C.1. Fourfold Differential Decay Rate

The angular distribution for $B \to K^* (\to K\pi) \bar{\ell}_1 \ell_2$ is usually presented in the form [30]

$$
\frac{8\pi}{3} \frac{d^4\Gamma}{dq^2 d\cos\theta_{\ell} d\cos\phi} = (J_{1s} + J_{2s} \cos 2\theta_{\ell} + J_{6s} \cos \theta_{\ell}) \sin^2 \theta_K \\
+ (J_{1c} + J_{2c} \cos 2\theta_{\ell} + J_{6c} \cos \theta_{\ell}) \cos^2 \theta_K \\
+ (J_3 \cos 2\phi + J_9 \sin 2\phi) \sin^2 \theta_K \sin^2 \theta_{\ell} \\
+ (J_4 \cos \phi + J_8 \sin \phi) \sin^2 \theta_K \sin 2\theta_{\ell} \\
+ (J_5 \cos \phi + J_7 \sin \phi) \sin^2 \theta_K \sin \theta_{\ell},
$$

which can be condensed as

$$
\frac{8\pi}{3} \frac{d^4\Gamma}{dq^2 d\cos\theta_{\ell} d\cos\phi} = \text{Re} \left[(J_{1s} + J_{2s} \cos 2\theta_{\ell} + J_{6s} \cos \theta_{\ell}) \sin^2 \theta_K \\
+ (J_{1c} + J_{2c} \cos 2\theta_{\ell} + J_{6c} \cos \theta_{\ell}) \cos^2 \theta_K \\
+ 2e^{-2i\phi} J_3 \sin^2 \theta_K \sin^2 \theta_{\ell} + 2e^{-i\phi} \sin 2\theta_K (J_4 \sin 2\theta_{\ell} + J_5 \sin \theta_{\ell}) \right],
$$

where we have defined

$$
\mathcal{J}_{3,4,5} = (J_{3,4,5} + iJ_{9,8,7}).
$$

(C.1)

The relationship between the $J_i(q^2)$ and the $G_{m}^{K,\ell}(q^2)$ was given in (33) but is repeated here for convenience:

$$
G_{m}^{0,0} = \frac{4}{9} (3J_{1c} + 2J_{1s}) - (J_{2c} + 2J_{2s}), \quad G_{m}^{0,1} = \frac{4}{3} (J_{6c} + 2J_{6s}), \quad G_{m}^{0,2} = \frac{16}{9} (J_{2c} + 2J_{2s}),
$$

$$
G_{m}^{2,0} = \frac{4}{9} (6J_{1c} - J_{1s}) - (2J_{2c} - 2J_{2s}), \quad G_{m}^{2,1} = \frac{8}{3} (J_{6c} - 6J_{6s}), \quad G_{m}^{2,2} = \frac{32}{9} (J_{2c} - 2J_{2s}),
$$

$$
G_{m}^{2,1} = \frac{16}{\sqrt{3}} (J_5 + iJ_7), \quad G_{m}^{2,2} = \frac{32}{3} \left(J_4 + iJ_8 \right), \quad G_{m}^{2,2} = \frac{32}{3} \left(J_3 + iJ_9 \right).
$$

(C.3)

Explicit results for the $G_{m}^{K,\ell}$ are presented in Sec. C.2 (for the case of identical final-state leptons) and in Sec. C.3 (for the case where the final-state leptons are not necessarily identical).

Our formulae are adapted to the conventions used by the experimental community, $\phi^{LHCb} = \phi$ and $\theta_\ell^{LHCb} = \theta_\ell$. A change to $\phi \to \pi - \phi$ and $\theta_\ell \to \pi - \theta_\ell$, as used by the theory community, is accompanied by the sign changes given in Tab. C.1, presented at the level of the angular coefficients J_i as opposed to the $G_{m}^{K,\ell}$; the resulting sign changes in our results can be inferred from (C.4).

