Modelling the effect of wettability distributions on oil recovery from microporous carbonate reservoirs


1. Institute of Petroleum Engineering, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, United Kingdom.
2. School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JW, United Kingdom.

Abstract:

Carbonate-hosted hydrocarbon reservoirs are known to be weakly- to moderately oil-wet, but the pore-scale wettability distribution is poorly understood. Moreover, micropores, which often dominate in carbonate reservoirs, are usually assumed to be water-wet and their role in multi-phase flow is neglected. Modelling the wettability of carbonates using pore network models is challenging, because of our inability to attribute appropriate chemical characteristics to the pore surfaces and over-simplification of the pore shapes. Here, we implement a qualitatively plausible wettability alteration scenario in a two-phase flow network model that captures a diversity of pore shapes. The model qualitatively reproduces patterns of wettability alteration recently observed in microporous carbonates via high-resolution imaging. To assess the combined importance of pore-space structure and wettability on petrophysical properties, we consider a homogeneous Berea sandstone network and a heterogeneous microporous carbonate network, whose disconnected coarse-scale pores are connected through a sub-network of fine-scale pores. Results demonstrate that wettability effects are significantly more profound in the carbonate network, as the wettability state of the micropores controls the oil recovery.

Keywords: Network modelling; Two-phase flow; Wettability alteration; Oil recovery; Carbonates; Microporosity.

1. Introduction

Understanding the wettability state of a porous medium is essential for accurate modelling of multi-phase flow processes in hydrocarbon reservoirs, as well as in aquifers following contamination by non-aqueous phase liquids or injection of carbon-dioxide. Specifically in simulations of hydrocarbon reservoir behaviour, assumptions on the wettability distribution strongly influence many petrophysical functions. This includes the capillary pressure and relative permeability data, as well as the oil recovery efficiency after waterflooding [1, 2]. The stakes become notably important when dealing with carbonate rocks, as such formations host a significant fraction of the world’s oil reserves and the recovery efficiency from carbonate reservoirs is often considered to be lower than from sandstones.

To evaluate the average wettability of reservoir core samples, indirect methods requiring capillary pressure data are used, including Amott [3], USBM (United States Bureau of Mines) [4] and Amott/USBM combined method [5]. Many studies using these tests confirm that carbonate rocks show intermediate to weakly oil-wet behaviour at the core scale [6-9].
No universal procedure is, however, currently available to assess how wettability is distributed on a pore by pore basis in reservoir rocks, but wettability is known to be heterogeneous at the pore scale [10]. Particularly, the wetting state of micropores is of particular interest; as such porosity can account for up to 100% of the total porosity in carbonate reservoirs [11]. Since several definitions of micropores exist in the literature, we chose to conform to the empirical definition suggested by Cantrell and Hagerty [11] where micropores are all the pores <5 µm in radius. Micropores wettability has been largely unknown or they are assumed to be water-wet, in contrast to oil-wet macropores [10]. This shouldn’t be a rule as oil has actually been detected within micropores in several real carbonate reservoirs [7, 12-15], which may alter their wettability.

Qualitatively, imaging techniques are able to reveal wettability distributions in rocks at the level of individual pores. For example, using Cryo-SEM (Scanning Electron Microscopy) imaging technique, Fassi-Fihri et al. [10] examined a Middle Eastern carbonate reservoir and observed that micropores were water-wet, in contrast to oil-wet mesopores. More recently, higher resolution Field-Emission SEM (FESEM) imaging identified the existence of a pattern of wettability alteration within micropores in reservoir carbonates [13, 15, 16]. They suggested that the wettability alteration on calcite microrhombs is face-selective, where the anhedral (“curved, rough and poorly formed”) faces are preferentially oil-wet, as opposed to the euhedral (“flat, smooth, well-formed”) which remained water-wet. These techniques are however limited, as they are unable to capture the full heterogeneity of the rock wettability distribution.

