The angiocrine factor Rspondin3 is a key determinant of liver zonation

Ana Sofia Rocha1,2,3,*, Valerie Vidal1,2,3, Marjolijn Mertz1,2,4, Timothy J. Kendall5, Aurelie Charlet1,2,3, Hitoshi Okamoto6 and Andreas Schedl1,2,3,*

* Corresponding authors.

1 Institute of Biology Valrose, Université de Nice-Sophia, F-06108 Nice, France
2 Inserm, UMR1091, F-06108, France
3 CNRS, UMR7277, F-06108, France
4 Plateforme PRISM – Institute of Biology Valrose, Université de Nice-Sophia, F-06108 Nice, France
5 MRC Human Genetics Unit, Western General Hospital Campus, EH4 2XU Edinburgh, United Kingdom.
6 RIKEN Brain Science Institute, 351-0198 Saitama, Japan

Key words: Liver zonation, homeostasis, Rspondin, β-catenin signaling

\textbf{Corresponding author:} Andreas Schedl
Inserm UMR1091
Centre de Biochimie
Parc Valrose
06108 Nice
France
Abstract

Liver zonation, the spatial separation of different metabolic pathways along the liver sinusoids, is fundamental for proper functioning of this organ and its disruption can lead to the development of metabolic disorders such as hyperammonemia. Metabolic zonation involves the induction of β-catenin signaling around the central veins, but how this patterned activity is established and maintained is unclear. Here we show that the signaling molecule Rspondin3 is specifically expressed within the endothelial compartment of the central vein. Conditional deletion of Rspo3 in mice disrupted activation of central fate demonstrating its crucial role in determining and maintaining β-catenin dependent zonation. Moreover, ectopic expression of Rspo1, a close family member of Rspo3, induced the expression of pericentral markers demonstrating Rspondins to be sufficient to imprint a more central fate. Thus Rspo3 is a key angiocrine factor that controls metabolic zonation of liver hepatocytes.
Introduction

The liver is a central organ responsible for the metabolism of dietary compounds, regulation of blood glucose levels, bile synthesis and biotransformation of xenobiotics and endogenous by-products of metabolism. During development, the fetus is able to rely on the metabolic activity of the maternal liver. In the neonatal period however, the liver needs to undergo several changes until reaching full maturation at weaning (Grijalva and Vakili, 2013). This includes specialization of groups of hepatocytes, a process involving the activation of specific enzymes that allow effective execution of metabolic tasks.

The functional unit of the liver consists of the hepatic lobule, which includes a central vein connected to four to six portal triads via the hepatic plates. Hepatocytes located within these functional units perform specific functions depending on their location within the lobule. Three zones of hepatocytes can be distinguished: hepatocytes located closest to the periportal triad (zone 1) are exposed to blood with the highest oxygen and nutrient concentration and perform the majority of the liver’s metabolic functions including glycogen synthesis, gluconeogenesis, protein synthesis and lipid metabolism. The hepatocytes closest to the central veins are located in zone 3 and are specialized for biotransformation reactions, glycolysis and urea synthesis. Hepatocytes in zone 2 display an intermediate phenotype executing both periportal and pericentral functions (Torre et al., 2010).

On the molecular level, liver zonation is governed by canonical Wnt/β-catenin signaling. Its activity is highest around the central vein and nuclear β-catenin directly regulates the activation of genes involved in glutamine synthesis and drug metabolism (Benhamouche et al., 2006; Burke et al., 2009; Sekine et al., 2006). Consistent with this role in regulating the central fate, activation or attenuation of β-catenin signaling causes expansion or diminution of central markers, respectively. Although the role of Wnt/β-catenin signaling is well established, the factors determining when and where this pathway is active are still elusive.

The Rspondin family of Wnt agonists has recently been demonstrated to play a major role in determining the levels of Wnt/β-catenin activity (Yoon and Lee, 2012). Upon binding to its receptors – the LGRs – Rspondins prevent membrane clearance of Wnt receptors thereby promoting Wnt signaling activity (Clevers et al., 2014). This signaling module has recently attracted a lot of attention due to its role in stem cell biology, with a particular emphasis on LGR5 that has been shown to label stem cells in various tissues, both under physiological and pathological conditions (Clevers et al., 2014). The liver is no exception and Huch et al. recently demonstrated that LGR5 labels a damage-activated stem cell population (Huch et al., 2013). Interestingly, LGR5 was shown to be differentially expressed between periportal and pericentral hepatocytes (Braeuning et al., 2006). LGR5 mRNA was exclusively identified...
in pericentral hepatocytes in accordance with the observed Wnt/β-catenin signaling activity in adult livers. This observation led us to investigate whether Rspondins play a role in determining Wnt/β-catenin signaling activity, and therefore in regulating liver metabolic zonation.

Results

Rspo3 is an endothelial specific marker demonstrating lobular zonation.

