Personality and health: A problem of convergent-discriminant validity

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Bad traits kill you ...

... or, then, maby not

An example

Another example

Conclusion

Personality and health
A problem of convergent-discriminant validity

René Mõttus

University of Tartu and University of Edinburgh
Bad personality makes you sick
And then kills

- If you score low on **Emotional stability** and **Conscientiousness**
 - Smoking, drinking, physical inactivity, poor diet
 - High BMI, elevated inflammation, metabolic syndrome, diabetes, cardiovascular disease, sexually transmitted disease etc.
 - Death
- Low **intelligence** is no better

Terracciano and Costa, 2004; Malouff et al., 2007; Rhodes and Smith, 2006; Mõttus et al., 2 x in press; Mõttus et al., in revision; Sutin et al. (2011), Sutin et al., 2010, 2010 and 2011, Goodwin and Friedman, 2006; Mõttus et al., in press; Kern and Friedman, 2008
Bad traits kill you ... or, then, maby not

But the effects are often really tiny
I mean, really tiny. Or they aren’t there at all

Inflammatory markers:

- **Neuroticism** and **Conscientiousness** correlated to IL-6:
 - $r = 0.04$ and -0.07 ($p < 0.01$; $N = 5,000$; Sutin et al., 2010)
 - Small studies have stronger effects (up to $r = .40$) but for different traits (Openness)

- Age-11 **intelligence** and age-45 inflammatory markers:
 - $r = -0.01$ to -0.06 ($p < 0.01$; $N = 9,400$; Calvin et al., 2011)

- Traits account for **less than 0.5% of variance** in inflammation
Bad traits kill you...
... or, then, maby not

But the effects are often really tiny
I mean, really tiny. Or they aren’t there at all

Inflammatory markers:

- **Neuroticism** and **Conscientiousness** correlated to **IL-6**:
 - $r = 0.04$ and -0.07 ($p < 0.01$; $N = 5,000$; Sutin et al., 2010)
 - Small studies have stronger effects (up to $r = .40$) but for different traits (Openness)

- Age-11 **intelligence** and age-45 inflammatory markers:
 - $r = -0.01$ to -0.06 ($p < 0.01$; $N = 9,400$; Calvin et al., 2011)

- Traits account for less than **0.5% of variance** in inflammation
But the effects are often really tiny
I mean, really tiny. Or they aren’t there at all

Inflammatory markers:

• **Neuroticism** and **Conscientiousness** correlated to **IL-6**:
 • $r = 0.04$ and -0.07 ($p < 0.01$; $N = 5,000$; Sutin et al., 2010)
 • Small studies have stronger effects (up to $r = .40$) but for different traits (Openness)

• **Age-11 intelligence** and age-45 inflammatory markers:
 • $r = -0.01$ to -0.06 ($p < 0.01$; $N = 9,400$; Calvin et al., 2011)

• Traits account for **less than 0.5% of variance** in inflammation
But the effects are often really tiny
 I mean, really tiny. Or they aren’t there at all

Inflammatory markers:

- **Neuroticism** and **Conscientiousness** correlated to **IL-6**:
 - $r = 0.04$ and -0.07 ($p < 0.01$; $N = 5,000$; Sutin et al., 2010)
 - Small studies have stronger effects (up to $r = .40$) but for different traits (Openness)

- **Age-11 intelligence** and age-45 inflammatory markers:
 - $r = -0.01$ to -0.06 ($p < 0.01$; $N = 9,400$; Calvin et al., 2011)

- Traits account for **less than 0.5% of variance** in inflammation
Maybe that’s OK
Did we really expect to do better?