Wettability is thought to be dependent on several factors. Indeed, Fassi-Fihri et al. [10] observed that wettability in carbonates was mostly affected by pore geometry, while mineralogy was found to be the major factor controlling wettability in sandstones. On the other hand, Hamon [17] examined a dataset from a sandstone hydrocarbon reservoir and found no evidence that pore mineralogy has any direct impact on wettability.

From a theoretical perspective, Pore Network Modelling has proved to be an efficient tool to study the effect of wettability at the macroscopic scale, especially on oil recovery [18-24]. McDougall and Sorbie [18] proposed a classification system for mixed-wettability states, where wettability is either distributed according to pore size: Mixed-Wet Large (MWL) and Mixed-Wet Small (MWS), where large and small pores respectively are oil-wet, or uncorrelated to pore size: Fractionally-Wet (FW). Using pore scale modelling, the consequences of these wettability distributions on the observed wettability indices (both USBM and Amott) were predicted by Dixit et al. [25]. Experimental evidence has since confirmed that MWL, MWS and FW distributions can all be observed in real reservoir cores [8]. Specifically, Skauge et al. [26] examined a broad (mostly microporous) carbonate dataset and found that following a core-flooding and aging procedure, nearly all the samples exhibited MWS behaviour according to the combined Amott/USBM test, which is contrary to the common assumptions. In fact, these theoretical wettability distributions, although helpful to study simple cases, may be insufficient to describe complex wettability distributions, especially in microporous carbonates.

Kovscek et al. [27] established a pore-level scenario to describe the mixed wettability development in reservoirs, based on the concept of thin films coating the pore wall, which preserve its initial wettability state during ageing. In this scenario wettability is controlled by the stability of the thin film, which in turn depends on the fluid system, the mineralogy of the rock surface, the local pore geometry, and the prevailing capillary pressure. They incorporated this scenario in a capillary bundle.
model with star-shaped pore cross sections. The resulting capillary pressure curves, residual oil saturations and Amott-Harvey indices showed reasonable qualitative agreement with experimental results. This scenario was incorporated in a bundle-of-tubes theoretical model with 2D realistic pore cross sections derived from high resolution SEM images, for which the relationship between collapsed films fraction and capillary pressure was examined [28]. It has also been implemented in 3D network models [20, 21, 29, 30]. To allow wettability changes to occur, these models employed angular pore cross sections, and a simple parametric model for the water film collapse.

In the current work, we implemented the Kovscek et al. [27] scenario in a two-phase flow network model that takes into account a variety of pore shapes [24, 31], more representative of the complexity of real carbonate rocks. Equivalent pore wall curvatures are assigned based on pore size and shape. Moreover, the disjoining pressure is inferred from the fraction of oil-wet pores and the maximum achieved capillary pressure. In Section 2 we present this network modelling tool and describe the flooding cycle of primary drainage, wettability alteration and subsequent water invasion. In Section 3 we investigate the role of the wettability distribution in oil recovery for pore space structures of different complexities, starting with a relatively simple network taken from a Berea sandstone core, which is then compared with a multiscale network derived from a complex, microporous carbonate rock. For the carbonate case, we further examine the importance of the wettability state of the micropores for oil recovery.

2. Model description

The two-phase flow pore network modelling tool used in this study is similar to previously developed models [29, 32, 33]. It has been thoroughly described by Ryazanov et al. [24, 31]. It requires as input networks consisting of pore bodies (nodes) interconnected via straight tubular pore throats (bonds). Throughout the paper we generically refer to both pore bodies and pore throats as pores. Networks are either generated numerically or extracted from 3D images of real pore spaces. The latter are topologically and geometrically equivalent representations of the porous media, preserving its connectivity and characteristic pore properties (inscribed and hydraulic radii, shape factor, volume, etc.). The shape of the pore cross-section is important for conductance and capillary entry pressure computations. This is usually characterised using the shape factor to idealise it as a Circle, Triangle or Square (the CTS approach). In the current model, in addition to the shape factor, we use the dimensionless hydraulic radius (if available) to idealise the pore shape as regular n-cornered stars, along with the CTS [24, 31, 34]. The shape factor and dimensionless hydraulic radius are defined as $G = A / L^2$ and $H = (A/L) / R_{ins}$, respectively, where $A$, $L$, and $R_{ins}$ are the pore cross-section area, perimeter, and inscribed radius, respectively.