Rspondin expression has previously been analyzed during development, but no liver-specific expression has been reported (Nam et al., 2007). Because liver zonation is established soon after birth and maintained through adulthood, we began by characterizing their expression profile at later stages of liver development, namely at E17.5, at P10 as a representative time point for the postnatal period and in adulthood (8 weeks of age). RT-PCR analysis demonstrated *Rspo1* and *Rspo3* to be expressed while *Rspo2* and *Rspo4* were undetectable (Figure S1A). Although *Rspo1* was easily detectable by RT-PCR, we failed to observe a specific expression pattern by *in situ* hybridization (data not shown). The lack of involvement of *Rspo1* was further confirmed in knockout animals that showed overall normal liver histology and maintained the expression of zonation markers, such as Glutamine Synthetase (GS) (Figure S1B and C). Given these observations we focused our attention on *Rspo3*.

In situ hybridization for *Rspo3* demonstrated an exclusively endothelial-specific expression pattern as early as E17.5. Interestingly, the signal seemed to be restricted to the central vein, whereas endothelial cells localized at sites of ductal plate differentiation (identified by high expression of Keratin 18) were consistently negative for *Rspo3* (Figure 1A). The central vein specific expression profile of *Rspo3* was maintained in the perinatal period and adulthood. To confirm that *Rspo3* expression was indeed endothelial we FACS sorted CD31+ cells from adult livers and compared the expression profile between sorted cells and whole liver. We observed a dramatic enrichment of *Rspo3*, as well as the Wnt ligands *Wnt2* and *Wnt9b* in the endothelial compartment (Figure 1C). Hepatocytes surrounding the *Rspo3* positive veins displayed a strong expression of GS, a *bona fide* Wnt/β-catenin target in hepatocytes (Figure 1B).

Rspo3 is required for the onset and maintenance of metabolic zonation.

Metabolic zonation has been suggested to involve position-specific differentiation along the lobule that begins after birth and becomes fully established soon thereafter (Torre et al.,
The close association between the Rspo3 expression domain and that of central vein hepatocyte identity suggested that Rspo3 might be responsible for the functional patterning of pericentral hepatocytes by driving Wnt/β-catenin signaling. Rspo3 knockout mice die around E9.5 due to defects in placenta development (Aoki et al., 2007; Kazanskaya et al., 2008), thus precluding analysis at later time points. Therefore, to functionally evaluate an involvement of this gene in liver zonation, we generated cCAG-CreERT2: Rspo3\(^{fl/fl}\) mice that permit an inducible, ubiquitous deletion of Rspo3 at any given time point. We administered tamoxifen to females at E16.5 days of pregnancy to abolish Rspo3 expression during late development and perinatal stages (Figure 2A & B). Livers were analyzed at P10, a time point where zonation in wildtype mice is fully established. qPCR analysis confirmed efficient Rspo3 deletion (98% reduction; \(p=0.0002\)). Loss of Rspo3 had a profound impact on Wnt/β-catenin signaling, as evidenced by the dramatic reduction of the canonical Wnt/β-catenin targets Axin2 (90% reduction, \(p=0.0006\)) and LGR5 (98% reduction, \(p=0.0003\)) (Figure 2C). The expression of endothelial specific Wnt2 and Wnt9b were not affected by Rspo3 deletion indicating that the observed phenotype is not due to the absence of the Wnt source, but rather Rspo3 itself (Figure 2C). Immunohistochemical analysis revealed a complete loss of expression of the pericentral zonation marker GS, demonstrating an absolute requirement for Rspo3 in establishing pericentral gene expression (Figure 2D). Similarly, expression of Oat and Cyp7a1, two other genes restricted to pericentral hepatocytes (Braeuning et al., 2006) was dramatically reduced (Figure 2E). Moreover, the periportal genes Cyp2f2 and Hsd17 showed a dramatic upregulation, further confirming profound defects in the establishment of liver zonation (Figure 2G). E-cadherin, a marker of adult periportal hepatocytes, was not yet fully zonated in P10 wildtype livers and - as evidenced in Figure 2F - Rspo3 deletion did not result in dramatic changes in its expression pattern. The molecular changes were not due to apoptosis of pericentral hepatocytes or to altered liver growth (Figure S2A and B).

Central vein specific expression of Rspo3 is found throughout life. To address whether continuous signaling may be required to maintain liver zonation, we induced Rspo3 deletion in 8-week old animals (Figure 3A and B). qPCR analysis demonstrated a 50% reduction in Rspo3 levels following tamoxifen induction indicating only partial deletion of the floxed allele. Importantly, a similar downregulation of the Wnt/β-catenin targets Axin2 and LGR5 was observed (Figure 3C). Rspo3 deletion had no impact on Wnt2 and Wnt9b expression (Figure 3C). GS immunostaining was progressively lost in pericentral hepatocytes and 4 weeks after tamoxifen induction, some areas surrounding central veins were completely devoid of GS positive cells (Figure 3D). Interestingly endothelial RSPO3 seems to act at a very close range, as GS positive cells were observed side by side with negative cells. In situ
hybridization demonstrated the presence of both recombined and non-recombined cells in
the same vein (Figure S2E), an observation that might account for the heterogenous GS
staining pattern. The absence of GS positive cells was not due to apoptosis of pericentral
hepatocytes, as demonstrated by histological analysis (Figure S2C and D) and the lack of
activation of caspase 3 (data not shown). qPCR analysis confirmed the decreased
expression of other zonated genes such as Oat, Cyp7a1 and Rdh9 (Figure 3E). The
involvement of Rspo3 in maintaining the metabolic functions of the liver was further
evidenced by a decrease of the amount of direct (conjugated) bilirubin, the conjugation
of which is performed in pericentral hepatocytes (Figure S2E).