C.1.1. Kinematic endpoint relations in terms of $G_{m}^{K,\ell}$

In Ref. [18] it was shown that the HAs obey symmetry relations at the kinematic endpoint due to symmetry enhancement. This is due to the K^* being at rest resulting in symmetry in
<table>
<thead>
<tr>
<th>Conventions</th>
<th>Use</th>
<th>$J_{1s,1c,2s,2c,3,7}$</th>
<th>$J_{6s,6c,8}$</th>
<th>$J_{5,9}$</th>
<th>J_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_i(\theta, \phi)$</td>
<td>exp. [31], GHZ</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\sigma_i(\pi - \theta, \pi)$</td>
<td>theory e.g. [30]</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>$\sigma_i(\pi - \theta, \phi)$</td>
<td>(None)</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>$\sigma_i(\theta, \pi)$</td>
<td>(None)</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Table 3: Definitions of the sign functions σ^i in the angular coefficients J_i between the angular conventions used by in this paper (abbreviated as GHZ) and the experimental community, and those conventions used by the theory community. Two further choices of convention, as yet unused, are also given for future reference.

all space directions i.e. helicity directions. The relations for the HAs in Eq. (13) in [18] lead to the following equivalent of Eq. (21) in [18]

$$G^{0,0}_0 \neq 0, \quad G^{2,2}_0 \to \text{Re}[G^{2,2}_0], \quad G^{2,2}_1 \to -2\text{Re}[G^{2,2}_0], \quad G^{2,2}_2 \to 2\text{Re}[G^{2,2}_0],$$

(C.5)

with all other five $G^{K,L}_m$ vanishing. Recall that $G^{0,0}_0$ is proportional to the total decay rate. The relations between the $G^{2,2}_m$ are not accidental but have to do with the symmetries of a multiplet. The factor of two between $G^{2,2}_0$ and $G^{2,2}_1(2)$, once more, originates from absorbing $G^{2,2}_{1(2)}$ into $G^{2,2}_1$. The results of the threshold expansion, linear in the K^* momentum $\kappa \sim \lambda(m_B^2, m_{K^*}^2, q^2)$, can be inferred from Eq. (30) in [18] taking into account the different angular conventions detailed in Tab. C.1.

C.1.2. Comparison of angular distribution with the literature

The angular distribution (C.1) has been computed first in the SM for massless leptons in [22], extending to include equal lepton masses in [69]. The basis was extended to include (pseudo)scalar operators in [34], enforcing the J_{6c}-structure, and tensor operators by the authors in [30, 70]. We find agreement with literature except with the tensor contributions. In particular we disagree with v3 of [30] in that we do get a contribution of tensor operators to $J_{8,9} = \text{Im}[J_{4,3}]$ as can be seen in (C.6). Our results are consistent with (C.3) whereas the result in [30] is not as a tensor contribution to $J_{8,9}$ is reported without an equivalent contribution to $J_{8,9}$. In addition we find a difference in the sign of the vector-tensor interference terms in J_{1s}.

Otherwise, we agree with all other contributions of the final angular distribution of v3 [30]. As noted in [18] there are mismatches of factors of $\sqrt{2}$, which are in disagreement with endpoint relation, in the definition and the actual evaluation of the tensor HAs in $A_{00} (\sim H_0^T)$ and $A_{+-} (\sim H_0^T)$ (with the expression in brackets corresponding to the convention used in this work).

In v3 of [30] it is stated that agreement with v4 of [71] is found up to a sign of an interference term between a scalar and a tensor HA. This suggests that we also disagree with those authors.
C.2. $G^{k,\ell}_{m}$ in terms of Helicity Amplitudes for $m_{\ell_1} = m_{\ell_2} = m_{\ell}$

When the masses of the leptons are identical, we obtain for the $G^{k,\ell}_{m}$

\[
G^{0,0}_0 = \frac{q^2}{18} (3 + \beta^2) \left(|H^L|^2 + |H^R|^2 + |H^0|^2 + (L \rightarrow R) \right) + \frac{4}{9} (12m^2 + q^2 \beta^2) \left(|H^T|^2 + |H^T|^2 + |H^T|^2 \right) + \frac{4}{5} q^2 \beta^2 \left(|H^T|^2 + |H^T|^2 + |H^T|^2 \right) \\
+ \frac{2}{3} q^2 \beta^2 |H^S|^2 + \frac{8}{3} m^2 |H^I|^2 + \frac{4m^2}{3} Re [H^T H^R L + H^T H^R L + H^T H^R L] \\
- \frac{4\sqrt{2}}{3} m_\ell \sqrt{q^2} Re [H^T H^T L + H^T H^T L + H^T H^T L + (L \rightarrow R)] ,
\]