- There is probably about e^6 reasons why a particular bad health condition comes about
- Often probably idiosyncratic
But maybe stronger effects are sometimes just masked

Maybe bad is not bad for everyone

• Let’s assume that traits influence health via health-related life-style choices and health-care
• Then maybe:
 • If your body is not inherently liable to a particular health issue, the personality-related behavioural choices may be less relevant (e.g., genes x trait interactions)
 • In an environment that facilitates health-care, you may have to invest less personal effort in keeping healthy compared to an adverse environment (e.g., SES x trait interactions)
 • If your body is young, the bad choices may have had less time to have an effect compared to when it is old (age x trait interactions)
But maybe stronger effects are sometimes just masked

Maybe bad is not bad for everyone

• Let’s assume that traits influence health via health-related life-style choices and health-care
• Then maybe:
 • If your body is not inherently liable to a particular health issue, the personality-related behavioural choices may be less relevant (e.g., genes x trait interactions)
 • In an environment that facilitates health-care, you may have to invest less personal effort in keeping healthy compared to an adverse environment (e.g., SES x trait interactions)
 • If your body is young, the bad choices may have had less time to have an effect compared to when it is old (age x trait interactions)
Bad traits kill you... or, then, maby not

But maybe stronger effects are sometimes just masked
Maybe bad is not bad for everyone

But maybe stronger effects are sometimes just masked

- Let’s assume that traits influence health via health-related life-style choices and health-care
- Then maybe:
 - If your body is not inherently liable to a particular health issue, the personality-related behavioural choices may be less relevant (e.g., genes x trait interactions)
 - In an environment that facilitates health-care, you may have to invest less personal effort in keeping healthy compared to an adverse environment (e.g., SES x trait interactions)
 - If your body is young, the bad choices may have had less time to have an effect compared to when it is old (age x trait interactions)
But maybe stronger effects are sometimes just masked

Maybe bad is not bad for everyone

• Let’s assume that traits influence health via health-related life-style choices and health-care
• Then maybe:
 • If your body is not inherently liable to a particular health issue, the personality-related behavioural choices may be less relevant (e.g., genes x trait interactions)
 • In an environment that facilitates health-care, you may have to invest less personal effort in keeping healthy compared to an adverse environment (e.g., SES x trait interactions)
 • If your body is young, the bad choices may have had less time to have an effect compared to when it is old (age x trait interactions)
But maybe stronger effects are sometimes just masked

Maybe bad is not bad for everyone

• Let’s assume that traits influence health via health-related life-style choices and health-care

• Then maybe:
 • If your body is not inherently liable to a particular health issue, the personality-related behavioural choices may be less relevant \(\text{(e.g., genes x trait interactions)}\)
 • In an environment that facilitates health-care, you may have to invest less personal effort in keeping healthy compared to an adverse environment \(\text{(e.g., SES x trait interactions)}\)
 • If your body is young, the bad choices may have had less time to have an effect compared to when it is old \(\text{(age x trait interactions)}\)
Bad traits kill you ... or, then, maby not

But maybe stronger effects are sometimes just masked

Maybe bad is not bad for everyone

• Let’s assume that traits influence health via health-related life-style choices and health-care

• Then maybe:
 • If your body is not inherently liable to a particular health issue, the personality-related behavioural choices may be less relevant (e.g., genes x trait interactions)
 • In an environment that facilitates health-care, you may have to invest less personal effort in keeping healthy compared to an adverse environment (e.g., SES x trait interactions)
 • If your body is young, the bad choices may have had less time to have an effect compared to when it is old (age x trait interactions)
Bad traits kill you ... or, then, maby not

An example

Another example

Conclusion

Could be built into our hypotheses

- Why not specify *when* these associations are *more* and when *less* likely to happen?
- Akin to the convergent-discriminant validity concept
Bad traits kill you …

… or, then, maby not

An example

Another example

Conclusion

Inherent vulnerability for diabetes

Is it especially bad if you have bad genes AND low IQ?

• Diabetes and related traits may be linked to low intelligence

• Can genetic risk for type 2 diabetes moderate the associations?
 • When the risk is higher, low IQ and the behaviours it entails are more consequential?
 • When the risk is lower, IQ may matter less
Inherent vulnerability for diabetes

Is it especially bad if you have bad genes AND low IQ?

- Diabetes and related traits may be linked to low intelligence
- Can genetic risk for type 2 diabetes moderate the associations?
 - When the risk is higher, low IQ and the behaviours it entails are more consequential?
 - When the risk is lower, IQ may matter less
Inherent vulnerability for diabetes
Is it especially bad if you have bad genes AND low IQ?