In adult livers, E-cadherin expression is restricted to periportal hepatocytes. Rspo3 deletion
induced a progressive expansion of the periportal field, as evidenced by a dramatic increase
in the number of hepatocyte layers displaying E-cadherin labeling. Expression of other
periportal genes such as Cyp2f2 and Hsd17 showed an equally dramatic upregulation
(Figure 3F and G). The observed phenotype mimics the changes previously observed in
livers from β-catenin KO mutants thus confirming that RSPO3 is required for Wnt/β-catenin
signaling during adulthood. Thus liver metabolic zonation is driven by an angiocrine factor -
RSPO3 - that determines Wnt/β-catenin mediated gene expression.

**Ectopic expression of Rspos is sufficient to induce β-catenin signaling and aberrant
metabolic zonation**

We next investigated whether Rspondins might be sufficient to imprint a central fate on all
hepatocytes. Both in vivo and in vitro analyses have demonstrated RSPO1 and RSPO3 to
be functionally analogous in their activation of canonical β-catenin signaling. Indeed,
stimulation of the AML12 hepatocyte cell line with recombinant RSPO1 and RSPO3 resulted
in increased activation of the Wnt/β-catenin signaling pathway albeit with somewhat lower
efficiency (Figure S3A). We therefore decided to use a Rspos gain of function (GOF) allele
(Rosa26 knock in) previously developed in our group (Figure S3B).

To ectopically express Rspos we used an inducible Alb-CreERT2 system that drives CRE
recombinase expression specifically within hepatocytes. 8 week old Alb-CreERT2: R26^{Rspo1/+}
old animals were treated with tamoxifen and the livers analyzed 2 and 28 days after the last
injection (Figure 4A and B). Rspos induction was accompanied by a dramatic upregulation of
Axin2 and LGR5, thus validating our hypothesis that RSPO1 is able to induce Wnt/β-catenin,
when ectopically expressed in hepatocytes (Figure 4C). Following Rspos activation a
transient change in Wnt9b expression was observed that disappeared at later time points
(Figure 4C). *Alb-CreERT2; R26^{Rspo1}/+* double transgenic mice showed a slight increase in liver size (Figure S3C), which might be caused by cellular hypertrophy or a slight increase in proliferation. This however did not impact on liver structure (Figure S3D). Analysis of GS distribution demonstrated an expansion of the pericentral domain, which was progressively extended to zone 2 of the liver acinus, demonstrating that RSPO1 is sufficient to activate Wnt/β-catenin signaling and therefore induce a progressive expansion of the GS+ hepatocytes (Figure 4D and E). Conversely, periportal gene expression was strongly downregulated and one month after tamoxifen injection E-cadherin was absent from all hepatocytes. qPCR analysis of additional pericentral and periportal genes confirmed that zone 2 was functionally converted into zone 1 (Figure 4F and G). These observations were further confirmed by the analysis of *Alb-CreERT2; R26^{Rspo1}/+* livers induced at E16.5, in which we also observed an expansion of the pericentral fate (Figure S4).
Discussion

β-catenin signaling is a central pathway in liver biology that serves equally important functions during development, tissue homeostasis and disease (Monga, 2014). Its role in metabolic zonation is well established and both deletion and stabilization (via removal of its negative regulator APC) have been shown to have a dramatic impact on lobular gene expression (Benhamouche et al., 2006; Burke et al., 2009). ChIP-Seq analysis has demonstrated that β-catenin interacts with TCF4 to bind pericentral target genes including GS (encoded by Glul), thus demonstrating its direct involvement in transcriptional regulation (Torre et al., 2011). A recent study by Yang et al further supported this concept by demonstrating that conditional deletion of the Wnt receptors Lrp5/6 in hepatocytes prevented the establishment of zonated functions (Yang et al., 2014).