\[
G^{0,1}_0 = \frac{q^2}{3} \beta_\ell \left(|H^L|^2 - |H^L|^2 - (L \rightarrow R) + 4\sqrt{2} Re [H^T H^S] \right) + \frac{4}{3} m_\ell \sqrt{q^2} \beta_\ell Re [H^L H^R L + H^L H^R L + H^L H^R L - (L \rightarrow R)] ,
\]

\[
G^{0,2}_0 = \frac{q^2}{9} \beta_\ell \left(2 |H^L|^2 - |H^L|^2 - |H^L|^2 + (L \rightarrow R) - 8 \left(|H^T|^2 + |H^T|^2 \right) \\
+ 4 \left(|H^T|^2 + |H^T|^2 + |H^T|^2 \right) \right) ,
\]

\[
G^{2,0}_0 = \frac{q^2}{18} (3 + \beta^2) \left(|H^L|^2 + |H^L|^2 - 2 |H^L|^2 + (L \rightarrow R) \right) - \frac{4}{9} (12m^2 + q^2 \beta^2) \left(|H^T|^2 + |H^T|^2 - 2 |H^T|^2 \right) - \frac{4}{5} q^2 \beta^2 \left(|H^T|^2 + |H^T|^2 - 2 |H^T|^2 \right) \\
+ \frac{4}{3} q^2 \beta^2 |H^S|^2 + \frac{16}{3} m^2 |H^I|^2 - \frac{4m^2}{3} Re [H^L H^R R + H^L H^R R - 2H^T R R] \\
+ \frac{4\sqrt{2}}{3} m_\ell \sqrt{q^2} Re [H^T H^T L + H^T H^T L - 2H^T H^T L + (L \rightarrow R)] ,
\]

\[
G^{2,1}_0 = \frac{q^2}{3} \beta_\ell \left(|H^L|^2 - |H^L|^2 - (L \rightarrow R) - 8\sqrt{2} Re [H^T H^S] \right) - \frac{4\sqrt{2}}{3} m_\ell \sqrt{q^2} \beta_\ell Re [H^L H^T L + H^L H^T L - (L \rightarrow R) - \sqrt{2} \left((H^L + H^R) H^S + 2\sqrt{2} H^T H^T \right)] ,
\]

\[
G^{2,2}_0 = \frac{q^2}{9} \beta_\ell \left(4 |H^L|^2 + |H^L|^2 + |H^L|^2 + (L \rightarrow R) - 16 \left(|H^T|^2 + |H^T|^2 \right) \\
- 4 \left(|H^T|^2 + |H^T|^2 + |H^T|^2 \right) \right) ,
\]

\[
\sqrt{3} G^{2,1}_1 = -2q^2 \beta_\ell \left(H^L H^L L - H^R H^L + (L \rightarrow R) + 2\sqrt{2} \left(H^S H^T + H^T H^S \right) \right) - 4\sqrt{2} m_\ell \sqrt{q^2} \beta_\ell \left(H^L H^T L + H^T H^L L + H^L H^T L - (L \rightarrow R) \right) + 4m_\ell \sqrt{q^2} \beta_\ell \left(H^S H^L H^L L + H^T H^L L \right) - 8\sqrt{2} m_\ell \sqrt{q^2} \beta_\ell \left(H^T H^L + H^L H^T \right) ,
\]

\[
G^{2,2}_1 = \frac{2}{3} q^2 \beta_\ell \left(H^L H^L L + H^T H^L L + (L \rightarrow R) - 4 \left(H^T H^T + H^T H^T + H^T H^T + H^T H^T \right) \right) ,
\]

\[
G^{2,2}_2 = \frac{4}{3} q^2 \beta_\ell \left(H^T H^T L + H^T H^T L + H^T H^T L + 4 \left(H^T H^T + H^T H^T + H^T H^T \right) \right) ,
\]

(C.6)
where $\beta_\ell \equiv \sqrt{1 - 4m_\ell^2/q^2}$, and all results should be multiplied by the global factor N defined in (27). The common factor of q^2 in all observables as compared with standard literature results is a consequence of our choice of normalisation, whereby all global factors are placed outside the HAs.