- Diabetes and related traits may be linked to low intelligence
- Can genetic risk for type 2 diabetes moderate the associations?
 - When the risk is higher, low IQ and the behaviours it entails are more consequential?
 - When the risk is lower, IQ may matter less
Inherent vulnerability for diabetes
Is it especially bad if you have bad genes AND low IQ?

• Diabetes and related traits may be linked to low intelligence
• Can genetic risk for type 2 diabetes moderate the associations?
 • When the risk is higher, low IQ and the behaviours it entails are more consequential?
 • When the risk is lower, IQ may matter less
Genetic risk X IQ interaction
Lothian Birth Cohort 1936; 1,004 people at age 70 (86 with diabetes)

- Childhood intelligence predicting diabetes and related traits
 - Glycated hemoglobin (HbA1C), body mass index (BMI)

- Polygenic risk scores for Type 2 diabetes
 - Based on Type 2 Diabetes GWAS consortium findings (Voight et al., 2010) ¹
 - Using all available SNPs, regardless of the ‘significance’ of the associations with Type 2 Diabetes
 - Using SNPs that had associations with T2D at various levels of significance (p < 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01)

¹ Calculated by Michelle Luciano
Genetic risk X IQ interaction
Lothian Birth Cohort 1936; 1,004 people at age 70 (86 with diabetes)

- Childhood intelligence predicting diabetes and related traits
 - Glycated hemoglobin (HbA1C), body mass index (BMI)

- Polygenic risk scores for Type 2 diabetes
 - Based on Type 2 Diabetes GWAS consortium findings (Voight et al., 2010) ¹
 - Using all available SNPs, regardless of the ‘significance’ of the associations with Type 2 Diabetes
 - Using SNPs that had associations with T2D at various levels of significance (p < 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01)

¹ Calculated by Michelle Luciano
Genetic risk X IQ interaction
Lothian Birth Cohort 1936; 1,004 people at age 70 (86 with diabetes)

- Childhood intelligence predicting diabetes and related traits
 - Glycated hemoglobin (HbA1C), body mass index (BMI)

- Polygenic risk scores for Type 2 diabetes
 - Based on Type 2 Diabetes GWAS consortium findings (Voight et al., 2010) \(^1\)
 - Using all available SNPs, regardless of the ‘significance’ of the associations with Type 2 Diabetes
 - Using SNPs that had associations with T2D at various levels of significance (p < 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01)

\(^1\) Calculated by Michelle Luciano
Predictors of self-reported diabetes

- The eight risk scores, main effects: $OR = 1.61$ to 1.90 ($p < 0.001$)
- Age 11 IQ main effects: $OR = 0.72$ to 0.81 (mostly significant)

- Interactions: $p = 0.07$ to 0.26
 - Basically non-significant, that is
- Genetic risk groups (median-split on the all-SNP risk score)
 - Low genetic risk: the effect of age 11 IQ: $OR = 0.81$ ($p = 0.27$)
 - High genetic risk: the effect of age 11 IQ: $OR = 0.67$ ($p = 0.002$)
Predictors of self-reported diabetes

- The eight risk scores, main effects: $OR = 1.61$ to 1.90 ($p < 0.001$)
- Age 11 IQ main effects: $OR = 0.72$ to 0.81 (mostly significant)

- Interactions: $p = 0.07$ to 0.26
 - Basically non-significant, that is

- Genetic risk groups (median-split on the all-SNP risk score)
 - Low genetic risk: the effect of age 11 IQ: $OR = 0.81$ ($p = 0.27$)
 - High genetic risk: the effect of age 11 IQ: $OR = 0.67$ ($p = 0.002$)
Predictors of self-reported diabetes

- The eight risk scores, main effects: $OR = 1.61$ to 1.90 ($p < 0.001$)
- Age 11 IQ main effects: $OR = 0.72$ to 0.81 (mostly significant)
- Interactions: $p = 0.07$ to 0.26
 - Basically non-significant, that is
- Genetic risk groups (median-split on the all-SNP risk score)
 - Low genetic risk: the effect of age 11 IQ: $OR = 0.81$ ($p = 0.27$)
 - High genetic risk: the effect of age 11 IQ: $OR = 0.67$ ($p = 0.002$)
Predictors of self-reported diabetes