In the present study we have shown that RSPO3 is specifically expressed in the endothelium of the central, but not the portal vein. Restricted expression commences prior to the establishment of zonation and deletion of Rspo3 during late stages of development interfered with the onset of zonation, thus confirming its essential role in establishing central hepatocyte identity. Furthermore, Rspo3 deletion had no impact on Wnt expression levels demonstrating that the observed effects are due to Wnt/β-catenin modulation rather than loss of Wnt ligands. Surprisingly, some pericentral genes, such as Rdh9, displayed little change upon Rspo3 deletion. This suggests that additional mechanisms may contribute to regulate hepatic zonation, a hypothesis recently put forward by Gebhardt R and Matz-Soja M (Gebhardt and Matz-Soja, 2014). Although dynamics of the zonated genes during the perinatal period does not fully recapitulate that of Wnt/β-catenin activity, qPCR analysis of the known β-catenin targets Axin2, Oat and Cyp2f2 confirms the strong impact of Rspo3 deletion or activation of Rspo1 on Wnt/β-catenin driven transcriptional regulation.

The fact that loss of Rspo/Wnt/β-catenin signaling prevents the activation of the pericentral differentiation suggests that portal identity is the hepatocyte default state. Indeed, immediately after birth hepatocytes are periportal like and although Wnt/β-catenin signaling is fully established by P10, the expression of periportal markers such as E-cadherin (also considered as Wnt/β-catenin buffering system) is still retained in most hepatocytes indicating that pericentral differentiation is a form of specialization that allows the organism to cope with changes in metabolic requirements.

By adulthood metabolic zonation is firmly established, with precise gene signatures distinguishing zone 1 and zone 3 hepatocytes (Braeuning et al., 2006). The expression of GS and Cyp7a1 (and Rdh9) closely follows that of the classical Wnt/β-catenin targets Axin2
and Lgr5 thus further supporting the concept that Wnt/β-catenin is the master regulator of liver zonation. While this manuscript was under revision, a paper by Wang et al. reported that Wls, a gene essential for the sorting and secretion of WNT proteins, is required within the endothelium to drive β-catenin induced cell renewal in central hepatocytes and establish zonation (Wang et al., 2015). The observed phenotype in our mutants is similar, but stronger than that observed by endothelial deletion Wls demonstrating that Rspo3 plays a crucial role in the regulation of Wnt/β-catenin signaling. The authors further identified both Wnt2 and Wnt9b to be specifically expressed in endothelial cells of the central vein (Wang et al., 2015), a finding that nicely confirms our own analysis. While a specific deletion of Wnt2 and Wnt9b was not performed in this study, it is likely that these two genes act together with Rspo3 to establish and maintain liver zonation.

Ectopic expression of Rspo1 throughout the liver acinus resulted in the transformation of zone 2 hepatocytes to a pericentral (zone 3) identity, as evidenced by the expansion of the number of GS+ hepatocyte layers. Surprisingly, hepatocytes close to the perportal system failed to express GS. This is in contrast to mice carrying hepatocyte-specific deletion of APC, a negative regulator of β-catenin signaling (Benhamouche et al., 2006). APC levels are higher in periportal hepatocytes (Benhamouche et al., 2006) and it is conceivable that β-catenin activation by the Rspo1 GOF allele was insufficient to completely overcome the periportal APC activity. Of note, RSPO1 is less efficient in supporting canonical β-catenin signaling when compared to RSPO3 in cell culture systems (Kim et al., 2008). Similarly in AML12 cells, recombinant RSPO1 required ten times higher concentrations than RSPO3 to induce similar levels of Axin2.

An alternative explanation for the conversion of zone 2 hepatocytes in Rspo1 overexpressing mice could be the expansion of the recently identified Axin2+ progenitors (Wang et al., 2015) that in combination with a permissive signaling environment (high Rspo1 levels) would keep their identity while being displaced along the central-portal axis. Although plausible, this hypothesis has several pitfalls: 1) the expansion of the GS+ domain occurs in a reasonably short time frame when compared to the time required for Axin2+ progenitors to replace the liver parenchyma (Wang et al., 2015); 2) while periportal hepatocytes fail to activate the Wnt/β-catenin target GS, they do respond to Rspo1 upregulation, as evidenced by the loss of E-cadherin expression; 3) long term follow up of the GOF animals (9 months) fail to demonstrate an expansion of the GS+ hepatocytes towards the portal vein. These observations suggest that Rspo1 is inducing Wnt/β-catenin signaling, probably by amplifying endogenous low level Wnt signals that are absent from periportal hepatocytes. Alternatively,
a counteracting signal, potentially released from the periportal triad, could interfere with full-blown activation of β-catenin signaling in our gain of function model.

Rspondins are generally considered as facilitators of Wnt/β-catenin signaling that exert their function by binding to LGR receptors, most notably LGR5. LGR5 expression appears to be very low in the liver and we were unable to detect expression by ISH or antibody staining. Similarly, lineage-tracing experiments using an LGR5-CreERT2 line did not mark central hepatocytes (Huch et al., 2013). While expression appears to be low, differential microarray analysis of central versus portal hepatocytes identified LGR5 to be enriched in central hepatocytes, which is consistent with an RSPO3-LGR5-β-catenin cascade in this compartment. Wang et al. recently performed a lineage tracing analysis of Axin2+ hepatocytes and demonstrated that under physiological conditions, pericentral hepatocytes function as progenitors that replace the parenchyma after one year. They further reported the existence of a progenitor niche provided by endothelial Wnt2 and Wnt9b (Wang et al., 2015). Interestingly, loss of Wnt ligands resulted in decreased, but not abolished proliferation of GS+ hepatocytes. However, the presence of GS in these pericentral hepatocytes suggests that residual Wnt/β-catenin signaling persisted in their model, which might account for the small differences observed. Rsapo3 KO animals completely lack GS expression and it would be interesting to test whether progenitor expansion would be more strongly affected in these mutants. Unfortunately, ubiquitous deletion of Rsapo3 causes mortality 6 weeks following induction thus preventing long-term analysis.