Note that it is sometimes convenient to express results in terms of the transversity amplitudes, which possess a definite parity. The relations to the HAs used throughout this paper are

$$H^{L/R}_{\parallel\parallel(\perp)} = \frac{1}{\sqrt{2}}(H^L_{\perp} \pm H^R_{\perp}),$$

$$H_S = H^S, \quad H_l = H^l,$$

$$H^T_{\parallel\parallel(\perp)} = \frac{1}{\sqrt{2}}(H^T_{\perp} \pm H^T_{\perp}), \quad H^T_0 = H^T_0,$$

$$H^T_{\perp \perp} = \frac{1}{\sqrt{2}}(H^T_{\perp} \pm H^T_{\perp}).$$

(C.7)

In [30] the notation A_{ij}, with $i, j = ||, \perp, 0$, is used for the transversity amplitudes. Note, when comparing to this paper the difference in the convention of the polarisation vectors has to be taken into account.

C.3. $G^{\ell_k4\ell_r}_{m}$ in terms of Helicity Amplitudes for $m_{\ell_1} \neq m_{\ell_2}$

The formalism discussed in this paper allows a simple extension to the case $m_{\ell_1} \neq m_{\ell_2}$, so that the results presented in (C.6) can be adapted to test for possible lepton-flavour violating processes. Using the notation $\beta_{1,2}^{\pm} = \sqrt{E_{1,2} \pm m_{\ell_{1,2}}}$, where ℓ_1 corresponds to the antilepton, we obtain the following expressions for the $G^{\ell_k4\ell_r}_{m}$:

$$G^{0,0}_{0} = \frac{2}{9}(3E_1E_2 + \beta_1^+ \beta_2^+ \beta_1^- \beta_2^-) \left(|H^L_{\perp}|^2 + |H^L_{\perp}|^2 + |H^L_{0}|^2 + (L \to R) \right)$$

$$+ \frac{8}{9} \left(3(E_1E_2 + m_{\ell_1}m_{\ell_2}) - \beta_1^+ \beta_2^+ \beta_1^- \beta_2^- \right) \left(|H^T_{\perp}|^2 + |H^T_{\perp}|^2 + |H^T_{0}|^2 \right)$$

$$+ \frac{8}{9} \left(3(E_1E_2 - m_{\ell_1}m_{\ell_2}) - \beta_1^+ \beta_2^+ \beta_1^- \beta_2^- \right) \left(|H^T_{\perp}|^2 + |H^T_{\perp}|^2 + |H^T_{0}|^2 \right)$$

$$+ \frac{4}{3} \left(E_1E_2 - m_{\ell_1}m_{\ell_2} - \beta_1^+ \beta_2^+ \beta_1^- \beta_2^- \right) |H^{\ell_1}|^2$$

$$+ \frac{4m_{\ell_1}m_{\ell_2}}{3} \Re \left[H^L_{\ell_1} H^R_{\ell_1} + H^L_{\ell_2} H^R_{\ell_2} + H^L_{0} H^R_{0} \right]$$

$$- \frac{4\sqrt{2}}{3} \left(m_{\ell_1}E_2 + m_{\ell_2}E_1 \right) \Re \left[H^L_{\ell_1} H^T_{\ell_1} + H^L_{\ell_2} H^T_{\ell_2} + H^L_{0} H^T_{0} \right] (L \to R)$$

$$- \frac{4\sqrt{2}}{3} \left(m_{\ell_1}E_2 - m_{\ell_2}E_1 \right) \Re \left[H^L_{\ell_1} H^T_{\ell_1} + H^L_{\ell_2} H^T_{\ell_2} + H^L_{0} H^T_{0} \right] (L \to R),$$

$$G^{0,1}_{0} = - \frac{1}{3} \left(\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+ \right) \left(\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+ \right) \left(|H^L_{\perp}|^2 - |H^L_{\perp}|^2 \right)$$

$$+ \frac{2\sqrt{2}}{3} \left(\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+ \right) \left(\beta_1^+ \beta_2^- - \beta_1^- \beta_2^+ \right) \Re \left[H^L_{\ell_1} H^T_{\ell_1} + H^L_{\ell_2} H^T_{\ell_2} \right] (L \to R)$$

$$+ \frac{2\sqrt{2}}{3} \left(\beta_1^+ \beta_2^- - \beta_1^- \beta_2^+ \right) \left(\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+ \right) \Re \left[H^L_{\ell_1} H^T_{\ell_1} + H^L_{\ell_2} H^T_{\ell_2} \right] (L \to R)$$