The porosity of the network is estimated using the total volume of pores and throats relative to the volume of the enclosing domain. Both absolute and relative permeabilities are computed based on the total flow through the network for the phase cluster of interest, for a given applied pressure gradient and application of Darcy’s law.

The network modelling tool is a quasi-static two-phase flow model. The capillary-driven flow is simulated using a classical Invasion Percolation (IP) process with trapping. This consists of pore-level displacements that result in changes of the fluid configurations within a pore. For each pore displacement the corresponding entry pressure, $P_{c}^{entry}$, is computed. We simulate the commonly

3
used flooding cycle: primary drainage, ageing and water invasion, which mimics the flooding process undergone by a real hydrocarbon reservoir. First, primary drainage (PD) is simulated in a network initially saturated with water and water-wet (contact angle $\theta_{pd} \in [0, 90^\circ]$). To establish the pore-filling sequence, pore displacements are sorted in order of increasing $P_{c}^{\text{entry}}$. While the overall network capillary pressure, $P_c$, is gradually increased, accessible and non-trapped pores whose $P_{c}^{\text{entry}}$ are below $P_c$ are invaded by oil. The process of oil invasion may continue until the irreducible water saturation is reached where no further pore-scale displacements are possible under capillary controlled processes, or stopped at a fixed initial water saturation, $S_{wi}$, related to a predefined maximum capillary pressure, $P_{c}^{\text{max}}$. Subsequently, the model allows for wettability alteration of the oil-filled pore space due to ageing. Along with the commonly used wettability alteration scenarios, leading to the mixed-wet large (MWL), mixed-wet small (MWS) and fractionally-wet (FW) distributions, we have implemented a physically based wettability alteration scenario (Section 2.1), leading to the Altered-Wet (AW) distribution. Then, water invasion is simulated. Pore displacements are sorted in order of decreasing $P_{c}^{\text{entry}}$. While the overall network $P_c$ is decreased, accessible and non-trapped pores whose $P_{c}^{\text{entry}}$ are above $P_c$ are invaded by water. The process is carried on until the residual oil saturation, $S_{or}$, is reached, below which no further oil mobilisation can take place by capillary forces. Note that the model involves wetting films and layers in the pores with corners (Section 2.2).

### 2.1 Wettability alteration scenario

We model the physically-based wettability alteration scenario suggested by Kovscek et al. [27], illustrated in Fig. 1, and refer to the resulting wettability distribution as Altered-Wet (AW). Initially, all pores are assumed to be filled with water and completely water-wet, and at this point we start injecting oil. As the water saturation decreases, thin water films coating the pore walls remain, which prevent the surface from contact with particles from the oil, hence preserving its strong initial affinity to water.

![Illustration of the wettability alteration mechanism in a triangular pore cross-section.](image)

At equilibrium, the water film in a given pore is stabilised by thin film forces; the related pressure is the so called disjoining pressure, $\Pi$. Three major factors contribute to the disjoining pressure: Electrostatic interactions, Van der Waals interactions and Hydration forces [35]. As shown in the illustrative disjoining pressure isotherm (Fig. 2), $\Pi$ depends on the thickness of the water film. As the capillary pressure, $P_c$, rises during oil invasion, the film gets thinner. The film first gains in stability since $\Pi$ rises, until $P_c$ reaches a threshold capillary pressure, $P_c^*$:

$$P_c^* = \Pi_{\text{crit}} + \sigma_{ow} c.$$  \hspace{1cm} (1)
The threshold capillary pressure is an intrinsic property of the pore related to the oil-water interfacial tension, $\sigma_{ow}$, the curvature of the pore wall, $c$, and the critical disjoining pressure at which films collapse, $\Pi_{crit}$. In fact, when $P_c > P_c^*$, i.e. $\Pi < \Pi_{crit}$, the film becomes unstable and breaks. Consequently, the pore surfaces adsorb compounds from the oil which may change their wetting state into oil-wet [27].