In conclusion our data imply that Rspondin activity is required for Wnt induced signaling, and may therefore be considered as a gatekeeper for the activation of the β-catenin pathway in liver hepatocytes. The specific expression of Rsapo3, Wnt2 and Wnt9b in central veins is intriguing, as they allow distinction of the endothelial compartments of the liver on the molecular level. Although several hypotheses have been put forward to explain the mechanisms responsible for the onset and maintenance of metabolic zonation (Gebhardt and Matz-Soja, 2014; Torre et al., 2010), the signal triggering Wnt/β-catenin activation has remained elusive. Potential signals may include gradients of oxygen, nutrients, metabolites, hormones and cytokines along the lobules (Gebhardt and Matz-Soja, 2014). Whatever the mechanism, it seems likely that it will directly influence and induce the expression of Rsapo3 in the endothelial compartment of central veins. The identification of RSPO3 as a key regulator of central identity may allow the identification of such signaling pathways, by monitoring the expression of RSPO3 under various conditions.
EXPERIMENTAL PROCEDURES

Mice
All animal work was conducted according to national and international guidelines. The cCAG CreERT2; and Alb CreERT2 mouse lines were previously described (Hayashi and McMahon, 2002; Schuler et al., 2004). The Rsps3 conditional allele has been generated at the Riken core facility and will be described elsewhere (details on request). Rsps3 deletion was achieved by intraperitoneal injection (i.p.) of 5 mg of tamoxifen (Sigma-Aldrich) dissolved in corn oil (Sigma-Aldrich), per 25 g of body weight. Cre activation in the perinatal period was obtained by a single tamoxifen administration into pregnant females carrying E16.5 embryos. Cre activation in adult mice was obtained by administrating tamoxifen for every other day for one week starting at 8 weeks of age.

Immunofluorescence and Histological Analysis
For immunofluorescence experiments, tissues were fixed overnight in ANTIGENFIX (DiaPath), progressively dehydrated, and paraffin-embedded. 5 µm thick sections were rehydrated, boiled in a pressure cooker for 2 min with Antigen Unmasking Solution (Vector Laboratories), and blocked in a PBS solution containing 10% normal donkey serum (Jackson Immunoresearch) and 1% BSA and 0.1% TritonX100. All primary antibodies were applied overnight at 4°C at the concentration listed in the Supplemental Experimental Procedures. Secondary antibodies were diluted 1:400 and applied at room temperature for 1 hr. Glutamine Synthetase immunofluorescence after RNA in situ hybridization was performed without antigen retrieval. For histological analysis, tissues were fixed overnight in ANTIGENFIX (DiaPath) progressively dehydrated and embedded in paraffin-embedding media. 5 µm thick sections were then stained with Hematoxylin and Eosin (HE).

RNA In Situ Hybridization
Tissues were fixed overnight in ANTIGENFIX (DiaPath), progressively dehydrated, and paraffin-embedded. Then 7 µm thick sections were hybridized with Rsps3 probe (details on request) according to previously described protocols (Comai et al., 2010).

Cell culture
The AML12 cell line was maintained in a 1:1 mixture of Dulbecco’s modified Eagle’s medium and Ham’s F12 medium with 0.005 mg/ml insulin, 0.005 mg/ml transferrin, 5 ng/ml selenium, 40ng/ml dexamethasone and 10% fetal bovine serum, in a humidified atmosphere (5% CO2) at 37°C. All culture reagents were purchased from Invitrogen (Carlsbad, CA). All stimulations were performed according to the following procedure: cells were propagated in standard
culture medium, serum-starved for 12 h, after which recombinant mouse RSPO1 or RSPO3 proteins (R&D) were added in fresh serum-free medium. Cells were stimulated for 24h and RNA was extracted.

Liver cell isolation and flow cytometry
Livers were collected from 8 week old animals and non parenchymal cells were isolated following the protocol described by Rountree et al (Rountree et al., 2011). Briefly, the tissue was digested in PBS containing 5mg collagenase type I (Worthington), 5mg pronase (Roche) and 1mg DNase (Roche) for 30 min at 37C. The liver was dissociated and passed through a 70 μm filter. Hepatocytes were separated from non parenchymal cells by serial low speed centrifugations (50g for 1 min). The supernatant was then stained with CD31-647 (eBioscience). Cells were analysed with a FACS ARIA II (BD).