29
\[G^0_{0,2} = -\frac{4}{9} \beta^+_1 \beta^+_2 \beta^-_1 \beta^-_2 \left(2 |H^L_0|^2 - |H^L_+|^2 - |H^L_-|^2 + (L \rightarrow R) \right) - 8 \left(|H^T_0|^2 + |H^T_+|^2 \right) + 4 \left(|H^T_0|^2 + |H^T_-|^2 + |H^T_+|^2 \right) \]

\[G^2_{0,0} = -\frac{2}{9} (3E_1E_2 + \beta^+_1 \beta^+_2 \beta^-_1 \beta^-_2) \left(|H^L_0|^2 + |H^L_+|^2 - 2 |H^L_+|^2 \right) \]

\[G^2_{0,1} = \frac{1}{3} (\beta^+_1 \beta^-_2 + \beta^-_1 \beta^+_2) \left(\beta^+_1 \beta^+_2 + \beta^-_1 \beta^-_2 \right) \left(|H^L_0|^2 - |H^L_+|^2 \right) \]

\[G^2_{0,2} = -\frac{4}{9} \beta^+_1 \beta^+_2 \beta^-_1 \beta^-_2 \left(4 |H^L_0|^2 + |H^L_+|^2 + |H^L_-|^2 + (L \rightarrow R) \right) - 16 \left(|H^T_0|^2 + |H^T_+|^2 \right) - 4 \left(|H^T_0|^2 + |H^T_-|^2 + |H^T_+|^2 \right) \]
\[\sqrt{3}G_1^{2,1} = -2(\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+) (\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+) (H_0^L H_0^L - H_0^R H_0^L - (L \to R)) \\
- 4\sqrt{2}(\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+) (\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+) \left(H_0^L T_0^L + H_0^R T_0^R \right) \\
- 2\sqrt{2}(\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+) (\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+) \left(H_0^T H_0^L - H_0^T H_0^R - (L \to R) \right) \\
+ 2(\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+) (\beta_1^+ \beta_2^- - \beta_1^- \beta_2^+) \left(H_0^T H_0^L + H_0^L H_0^R + (L \to R) \right) \\
+ 4\sqrt{2}(\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+) (\beta_1^+ \beta_2^- - \beta_1^- \beta_2^+) \left(H_0^T H_0^T + H_0^T H_0^T \right) \\
- 2\sqrt{2}(\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+) (\beta_1^+ \beta_2^- - \beta_1^- \beta_2^+) \left(H_0^T H_0^T - H_0^T H_0^T + (L \to R) \right) \\
- 2\sqrt{2}(\beta_1^+ \beta_2^- - \beta_1^- \beta_2^+) (\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+) \left(H_0^L H_0^T - H_0^R H_0^T + (L \to R) \right) \\
+ 2\sqrt{2}(\beta_1^+ \beta_2^- - \beta_1^- \beta_2^+) (\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+) \left(H_0^L H_0^T - H_0^R H_0^T + (L \to R) \right) \\
- 2(\beta_1^+ \beta_2^- - \beta_1^- \beta_2^+) (\beta_1^+ \beta_2^- - \beta_1^- \beta_2^+) \left(H_0^T H_0^T + H_0^L H_0^T - (L \to R) \right) \\
- 8(\beta_1^+ \beta_2^- - \beta_1^- \beta_2^+) (\beta_1^+ \beta_2^- - \beta_1^- \beta_2^+) \left(H_0^T H_0^T - H_0^T H_0^T + H_0^T H_0^T + H_0^T H_0^T \right) , \\
G_1^{2,2} = -\frac{8}{3} \beta_1^+ \beta_2^- \bar{\beta}_1 \bar{\beta}_2 \left(H_0^L H_0^L + H_0^L H_0^R + (L \to R) - 4 \left(H_0^T H_0^0 + H_0^R H_0^T + H_0^T H_0^T + H_0^T H_0^T \right) \right) , \\
G_2^{2,2} = -\frac{16}{3} \beta_1^+ \beta_2^- \bar{\beta}_1 \bar{\beta}_2 \left(H_0^L H_0^L + H_0^R H_0^R - 4 \left(H_0^T H_0^T + H_0^T H_0^T \right) \right) , \quad \text{(C.8)} \\
\]
where again all entries should be multiplied by the global factor \(N \) \(\text{(27)} \).