- The eight risk scores, main effects: \(OR = 1.61 \) to \(1.90 \) (\(p < 0.001 \))
- Age 11 IQ main effects: \(OR = 0.72 \) to \(0.81 \) (mostly significant)
- Interactions: \(p = 0.07 \) to \(0.26 \)
 - Basically non-significant, that is
- Genetic risk groups (median-split on the all-SNP risk score)
 - Low genetic risk: the effect of age 11 IQ: \(OR = 0.81 \) (\(p = 0.27 \))
 - High genetic risk: the effect of age 11 IQ: \(OR = 0.67 \) (\(p = 0.002 \))
Predictors of self-reported diabetes

• The eight risk scores, main effects: \(OR = 1.61 \) to \(1.90 \) \((p < 0.001)\)
• Age 11 IQ main effects: \(OR = 0.72 \) to \(0.81 \) (mostly significant)

• Interactions: \(p = 0.07 \) to \(0.26 \)
 • Basically non-significant, that is

• Genetic risk groups (median-split on the all-SNP risk score)
 • Low genetic risk: the effect of age 11 IQ: \(OR = 0.81 \) \((p = 0.27)\)
 • High genetic risk: the effect of age 11 IQ: \(OR = 0.67 \) \((p = 0.002)\)
Predictors of HbA1C

• The eight risk scores, main effects: $\beta = 0.17$ to 0.20 ($p < 0.001$)
• Age 11 IQ main effects: $\beta = -0.12$ to -0.13 ($p < 0.001$)

• Interactions: $p = 0.02$ to 0.43
 • all ps < 0.05 except for the two least-SPN-inclusive risk scores
• Genetic risk groups
 • Low genetic risk: the effect of age 11 IQ: $\beta = -0.11$ ($p < 0.05$)
 • High genetic risk: the effect of age 11 IQ: $\beta = -0.18$ ($p < 0.001$)
Predictors of HbA1C

- The eight risk scores, main effects: $\beta = 0.17$ to 0.20 ($p < 0.001$)
- Age 11 IQ main effects: $\beta = -0.12$ to -0.13 ($p < 0.001$)
- Interactions: $p = 0.02$ to 0.43
 - all ps < 0.05 except for the two least-SPN-inclusive risk scores
- Genetic risk groups
 - Low genetic risk: the effect of age 11 IQ: $\beta = -0.11$ ($p < 0.05$)
 - High genetic risk: the effect of age 11 IQ: $\beta = -0.18$ ($p < 0.001$)
Predictors of HbA1C

- The eight risk scores, main effects: $\beta = 0.17$ to 0.20 ($p < 0.001$)
- Age 11 IQ main effects: $\beta = -0.12$ to -0.13 ($p < 0.001$)

- Interactions: $p = 0.02$ to 0.43
 - all ps < 0.05 except for the two least-SPN-inclusive risk scores
- Genetic risk groups
 - Low genetic risk: the effect of age 11 IQ: $\beta = -0.11$ ($p < 0.05$)
 - High genetic risk: the effect of age 11 IQ: $\beta = -0.18$ ($p < 0.001$)
Predictors of HbA1C

- The eight risk scores, main effects: $\beta = 0.17$ to 0.20 ($p < 0.001$)
- Age 11 IQ main effects: $\beta = -0.12$ to -0.13 ($p < 0.001$)
- Interactions: $p = 0.02$ to 0.43
 - all $ps < 0.05$ except for the two least-SPN-inclusive risk scores
- Genetic risk groups
 - Low genetic risk: the effect of age 11 IQ: $\beta = -0.11$ ($p < 0.05$)
 - High genetic risk: the effect of age 11 IQ: $\beta = -0.18$ ($p < 0.001$)
Predictors of HbA1C

• The eight risk scores, main effects: $\beta = 0.17$ to 0.20 ($p < 0.001$)
• Age 11 IQ main effects: $\beta = -0.12$ to -0.13 ($p < 0.001$)

• Interactions: $p = 0.02$ to 0.43
 - all $ps < 0.05$ except for the two least-SPN-inclusive risk scores