RT-qPCR
RNA was extracted from AML12 cells, P10 or adult livers using TRIzol reagent (Invitrogen), following the manufacturer’s instructions. Reverse transcription was performed using M-MLV reverse transcriptase (Invitrogen) in combination with polydT primers. The cDNA obtained was then used as a template for quantitative PCR carried out using the Syber Green Master Kit (Roche) and a Light Cycler 480 (Roche). Expression levels were normalized for GAPDH. Primers (see primers list in the Supplemental Experimental Procedures) were designed on the Roche Universal Probe Library website.

Statistical Analysis
Statistical analysis was performed according to the Student’s t test. Error estimates values are expressed as SD.

Acknowledgements
We would like to thank the staff of the animal facility for their outstanding work and dedication and Agnes Loubat for expert FACS analysis; we are grateful to Christine Perret for initial input. We are indebted to Fariba Ranc for the generation of the Rspos gain of function mice and Fabio Avoglio for experimental assistance and scientific discussion. This work was supported by grants from ARC (SL22020605297), ANR (ANR-ADSTEM & ANR-11-LABX-0028-01) and the FDF (Fondation de France) to A.S.; A.S.R. was supported by a fellowship from ARC (Association pour la Recherche sur le Cancer). T.K. was supported by a fellowship from the Welcome Trust.
Author contributions

A.S.R. and A.S. designed the project. A.S.R. carried out all experiments, if not otherwise stated. V.V. generated the *Rspo1* gain of function allele and performed RNA *in situ* hybridization. M.M. provided expertise in imaging. A.C. provided support for managing the mouse colony. T.K. analyzed histological analysis of liver sections. H.O. provided the *Rspo3* floxed allele. A.S.R. and A.S. wrote the manuscript, and all authors provided editorial input.
References

Figure legends

Figure 1: *Rspo3* is an endothelial marker displaying liver patterning.

(A) *Rspo3* in situ hybridization and immuno-labeling of Keratin 18 (green) in E17.5 livers. *Rspo3*-positive endothelial cells were restricted to the central vein, as evidenced by the lack of a differentiating ductal plate labeled by Keratin 18 expression (middle panel). (B) *Rspo3* positive cells (blue) are detected in the central vein endothelium in P10 and 8-week old animals. Few *Rspo3*+ cells can be found in the liver sinusoids in the vicinity of central veins. The *Rspo3* expression domain overlaps with that of zone 3 hepatocytes as evidenced by Glutamine Synthetase labeling (green). See also Supplementary Figure 1. (C) qPCR analysis demonstrating *Rspo3*, *Wnt2* and *Wnt9b* enrichment in CD31+ sorted endothelial cells. * p< 0.05; **0.05< p< 0.001, *** p< 0.001 using student T test. All scale bars represent 50μm; error bars represent SD.

Figure 2: *Rspo3* is required for the onset of metabolic zonation.

(A) Schematic representation of the genetic approach used to delete *Rspo3*. Red
Figure 3: Rspo3 is required for the maintenance of metabolic zonation.

(A) Schematic representation of the genetic approach used to delete Rspo3 in adulthood. Red arrowheads indicate LoxP sites. (B) Tamoxifen induction protocol used to delete Rspo3 in 8-week old animals. KO livers were analyzed 2 days and 4 weeks after the final injection. (C) qPCR analysis demonstrating partial Rspo3 deletion, absence of changes in Wnt2 and Wnt9b expression and a downregulation of the Wnt/β-catenin target genes Axin2 and LGR5. (D) GS expression (red) is lost in pericentral hepatocytes following Rspo3 deletion. The endothelial Wnt ligands Wnt2 and Wnt9b remained unchanged. Portal tracts can be identified by bile ducts labeled by Krt18 (green). (E) qPCR analysis of additional Wnt/β-catenin target/zonated genes demonstrated downregulation of pericentral restricted genes. (F) E-cadherin immunostaining (green) demonstrating a shift in its expression gradient. (G) Wnt/β-catenin negative targets become strongly upregulated by Rspo3 deletion. cv, central vein; pv, portal vein. * p < 0.05; **0.05 < p < 0.001, *** p < 0.001 using student T test. All scale bars represent 100μm; error bars represent SD. See also Supplementary Figure S2

Figure 4: Ectopic Rspo1 expression induces Wnt/β-catenin signaling and disrupts liver zonation