C.4. Explicit Helicity Amplitudes in terms of Form Factors

We collect here the definitions of the Helicity Amplitudes in terms of which our results are expressed. The hadronic HA is defined by

\[H_X^X = \langle K^*(\lambda)|\bar{b}G_Xs|B \rangle , \quad \text{(C.9)} \]

with \(\Gamma_X|_{\lambda_X \to \lambda} \) as in Tab. 3.1. The definitions of the hadronic matrix elements used in the calculations are standard (e.g. [72]). Below we evaluate the HAs using form factors to make clear the relative signs between the various contributions, allowing for definite comparison with the literature.

Results for form factors for low \(q^2 \) can be found from Light-Cone Sum Rules (LCSR) with vector distribution amplitudes (DA) in [5,72] and B-meson DA in [6], and for high \(q^2 \) from lattice QCD [73]. Long-distance effects contribute to \(H^V = H^L + H^R \) only, and include quark loops (QL), the chromomagnetic operator \(O_{8b} \), quark loop spectator scattering (QLSS) and weak annihilation (WA). At low \(q^2 \), effects have been evaluated in QCD factorisation (QCDF) in the leading \(1/m_b \)-limit and in LCSR. Results for \(O_{8b} \), WA and QLSS in QCDF are given in [7], and additional contributions for \(O_{8b} \) in [8]. In Ref. [7] it was shown that quark loops can be integrated into the \(1/m_b \) framework using the results from inclusive matrix element computations [9]. Results for \(O_{8b} \) and WA, as well as a prescription for dealing with endpoint-divergences of QLSS, can be found in [10] and [11]. Results for charm loops beyond the \(1/m_b \) approximation can be found in [12] for LCSR with B-meson DA, and [13, 14] for LCSR (at \(q^2 = 0 \) only) for vector-meson DA. At high \(q^2 \) many of the long distance contributions are suppressed in the formulation in terms of an OPE in \(1/q^2 \) (with \(q^2 \simeq m_b^2 \) [74, 75]). It should be added that the large contribution of broad charm resonances \(B \to K\mu\mu \) by the LHCb collaboration [76] demands a reassessment of duality violations [64].

31
Long distance contributions can be found elsewhere.

\[H_{0}^{L,R} = -\frac{1}{2m_K\sqrt{q^2}} \left[2m_b (C_7 - C_{7'}) \left((m_B^2 + 3m_{K^*}^2 - q^2) T_2 - \frac{\lambda}{m_B^2 - m_{K^*}^2} T_3 \right) + ((C_9 - C_{9'}) \mp (C_{10} - C_{10'})) \left((m_B^2 - m_{K^*}^2 - q^2) (m_B + m_{K^*}) A_1 - \frac{\lambda}{m_B + m_{K^*}} A_2 \right) \right], \]

\[H_{+}^{L/R} = \left[\frac{2m_b}{q^2} \left(\sqrt{\lambda} (C_7 + C_{7'}) T_1 - (m_B^2 - m_{K^*}^2) (C_7 - C_{7'}) T_2 \right) + ((C_9 + C_{9'}) \mp (C_{10} + C_{10'})) \frac{\sqrt{\lambda}}{m_B + m_{K^*}} V - ((C_9 - C_{9'}) \mp (C_{10} - C_{10'})) (m_B + m_{K^*}) A_1 \right], \]

\[H_{-}^{L/R} = \left[\frac{2m_b}{q^2} \left(\sqrt{\lambda} (C_7 + C_{7'}) T_1 + (m_B^2 - m_{K^*}^2) (C_7 - C_{7'}) T_2 \right) + ((C_9 + C_{9'}) \mp (C_{10} + C_{10'})) \frac{\sqrt{\lambda}}{m_B + m_{K^*}} V + ((C_9 - C_{9'}) \mp (C_{10} - C_{10'})) (m_B + m_{K^*}) A_1 \right], \]

\[H^S = 2\sqrt{\lambda} \frac{C_S - C_{S'}}{m_b + m_s} A_0, \]

\[H^t = \frac{\sqrt{\lambda}}{\sqrt{q^2}} \left(2 \left(C_{10} - C_{10'} \right) + \frac{q^2}{m_t (m_b + m_s)} (C_P - C_{P'}) \right) A_0, \]

\[H^T_{\pm} = \pm \frac{2\sqrt{\lambda}}{\sqrt{q^2}} \left(\sqrt{\lambda} C_T T_1 \mp \left(m_B^2 - m_{K^*}^2 \right) C_T T_2 \right), \]