• Genetic risk groups
 - Low genetic risk: the effect of age 11 IQ: $\beta = -0.11$ ($p < 0.05$)
 - High genetic risk: the effect of age 11 IQ: $\beta = -0.18$ ($p < 0.001$)
Predictors of BMI

- The eight risk scores, main effects: $\beta = 0.05$ to 0.11 (mostly 0.09 to 0.11, $p < 0.01$)
- Age 11 IQ main effects: $\beta = -0.12$ to -0.13 ($p < 0.001$)
- Interactions: $p = 0.02$ to 0.65 (mostly $p < 0.09$)
- Genetic risk groups
 - Low genetic risk: the effect of age 11 IQ: $\beta = -0.07$ ($p = 0.13$)
 - High genetic risk: the effect of age 11 IQ: $\beta = -0.19$ ($p < 0.001$)
Predictors of BMI

- The eight risk scores, main effects: $\beta = 0.05$ to 0.11 (mostly 0.09 to 0.11, $p < 0.01$)
- Age 11 IQ main effects: $\beta = -0.12$ to -0.13 ($p < 0.001$)

- Interactions: $p = 0.02$ to 0.65 (mostly $p < 0.09$)
- Genetic risk groups
 - Low genetic risk: the effect of age 11 IQ: $\beta = -0.07$ ($p = 0.13$)
 - High genetic risk: the effect of age 11 IQ: $\beta = -0.19$ ($p < 0.001$)
Predictors of BMI

- The eight risk scores, main effects: $\beta = 0.05$ to 0.11 (mostly 0.09 to 0.11, $p < 0.01$)
- Age 11 IQ main effects: $\beta = -0.12$ to -0.13 ($p < 0.001$)
- Interactions: $p = 0.02$ to 0.65 (mostly $p < 0.09$)
- Genetic risk groups
 - Low genetic risk: the effect of age 11 IQ: $\beta = -0.07$ ($p = 0.13$)
 - High genetic risk: the effect of age 11 IQ: $\beta = -0.19$ ($p < 0.001$)
Predictors of BMI

- The eight risk scores, main effects: $\beta = 0.05$ to 0.11 (mostly 0.09 to 0.11, $p < 0.01$)
- Age 11 IQ main effects: $\beta = -0.12$ to -0.13 ($p < 0.001$)
- Interactions: $p = 0.02$ to 0.65 (mostly $p < 0.09$)
- Genetic risk groups
 - Low genetic risk: the effect of age 11 IQ: $\beta = -0.07$ ($p = 0.13$)
 - High genetic risk: the effect of age 11 IQ: $\beta = -0.19$ ($p < 0.001$)
Predictors of BMI

- The eight risk scores, main effects: $\beta = 0.05$ to 0.11 (mostly 0.09 to 0.11, $p < 0.01$)
- Age 11 IQ main effects: $\beta = -0.12$ to -0.13 ($p < 0.001$)
- Interactions: $\rho = 0.02$ to 0.65 (mostly $\rho < 0.09$)
- Genetic risk groups
 - Low genetic risk: the effect of age 11 IQ: $\beta = -0.07$ ($\rho = 0.13$)
 - High genetic risk: the effect of age 11 IQ: $\beta = -0.19$ ($p < 0.001$)
Bad traits kill you ... or, then, maby not

An example

Another example

Conclusion

Support for genetic risk moderating intelligence-diabetes risk associations?

Possibly

• Results inconsistent in terms of significance but consistent in terms of pattern
• That is, such studies need large samples
 • Genetic risk prediction is wobbly
 • Psychological trait–somatic traits links are wiggly
 • wobbly * wiggly = a lot of wobble and wiggle
Support for genetic risk moderating intelligence-diabetes risk associations?
Possibly

- Results inconsistent in terms of significance but consistent in terms of pattern
 - That is, such studies need large samples
 - Genetic risk prediction is wobbly
 - Psychological trait–somatic traits links are wiggly
 - wobbly * wiggly = a lot of wobble and wiggle
Support for genetic risk moderating intelligence-diabetes risk associations?
Possibly