\[ \Pi_{crit} \]

**Fig. 2: Evolution of thin film stability during oil invasion, illustrated on an example of disjoining pressure isotherm $\Pi(d)$, after Hirasaki [35].**

In our pore network model, pore walls are represented by flat surfaces with zero curvature (regular polygon and star shapes), hence thin films would collapse simultaneously in all pores, as all $P_c^*$ are equal for constant $\Pi_{crit}$ (Eq. 1). As it is difficult to obtain the real pore wall curvatures from a digitised image, we assign equivalent curvatures to the flat pore walls based on the overall pore shapes, for wettability alteration purposes only, as indicated in Fig. 3. The curvature, $c = -\frac{1}{r_c}$ is assumed negative as the radius of curvature, $r_c$, is located outside the shapes. For regular polygons, $r_c$ is computed using Eq. (2) [36], in which $\cos \varphi$ is randomly chosen. For regular stars, $r_c$ is computed from Eq. (3). Note that while one random parameter ($\cos \varphi$) is introduced for polygons, the radius of curvature is fully determined for stars.

\[ r_{c-polygon}^{n} = \frac{R_{ins}}{\cos \varphi - \sin \frac{\varphi}{n}}, \quad \cos \varphi \in \left[ \sin \frac{\pi}{n}, 1 \right] \]

\[ r_{c-star}^{n} = \frac{R_{ins}^{'} \sin \frac{\pi}{n}}{\cos \gamma - \sin \frac{\gamma}{n}} = R_{ins} \frac{\sin \left( \frac{\gamma \pi}{n} \right) \sin \frac{\pi}{n}}{\sin \left( \frac{\gamma \pi}{n} \right) \cos \gamma - \sin \frac{\pi}{n}}, \quad \gamma: \text{corner half-angle} \]

where $R_{ins}$ and $R_{ins}^{'}$ denote the original and new inscribed radii, respectively.
Fig. 3: Equivalent pore wall curvature assignment for (a) n-cornered Polygon and (b) n-cornered Star shape, where \( R_{ins} \) and \( R_{ins}' \) denote the original and new inscribed radii, respectively; \( r_c \) denotes the radius of curvature and \( \varphi \) the angle between the tangent to the newly obtained (red) curved shape at a vertex and the line connecting the vertex to the centre (\( \varphi \) coincides with the corner half-angle, \( \gamma \), for the original shapes).

According to Eq. (1), by strictly using the negatively-curved star shapes introduced in Fig. 3, the more curved the pore surface is (in absolute value), the more accessible (lower) is the capillary pressure at which the thin film collapses (\( P_c^* \)). Therefore, smaller pores of the same shape are more likely to be oil-wet. This is also the case for pores of the same size and shape but with a larger number of corners, which can be interpreted as corresponding to increased pore roughness. Therefore, the model qualitatively reproduces the pattern shown by high-resolution imaging in carbonate rocks [16] where oil deposition on calcite microparticles was limited to the anhedral (curved, rough and poorly formed) faces (Fig. 4).

Fig. 4: FESEM imaging of the oil deposits (i.e. the footprint of the wettability alteration) on calcite microparticles in carbonate rocks, after Marathe et al. [16].

\[ \Pi_{crit} \] depends on the fluid system and mineralogy of the rock surface. We will assume in our model that it is constant throughout the rock, reflecting a mono-mineral carbonate. \( \Pi_{crit} \) is computed by the simulator, given a prescribed final drainage capillary pressure, \( P_c^{max} \), and a targeted volumetric oil-wet fraction, \( f_{ow} \), the ratio of the oil-wet to the total pore volumes. Note that a higher \( P_c^{max} \) leads to a higher \( f_{ow} \), as thinner films are more prone to collapse. On the other hand, higher \( \Pi_{crit} \) causes \( f_{ow} \) to decrease, since a higher \( P_c \) would need to be achieved to reach film rupture (at \( P_c^* \)). Below
(Section 3.1.2, 3.2.2) we describe how this new AW distribution compares to previously described wettability distributions MWL, MWS and FW.