\[H^{T'}_{\pm} = \pm \frac{2\sqrt{\lambda}}{\sqrt{q^2}} \left(\sqrt{\lambda} C_T T_1 \mp \left(m_B^2 - m_{K^*}^2 \right) C_T T_2 \right), \]

\[H^0 = -\sqrt{2} \frac{C_T}{m_{K^*}} \left(\left(m_B^2 + 3m_{K^*}^2 - q^2 \right) T_2 - \frac{\lambda}{m_B^2 - m_{K^*}^2} T_3 \right), \]

\[H^{T'}_{0} = -\sqrt{2} \frac{C_T}{m_{K^*}} \left(\left(m_B^2 + 3m_{K^*}^2 - q^2 \right) T_2 - \frac{\lambda}{m_B^2 - m_{K^*}^2} T_3 \right). \quad \text{(C.10)} \]

D. Specific Results for $B \rightarrow K \ell_1 \ell_2$

The angular distribution for this decay is

\[\frac{d^3 \Gamma}{dq^2 d\cos \theta_\ell} = G^{(0)} D_{0,0}^0 (\Omega_\ell) + G^{(1)} D_{0,0}^1 (\Omega_\ell) + G^{(2)} D_{0,0}^2 (\Omega_\ell), \]

where, using the general leptonic HAs in App. A.3 and taking lepton masses to be equal, the functions $G^{(i)}$ are defined in terms of $B \rightarrow K$ HAs by

\[G^{(0)} = \frac{q^2}{6} \left(3 + \beta_\ell^2 \right) \left(|H_{B \rightarrow K}^L|^2 + |H_{B \rightarrow K}^R|^2 \right) + 4m_\ell^2 \text{Re} \left[H_{B \rightarrow K}^L H_{B \rightarrow K}^R \right] + 8m_\ell^2 |H_{B \rightarrow K}^L|^2 \]

32
and these expressions should be multiplied by the normalisation factor \mathcal{N} defined in (27). The equivalent expressions for $m_{\ell_1} \neq m_{\ell_2}$ are

$$
\begin{align*}
G^{(0)} &= \frac{2}{3} (3 E_1 E_2 + \beta_1^+ \beta_2^+ \beta_1^- \beta_2^-) \left(|H_{B \to K}^L|^2 + |H_{B \to K}^R|^2 \right) + 4 \mu \epsilon \bar{\epsilon} \Re \left[H_{B \to K}^L \bar{H}_{B \to K}^L \right] \\
G^{(1)} &= \Re \left[2 \left(\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+ \right) \left(\beta_1^+ \beta_2^- - \beta_1^- \beta_2^+ \right) \left(H_{B \to K}^L + H_{B \to K}^R \right) \bar{H}_{B \to K}^S \\
&\quad - 4 \sqrt{2} \left(\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+ \right) \left(\beta_1^+ \beta_2^- - \beta_1^- \beta_2^+ \right) \left(H_{B \to K}^L \bar{H}_{B \to K}^R \right) \\
&\quad - 2 \left(\beta_1^+ \beta_2^- + \beta_1^- \beta_2^+ \right) \left(\beta_1^- \beta_1^+ \right) \left(\beta_1^+ \beta_2^- - \beta_1^- \beta_2^+ \right) \left(H_{B \to K}^L + H_{B \to K}^R \right) \bar{H}_{B \to K}^S \\
G^{(2)} &= -\frac{8}{3} \beta_1^+ \beta_2^- \beta_1^- \beta_2^+ \left(|H_{B \to K}^L|^2 + |H_{B \to K}^R|^2 \right) - 4 \left| H_{B \to K}^T \right|^2.
\end{align*}
$$

(D.1)