- Results inconsistent in terms of significance but consistent in terms of pattern
- That is, such studies need large samples
 - Genetic risk prediction is wobbly
 - Psychological trait–somatic traits links are wiggly
 - wobbly * wiggly = a lot of wobble and wiggle
Number of natural teeth in older age
A marker of health and life-long health care

- Low Emotional stability and Conscientiousness might predict poorer oral health
 - Only Conscientiousness did
- The associations might be moderated by SES
 - In ‘good’ environments (regular brushing, flossing and dental checks normative) people may just get carried along
 - In ‘worse’ environments stronger personal effort is needed to carry on regular day-to-day oral care
 - Personality traits (high conscientiousness) may give a relatively bigger advantage in worse environments

Mõttus, Starr, & Deary (in press; Health Psychol)
Bad traits kill you ...
... or, then, maby not
An example

Conclusion

Number of natural teeth in older age
A marker of health and life-long health care

• Low Emotional stability and Conscientiousness might predict poorer oral health
 • Only Conscientiousness did
• The associations might be moderated by SES
 • In ‘good’ environments (regular brushing, flossing and dental checks normative) people may just get carried along
 • In ‘worse’ environments stronger personal effort is needed to carry on regular day-to-day oral care
 • Personality traits (high conscientiousness) may give a relatively bigger advantage in worse environments

Mõttus, Starr, & Deary (in press; Health Psychol)
Bad traits kill you or, then, maby not

An example

Another example

Conclusion

Number of natural teeth in older age
A marker of health and life-long health care

- Low Emotional stability and Conscientiousness might predict poorer oral health
 - Only Conscientiousness did
- The associations might be moderated by SES
 - In ‘good’ environments (regular brushing, flossing and dental checks normative) people may just get carried along
 - In ‘worse’ environments stronger personal effort is needed to carry on regular day-to-day oral care
 - Personality traits (high conscientiousness) may give a relatively bigger advantage in worse environments

Mõttus, Starr, & Deary (in press; Health Psychol)
Bad traits kill you ... or, then, maby not

An example

Another example

Conclusion

Number of natural teeth in older age
A marker of health and life-long health care

• Low Emotional stability and Conscientiousness might predict poorer oral health
 • Only Conscientiousness did

• The associations might be moderated by SES
 • In ’good’ environments (regular brushing, flossing and dental checks normative) people may just get carried along
 • In ’worse’ environments stronger personal effort is needed to carry on regular day-to-day oral care
 • Personality traits (high conscientiousness) may give a relatively bigger advantage in worse environments

Mõttus, Starr, & Deary (in press; Health Psychol)
Number of natural teeth in older age
A marker of health and life-long health care

- Low Emotional stability and Conscientiousness might predict poorer oral health
 - Only Conscientiousness did
- The associations might be moderated by SES
 - In ‘good’ environments (regular brushing, flossing and dental checks normative) people may just get carried along
 - In ‘worse’ environments stronger personal effort is needed to carry on regular day-to-day oral care
 - Personality traits (high conscientiousness) may give a relatively bigger advantage in worse environments

Mõttus, Starr, & Deary (in press; Health Psychol)
Psychological traits-somatic traits associations

• Maybe we can describe and understand them better if we set up and test more specific hypotheses
 • When the associations should be stronger/present or weaker/absent
• Parallel to the concept of convergent-discriminant validity
 • A meaningful pattern validates the whole idea
Psychological traits-somatic traits associations

• Maybe we can describe and understand them better if we set up and test more specific hypotheses
 • When the associations should be stronger/present or weaker/absent
• Parallel to the concept of convergent-discriminant validity
 • A meaningful pattern validates the whole idea
Psychological traits-somatic traits associations

• Maybe we can describe and understand them better if we set up and test more specific hypotheses
 • When the associations should be stronger/present or weaker/absent
• Parallel to the concept of convergent-discriminant validity
 • A meaningful pattern validates the whole idea
Bad traits kill you ... or, then, maby not

An example

Another example

Thank you

Michelle Luciano, Ian J. Deary, Mark McCarthy, John M. Starr

MAGIC and DIAGRAM consortia