Investigating the role of noble gases as tracers for CO2 storage

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.egypro.2014.11.449

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Energy Procedia

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Investigating the role of noble gases as tracers for CO₂ storage

Rachel Kilgallon*a, Stuart Gilfillan*a, Christopher McDermott*a, Katriona Edlmann*a, Stuart Haszeldine*a

*aSchool of GeoSciences, The University of Edinburgh, Grant Institute, West Mains Road, EH9 3JW, Edinburgh

Abstract

Developing a monitoring strategy which would provide an early warning of unplanned CO₂ leakage from a storage site is imperative. This study uses specially constructed experimental equipment to determine the factors affecting the transport of noble gases relative to CO₂ through porous media. Preliminary laboratory scale data have shown the travel time curves of helium, argon and CO₂ through porous media for pressures of 10,000 – 50,000 Pa. These results are then compared to modelled data to determine whether these experimentally derived travel times for the different noble gases can be used to more accurately predict migrant CO₂ from storage sites.

Keywords: CO₂; storage; noble gases; monitoring; breakthrough curves; modelling

1. Introduction

The capture and long term storage of CO₂ in the subsurface is one of the most promising ways of mitigating the current level of anthropogenic CO₂ being released to the atmosphere. A major issue surrounding storage is the potential risk posed by failure of CO₂ containment. Monitoring a CO₂ storage site before, during and after injection is vital. Comprehensive monitoring of a storage site will minimize the risk of CO₂ leakage by providing the opportunity to detect early warning signals prior to large scale CO₂ leakage, allowing mitigation measures to be undertaken to prevent further CO₂ migration out of the storage site [1]. Tracers which travel ahead of the injected CO₂ could provide an early alert of CO₂ containment failure. However, it is not yet known how the travel times of different tracers compare to that of CO₂ and hence how much of a warning would be given.
Nomenclature

C(x,t) advective-dispersion equation for one dimensional pulse injection
D diffusion coefficient
\(D_x\) longitudinal apparent diffusion constant
K_d solid-water distribution ratio
m molecular weight of the diffusing gas
\(m_g\) molecular weight of feeder gas
\(M_0\) mass injected
n_e effective porosity
P atmospheric pressure
q specific discharge
R_f retardation factor
t time
T temperature
v advective velocity
V molecular volume of the diffusing gas
\(V_g\) molecular volume of feeder gas
x flow path length
\(\alpha\) dispersivity
\(\rho_b\) bulk density of porous media

Noble gases can behave as conservative tracers and will not be affected by chemical processes. Existing field research has shown how naturally occurring noble gas tracers in CO\(_2\) reservoirs can be used to identify the different sources of CO\(_2\) [2]. Experiments and modelling results have shown that noble gases have the potential to act as early warning tracers for CO\(_2\) arrival [3]. If the origin and transport mechanisms of natural CO\(_2\) reservoirs can be determined using noble gases, then this provides positive grounds for using them in the same manner for future anthropogenic CO\(_2\) storage sites. While work has been carried out on a large scale, there has been less focus on laboratory scale experiments, which can be used to further understand the factors and processes involved in noble gas and CO\(_2\) transport. This study uses purpose built experimental equipment to determine the factors affecting the transport of noble gases relative to CO\(_2\) in a porous sandstone media. In doing so, it aims to investigate how noble gases could be used as effective early warning tracers of CO\(_2\) migration in engineered CO\(_2\) storage sites.

2. Experimental Setup

In order to carry out transport experiments, this research uses specially constructed equipment to measure the transport time and flow behavior of noble gases compared to CO\(_2\) through porous media. A CO\(_2\) flow rig has been designed and purpose built within the School of GeoSciences at the University of Edinburgh.

2.1. Sample Characterization

A sample with relatively homogeneous mineralogy and a moderate permeability is required to represent a basic porous media. The Fell Sandstone was selected due to its high quartz content (~95%) and low carbonate content (trace amounts) implying there would be minimal mineral alteration from CO\(_2\) during the flow experiments. Samples of the Fell Sandstone were sourced from a local stone works. Table 1 shows the rock description of the Fell Sandstone which identifies it as a semipermeable rock with an average porosity of 20.3%. Some complexity arises with the selected rock for experiments as it is not a freshly cored sample sourced from point of primary
sedimentation. There is evidence of supergene processes throughout the rock, most likely from meteoric water circulation (Fig. 1).

Table 1. Sample characterization of the sandstone used in fluid flow experiments.