(A) Schematic representation of the genetic approach used to ectopically express Rspo1 in adulthood. Red arrowheads indicate LoxP sites. (B) Tamoxifen induction protocol used to induce Rspo1 expression in 8-week old animals; livers were analyzed 2 days and 4 weeks after the final injection. (C) qPCR analysis demonstrating Rspo1 induction and upregulation of the Wnt/β-catenin target genes Axin2 and LGR5. Wnt2 and Wnt9b expression was not significantly affected by Rspo1 expression. (D) In non-induced animals, GS expression is restricted to the hepatocytes surrounding the central vein (green), ectopic expression of Rspo1 induces an expansion of the GS+ domain. Portal tracts can be identified by bile ducts
labeled by Krt18 (red). (E) qPCR analysis of additional Wnt/β-catenin target/zonated genes demonstrating upregulation of pericentral genes. (F) Lack of E-cadherin immunostaining (green) in periportal hepatocytes demonstrating inhibition of periportal specification by RSPO1. (G) Wnt/β-catenin negative targets are strongly inhibited by Rspo1 upregulation. cv, central vein. * p < 0.05; ** 0.05 < p < 0.001, *** p < 0.001 using student T test. All scale bars represent 100μm; error bars represent SD. See also Supplementary Figures S3 & S4.
Figure 1
Figure 2
Figure 3
Figure 4
Figure S1
Figure S2

A) Rspo3^{fl/fl} vs cCAG: CreERT2: Rspo3^{fl/fl}

B) Liver/Body weight (%)

C) Non-induced vs 2d after TAM vs 4w after TAM

D) Liver/Body weight (%)

E) Glutamine Synthetase

F) ISH Rspo3 vs 2d after TAM

Figure S2
Figure S3

A

(Axin2 and LGR5) fold change in different conditions: CTR, 100 ng/ul, 100 ng/ul, 250 ng/ul, 500 ng/ul, and 1 ug/ul.

B

Diagram showing the process of homologous recombination in mouse ES cells.

C

Liver/body weight (%) in different conditions: WT, 2d, and 4w.

D

Histological images of liver sections from non-induced, 2d after TAM, and 4w after TAM conditions, showing pericentral and periportal regions.
Figure S4
Figure S1, related to Figure 1: Rspo1, 2 and 4 are not involved in liver development and homeostasis (A) Expression profile of Rspondin family members in E17.5, P10 and 8 week old livers demonstrating low or absent expression of Rspo2 and Rspo4 at all stages analysed. cDNAs from whole E10.5 and E12.5 embryos were used as positive controls. (B) Haematoxilin and Eosin staining of liver sections reveals normal histology in Rspo1 KO mice. (C) Glutamine Synthetase labeling (red) is maintained in pericentral hepatocytes demonstrating that Rspo1 deletion has no impact on liver zonation. Scale bar represents 50μm (B) and 100μm (C).

Figure S2, related to Figures 2 and 3: Deletion of Rspo3 does not impair liver development and maintenance. (A) Haematoxilin and Eosin staining demonstrating overall normal liver histology in Rspo3 KO mice. (B) Liver/Body weight ratios at P10 remain unaltered demonstrating that Rspo3 is not required for liver growth. (C) Haematoxilin and Eosin staining in 8 week old animals showing lack of major changes in liver histology in Rspo3 KO mice. (D) Liver/Body weight ratios in adult mice, showing that deletion of Rspo3 has no dramatic impact on tissue maintenance. (E) Billirubin quantification demonstrating defects in glucuronidation process (F) Rspo3 in situ hybridization demonstrating heterogeneous gene recombination 2 days following tamoxifen induction. GS labeling (green) showing beginning loss (white arrowheads) of pericentral identity in zone 3 hepatocytes. cv, central vein; pv, portal vein. All scale bars represent 100μm; error bars represent SD.

Figure S3, related to Figure 4: Ectopic Rspo1 expression induces a mild hepatomegaly that is not accompanied by changes in liver structure. (A) qPCR analysis of the Wnt/β-catenin target genes Axin2 and LGR5 demonstrating that both recombinant RSPO1 and RSPO3 are able to induce Wnt/β-catenin signaling (albeit at different efficiencies) in the AML12 hepatocyte cell line. (B) Schematic representation of the targeting procedure to obtain the conditional Rspo1 gain of function allele. The cCAG promoter was inserted in front of a floxed PGK-Neo STOP cassette, which prevents expression of Rspo1 before recombination. Cre–induced recombination results in excision of the cassette and - as a consequence - activation of Rspo1. Green triangle: Lox P site, IVS: intervening sequence, Rspo1 exons are represented by grey boxes, black and pink lines indicate Rosa26 Locus and Rspo1 intron 5-6, respectively, att-B1 and attB2: Gateway cloning sites. (C) Liver/Body weight ratios evidencing mild hepatomegaly 2 days following the last tamoxifen injection. No further increase in liver size was observed after an additional chase of 4 weeks. (D) Haematoxilin and Eosin staining demonstrating the absence of gross
histological abnormalities in Rspo1 GOF livers. cv, central vein; pv, portal vein. * p<0.05; **0.05< p< 0.001, *** p< 0.001 using student T test. All scale bars represent 100μm; error bars represent SD.