D.1. Explicit $B \to K$ Helicity Amplitudes in terms of Form Factors

As for $B \to K^* \ell \bar{\ell}$ we quote the HAs for form factor contributions only which allows for comparison with the literature. Form factor computations are available for low q^2 and high q^2 from LCSR [15,16] lattice QCD [17] respectively. Contributions to long distance processes can be found in the same references as for the K^*-meson final state (quoted in appendix C.4). The form factor matrix elements relevant to $B \to K$ transition, in standard parametrisation, are

$$
\begin{align*}
\langle K(p) | s \gamma_\mu 2P_{L,R} | B(p_B) \rangle &= (p_B + p)_\mu f_+(q^2) + \frac{m_B^2 - m_K^2}{q^2} q_\mu \left(f_0(q^2) - f_+(q^2) \right), \\
\langle K(p) | s i \sigma_{\mu\nu} b | B(p_B) \rangle &= - \left[(p_B + p)_\mu q_\nu - (p_B + p)_\nu q_\mu \right] \frac{f_T(q^2)}{m_B + m_K}, \\
\langle K(p) | s P_{L,R} b | B(p_B) \rangle &= \frac{m_B^2 - m_K^2}{2 m_B + m_s} f_0(q^2).
\end{align*}
$$

(D.3)

The hadronic HA is defined by

$$
H^X(B \to K) = \langle K | \bar{b} \Gamma^X s | B \rangle,
$$

(D.4)

with $\Gamma^X |_{\lambda_X \to 0}$ as in Tab. 3.1, containing the full set of dimension-six operators in the effective Hamiltonian (13). We find

$$
H_0^{L/R} = \frac{1}{2 \sqrt{2}} \left(f_+(q^2)(C_9 + C_{9'}) + (C_{10} + C_{10'}) \right) - 2 m_b \frac{f_T(q^2)}{m_B + m_K} (C_7 + C_{7'}),
$$

33
Hamiltonian defined in A.2. In this case (5) becomes, in the rest frame of the Λ
ism, and is particularly relevant because this decay can also be described using the effective
the LHCb Collaboration [77], can also be considered within the generalised helicity formal-
E. Λb → Λ (→ (p, n)π) ℓ1ℓ2 Angular Distribution

The decay Λb → Λ (→ (p, n)π) ℓ1ℓ2 with a final-state proton or neutron, recently measured by
the LHCb Collaboration [77], can also be considered within the generalised helicity formal-
and is particularly relevant because this decay can also be described using the effective
Hamiltonian defined in A.2. In this case (5) becomes, in the rest frame of the Λb,

\[A(\Omega, \lambda, \lambda, \lambda, \lambda) \sim \sum_{\lambda_g, \lambda, \lambda} \delta_{\lambda_g, \lambda, \lambda} \frac{1}{N_N} \langle \Omega \rangle \frac{1}{N_{\lambda_g, \lambda}} \langle \Omega \rangle \ell_{\lambda, \lambda} \]

We note here that a further possible hadronic HA \(H_B^{T} \rightarrow K\) vanishes, as can be seen by contracted
\(\omega_{\mu \nu}^a\) (A.5) with the relevant matrix element \(\langle K[\bar{s}i \sigma_{\mu \nu} b] \rangle\).

\[H^t = \left(\frac{m_B^2 - m_K^2}{q^2} C_{10} - C_{10'} + \frac{1}{2m_t} \frac{m_B^2 - m_K^2}{m_b + m_s} (C_P - C_{P'}) \right) f_0(q^2), \]

\[H^s = \frac{1}{2} \frac{m_B^2 - m_K^2}{m_b + m_s} f_0(q^2) (C_S - C_{S'}) , \]

\[H_0^{T_h} = 2 \sqrt{\frac{m_B}{2m_B + m_K}} (C_T + C_T^0) . \] (D.5)

These results can also be compared with those found in [24]; it follows that the MoM will be
equally useful in future angular analyses of this decay.
References

[27] LHCb Collaboration, R. Aaij et al., “Angular analysis of the $B^0 \to K^{*0}\mu^+\mu^-$ decay.”.

[36] U. Egede, M. Patel, and K. A. Petridis, “Method for an unbinned measurement of the q^2 dependent decay amplitudes of $\bar{B}^0 \to \bar{K}^0\mu^+\mu^-$ decays,” arXiv:1504.00574 [hep-ph].

[68] B. Dey, “Angular analyses of exclusive $\bar{B} \rightarrow X\ell_{1}\ell_{2}$ with complex helicity amplitudes,” [arXiv:1505.02873](https://arxiv.org/abs/1505.02873) [hep-ex].

[77] **LHCb** Collaboration, R. Aaij *et al.*, “Differential branching fraction and angular analysis of $\Lambda_{b}^{0} \rightarrow \Lambda^{0}\mu^{+}\mu^{-}$ decays,” [arXiv:1503.07138](https://arxiv.org/abs/1503.07138) [hep-ex].