<table>
<thead>
<tr>
<th>Rock Description</th>
<th>Hazeldean Sandstone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock Name</td>
<td>Fell Sandstone</td>
</tr>
<tr>
<td>Formation Name</td>
<td>Lower Carboniferous</td>
</tr>
<tr>
<td>Age</td>
<td>Fluvio-deltaic sequence</td>
</tr>
<tr>
<td>Depositional Environment</td>
<td>Quartz arenite</td>
</tr>
<tr>
<td>Rock Type</td>
<td>Well sorted, sub-angular to rounded</td>
</tr>
<tr>
<td>Grain Shape and Sorting</td>
<td>20.3%</td>
</tr>
<tr>
<td>Effective Porosity</td>
<td>221.3 mD</td>
</tr>
<tr>
<td>Permeability</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. SEM images of Fell Sandstone. Image A: Kaolinite secondary overgrowths. Image B: Pitting in a microcline crystal. Supergene changes - weak dissolution of feldspar. Image C: Muscovite with intergranular kaolinite. Image D: Quartz with secondary kaolinite and silica overgrowth.

2.2. Experimental Design

A CO₂ flow rig has been designed and constructed at the School of GeoSciences, University of Edinburgh (Fig. 2). The system is designed to load a sample loop with a desired gas mixture, which at a given time, can be released into a feeder stream as a pulse through the flow cell. The flow cell consists of an air dried 98cm x 3.6cm core of the Fell Sandstone surrounded by aluminum foil and treated with epoxy resin to provide airtight stable conditions. The core is encased upstream and downstream by gas dispersion plates to allow unobstructed gas flow. Real-time analysis of the arrival peaks of the gases downstream is recorded using a HPR20-QIC Quadrupole Mass Spectrometer (QMS).

2.3. Experimental Procedure

Initial travel time experiments have been completed using the equipment (Fig. 2). Experiments using the following gas mixtures have been investigated:

- CO₂ pulse in a nitrogen feeder system
- Argon pulse in a CO₂ feeder system
- Helium pulse in a CO₂ feeder system

Experiments were carried out over an operating pressure range of 10,000 – 50,000 Pa in intervals of 10,000 Pa. Experiments at each pressure value were replicated five times to assess the reproducibility of the breakthrough curves. The resulting breakthrough curves were then plotted together for comparison.
Fig. 2. Schematic diagram of the flow cell system and the associated pipelines. Gas exiting downstream of the flow cell is detected by HPR-20 QMS for real-time analysis.

3. Modelling Setup

For the three gas flow scenarios presented in this paper, corresponding modelling conditions were developed to determine whether the expected results could be analytically replicated. The transport of gases in porous media can be modelled using the advective-dispersion equation for one dimensional flow [4]. This is represented by the analytical equation:

\[
C(x,t) = \frac{M_0}{2\sqrt{\pi D_x t}} \times \exp \left[-\frac{(x - vt)^2}{4D_x t} \right]
\]

(1)

The advective velocity was determined with the experimentally derived results for permeability and porosity (Table 1) and used in Darcy’s Law for incompressible flow through the feeder system such that:

\[
v = \left(\frac{q}{n_v} \right)
\]

(2)

Diffusion was calculated using the analytical formula [5]:
The process of molecular diffusion cannot be separated from mechanical dispersion. The two are combined to define the following equation [6]:

$$D = \frac{0.001T^{1.75} \left(\frac{1}{m_g} + \frac{1}{m} \right)^{0.5}}{P \left(V_g^{1/3} + V^{1/3} \right)^2}$$

(3)

A current limitation of this modelling approach is that there are no defined inputs for any of the dispersion factors for the systems yet. In addition, sorption is likely to take place with CO\textsubscript{2} and to some degree with the nitrogen – this would affect the CO\textsubscript{2} pulse in a nitrogen feeder system. Sorption can be expressed as [7]:

$$R_f = 1 + \frac{\rho_n K_d}{n_v}$$

(5)

4. Results

4.1. Experimental Results

Breakthrough curves are first identified from the raw data output from the HPR-20 QMS. Next, a baseline correction is required; a value not associated with the breakthrough profile is selected for this. The breakthrough profile time is set so that the moment of pulse release is equal to 0. The data values are divided by the maximum output (C/C_{max}) - this is to check the accuracy and precision of the system. A regression curve has been plotted for each of the pressures to identify whether a unique curve can be used to describe each gas under the different conditions. Figure 3 shows the breakthrough curves for the three separate gas experiments. Table 2 shows the time at which the peak values were obtained. As anticipated, the arrival times of all the gases take longer as the pressure of the system is decreased.

4.1.1. Noble Gas Pulses

The helium and argon pulses were passed through a CO\textsubscript{2} feeder system. The peak arrival times of argon were similar to that of helium; however the helium was marginally slower at each pressure. The differences in peak arrival times between the helium and argon curves increased as the pressure decreased. However, the curve profiles for the two noble gas systems differ greatly. The helium curve profiles show that it takes longer to arrive than the argon at each pressure. The argon curve profiles also show a steeper angle for initial appearance, but have a longer tail than the helium curves do.
4.1.2. CO₂ Pulses

The CO₂ pulses were passed through a nitrogen feeder system. The CO₂ pulses yield slower peak arrival times – compared to those of the helium or argon experiments (Table 2). With decrease in pressure, the calculated regression curves become less representative of the experimentally derived CO₂ breakthrough data (Fig. 3).