Figure S4, related to Figure 4: Ectopic Rspo1 expression disrupts the onset of metabolic zonation. (A) Schematic representation of the genetic approach used to induce Rspo1. Red arrowheads indicate LoxP sites. (B) Tamoxifen induction protocol used to induce Rspo1 in the perinatal period (2mg/25 grams of mice). (C) qPCR analysis demonstrating an 8 fold increase of Rspo1 expression that is accompanied by upregulation of the Wnt/β-catenin target genes Axin2 (4 fold) and Lgr5 (6 fold). (D) GS expression (green) is expanded upon Rspo1 induction. Portal tracts can be identified by bile ducts labeled by Krt18 (red). (E) qPCR analysis of additional Wnt/β-catenin target/zonated genes demonstrated upregulation of pericentrally restricted genes. (F) E-cadherin immunostaining (green) demonstrating a shift in its expression gradient. (G) Wnt/β-catenin negative targets become strongly downregulated upon Rspo1 induction. cv, central vein; pv, portal vein. * p< 0.05; **0.05< P< 0.001, *** P< 0.001 using student T test. All scale bars represent 100μm; error bars represent SD.
Supplementary Tables:

Antibody Table

<table>
<thead>
<tr>
<th></th>
<th>Host</th>
<th>Dilution</th>
<th>Producer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutamine Synthetase</td>
<td>mouse</td>
<td>1:1000</td>
<td>BD Transduction Laboratories</td>
</tr>
<tr>
<td>Keratin 18</td>
<td>rabbit</td>
<td>1:400</td>
<td>Abcam</td>
</tr>
<tr>
<td>E-cadherin</td>
<td>mouse</td>
<td>1:1000</td>
<td>BD Transduction Laboratories</td>
</tr>
</tbody>
</table>

Primer Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Forward</th>
<th>Reverse</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axin2</td>
<td>GCAGGACGCTTCACCTCTTC</td>
<td>TGCCAGTTTCTTTGGCTTTT</td>
<td>qPCR</td>
</tr>
<tr>
<td>Cyp2f2</td>
<td>CGGGAACCTTTGGAGGCATGAA</td>
<td>GTTTCTGAGAGGCTGATCCAT</td>
<td>qPCR</td>
</tr>
<tr>
<td>Cyp7a1</td>
<td>CACCATTGCTGCAACCTTTCT</td>
<td>TTTGAGCAGCTCTTGTAATG</td>
<td>qPCR</td>
</tr>
<tr>
<td>Hsd17b13</td>
<td>GATGGCTGGAAGTGCTGGCAACCTGGG</td>
<td>GTTCAGAGGGTCTCAATCCC</td>
<td>qPCR</td>
</tr>
<tr>
<td>LGR5</td>
<td>CTCATGCAGCGAGCTGCTTGCT</td>
<td>CACGCCAGTACCAAATAGGTG</td>
<td>qPCR</td>
</tr>
<tr>
<td>Oat</td>
<td>CACCATTGCTGCAACCTTTCT</td>
<td>TTTGAGCAGCTCTTGTAATG</td>
<td>qPCR</td>
</tr>
<tr>
<td>Rdh9</td>
<td>GAGGGCTGTTGGAACAGAGAG</td>
<td>GTTCAGAGGGTCTCAATCCC</td>
<td>qPCR</td>
</tr>
<tr>
<td>Rspo1</td>
<td>CGCCGAGCGCAGCAGCAGCAG</td>
<td>CTTCCTGAGAGGCTGATCCAT</td>
<td>RT-PCR; qPCR</td>
</tr>
<tr>
<td>Rspo2</td>
<td>CCAACCAGCGAGACAGAGCAC</td>
<td>GAGGGCTGTTGGAACAGAAG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Rspo3</td>
<td>CCAACCAGCGAGACAGAAGAAGAGC</td>
<td>GAGGGCTGTTGGAACAGAAGAAGAAGC</td>
<td>RT-PCR; qPCR</td>
</tr>
<tr>
<td>Rspo4</td>
<td>TGTTCTTCTTGTGCTGGGGATT</td>
<td>TCTCCTGAGAGGCTGATCCAT</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Alb:CreERT2</td>
<td>GGAACCCAAACTGATGACCA</td>
<td>TTAACACAGAACACAAAACAAAT</td>
<td>Genotyping</td>
</tr>
<tr>
<td>cCAG:CreERT2</td>
<td>CCCACCGTCTGAGATGATCTCAG</td>
<td>GCGGCTGCTGCGAGTAAAAACAT</td>
<td>Genotyping</td>
</tr>
<tr>
<td>Rspo3fl/</td>
<td>GCAACTTGGAGTTGCAATCC</td>
<td>CCAGAATGTAACAGAGATCCTTC</td>
<td>Genotyping</td>
</tr>
<tr>
<td>Rsps1 GOF</td>
<td>CGACCTGACCGCCCAAGTCTAG</td>
<td>TGTTCATGTCGGGCTGAGG</td>
<td>Genotyping</td>
</tr>
</tbody>
</table>
Supplementary Methods:

Billirubin levels were quantified using the Billirubin quantification Kit (Sigma-Aldrich) according to the manufacturers instructions. Serum was collected from Rsopo3 KO animals 4 weeks following tamoxifen induction.