![Graphs showing CO₂ concentrations over time for different pressures.](image1)

Fig. 3. Experimental results of flow experiments through the flow cell. Experiments were carried out over five different pressures (10,000 – 50,000 Pa). Each experiment was replicated five times. Replicated results are plotted as scatter plots. Regression lines have been plotted to represent the relationship between gas concentrations (C/C_{max}) over time (s) as an average of the five experiments.

Table 2. Peak arrival times (s) for three gas mixtures for the different pressures from the experiments in Figure 3. Standard deviation is derived from the difference between the five replication values.

<table>
<thead>
<tr>
<th>Gas Mixture</th>
<th>10,000 Pa</th>
<th>20,000 Pa</th>
<th>30,000 Pa</th>
<th>40,000 Pa</th>
<th>50,000 Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂/N₂</td>
<td>476 ± 35.77</td>
<td>239 ± 19.62</td>
<td>149 ± 9.09</td>
<td>109 ± 6.58</td>
<td>81 ± 3.56</td>
</tr>
<tr>
<td>He/CO₂</td>
<td>242 ± 12.49</td>
<td>128 ± 5.81</td>
<td>87 ± 6.95</td>
<td>63 ± 3.96</td>
<td>54 ± 2.86</td>
</tr>
<tr>
<td>Ar/CO₂</td>
<td>224 ± 3.20</td>
<td>112 ± 6.61</td>
<td>76 ± 3.27</td>
<td>55 ± 2.19</td>
<td>45 ± 1.48</td>
</tr>
</tbody>
</table>
4.2. Modelling Results

Figure 4 shows the modeled breakthrough curves for the same three gas experiments. Table 3 shows the peak timings of the breakthrough curves. The breakthrough curves for each of the gases are modelled with the same conditions as those used in the laboratory experiments. Modelling predicts that CO₂ pulses will take the longest to arrive of the three gas systems; with helium and argon having identical peak arrival times with the exception of at 10,000 Pa. In terms of the shape of the curves, argon has the shortest survival times of the three, with helium having the longest. All three systems have a delayed response for the arrival of the pulse (from 200 s onwards).

![Figure 4](image)

Table 3. Peak arrival times (s) for the different gas mixtures modelled for the different pressure in Figure 4.

<table>
<thead>
<tr>
<th>Gas Mixture</th>
<th>10,000 Pa</th>
<th>20,000 Pa</th>
<th>30,000 Pa</th>
<th>40,000 Pa</th>
<th>50,000 Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂/N₂</td>
<td>1560</td>
<td>730</td>
<td>470</td>
<td>350</td>
<td>280</td>
</tr>
<tr>
<td>He/CO₂</td>
<td>1500</td>
<td>700</td>
<td>460</td>
<td>340</td>
<td>270</td>
</tr>
<tr>
<td>Ar/CO₂</td>
<td>1510</td>
<td>700</td>
<td>460</td>
<td>340</td>
<td>270</td>
</tr>
</tbody>
</table>
5. Discussion

It is evident from Figure 3 and 4 that there are significant differences between the experimental and modelled results. The most obvious difference is that the modelled arrival times are an order of magnitude greater than those of the experimental data for all three gases. According to the modelling data, the helium should appear the quickest out of the three gas mixtures and the helium signature should have been retained the longest; instead it is slower to arrive than the argon values with shorter peak duration. The model system does not currently account for any dispersion taking place. It is likely that this process is greatly affecting the time it takes the gases to reach the sampling point downstream. The lighter noble gases may be susceptible to routes that a larger molecule such as CO$_2$ would be too large to pass through. As a result the current model will tend to overestimate the transport rates of the noble gases through the porous media. Interestingly, there also appears to be evidence of sorption effects in the CO$_2$/nitrogen system. All experiments undergo the same purging cycle prior to gas pulse injection. However, this effect only becomes apparent in the lower pressure CO$_2$/nitrogen systems. Despite eradicating the baseline values, there is still a high level of CO$_2$ being released prior to the breakthrough curve commences. It is possible that this sorption process is not visible in the higher pressures as the nitrogen flow is too high to allow it to occur.

6. Conclusions

Preliminary data have shown how travel times of CO$_2$, helium and argon behave relative to each other in porous media. It is the intention of the authors to expand this research to the remainder of the noble gases (excluding radioactive radon). As shown in these results, the noble gases may be susceptible to routes that a CO$_2$ molecule would be too large to pass through. Partitioning of the noble gases between the CO$_2$ and other phases present will also occur – this will need to be considered. Upscaling of these results will determine how effective the different noble gases could be as early warning tracers of CO$_2$ migration with real world storage sites.

Acknowledgements

This research is financially supported by the Scottish Power Academic Alliance and the Scottish Energy Technology Partnership. The authors also wish to acknowledge the EC FP7 research project PANACEA and Core Laboratories, Aberdeen.

References