Since no comprehensive model is available for the distribution of the values of the advancing contact angle $\theta_a$, these are assumed to be uniformly distributed within prescribed ranges in both the water-wet and oil-wet pores.

### 2.2. Oil layers formation and collapse

During waterflooding, oil layers may form in oil-wet pores, sandwiched between water in the centre and corners of the pores [24, 31] (Fig. 5). The contribution of these layers to oil volume and flow is small compared to that of bulk fluid. Nevertheless, if stable, these layers play an important role in oil flow, as they preserve the oil phase connectivity. Formation and collapse of the layers occurs according to a realistic thermodynamic criterion [37].

![Fig. 5: Displacements during waterflooding involving oil layers formation and collapse presented as transitions between fluid configurations in a triangular pore cross-section.](image)

3. Results and discussion

The simulations are carried out on two distinctly different networks: a homogeneous sandstone network and a heterogeneous network derived from a microporous carbonate dataset. The same “base case” is chosen for both networks (Table 1). At ageing, we uniformly distribute the water-wet and oil-wet advancing contact angles as $\theta_{a,ww} \in [\theta_{pd}, 90^\circ]$ and $\theta_{a,ow} \in [120^\circ, 180^\circ]$, respectively. Note that the value of $\theta_{pd} = 30^\circ$ corresponds to an initially weakly water-wet rock.

<table>
<thead>
<tr>
<th>Wettability distribution</th>
<th>AW</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{wi}$</td>
<td>0</td>
</tr>
<tr>
<td>$\theta_{pd}(^\circ)$</td>
<td>30</td>
</tr>
<tr>
<td>$f_{ow}$</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 1: “Base case” parameters.

### 3.1. Berea Sandstone Network

The network (Fig. 6(a)) has been extracted from a 3D micro-computed tomography image of a Berea sandstone sample, using the enhanced extraction technique described by Jiang et al. [38]. Its
characteristics are summarized in Table 2. Fig. 6(b) shows that the pore size distribution is unimodal, and that larger pores tend to have more corners.

![Image of Berea network](image)

**Fig. 6: Berea network: (a) 3D representation and (b) pore size (inscribed radius) and shape distributions.**

<table>
<thead>
<tr>
<th>Number of pore elements (nodes and bonds)</th>
<th>22,251</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average coordination number</td>
<td>3.7</td>
</tr>
<tr>
<td>Porosity (%)</td>
<td>18.97</td>
</tr>
<tr>
<td>Absolute Permeability (mD)</td>
<td>1576.38</td>
</tr>
</tbody>
</table>

**Table 2: Main properties of the Berea network.**

### 3.1.1 Primary Drainage

In the base case, the primary drainage (PD) process is continued until the irreducible water saturation is reached at $P_{c}^{\text{max}} = 22kPa$ (Fig. 7). As shown in Fig. 8, all invaded pores are sufficiently water-wet ($\theta_{pd} < \frac{\pi}{2} - \gamma$) to hold water in the corners, which forms the irreducible water saturation $S_{wi} < 0.01$. In a second case, oil invasion is stopped at prescribed initial water saturation $S_{wi} = 0.3$ ($P_{c}^{\text{max}} = 5kPa$). As expected, water is mainly left behind in the smallest pores, for which the $P_{c}$ entry are highest.

![Image of $P_{c}$ curve](image)

**Fig. 7: Primary drainage $P_{c}$ curve for the Berea network.**
3.1.2 Ageing

The different wettability distributions (MWL, MWS, FW and AW) at $f_{ow} = 0.5$ resulting after PD are plotted in Fig. 9 on the volumetric pore size distributions. In the MWL (resp. MWS) distribution, oil-wet pores are evidently the largest (resp. smallest). The FW distribution results in half the pores being oil-wet for each bin size. On the other hand, AW exhibits a more complex distribution, where both pore size and shape determine the wettability distribution. For instance, the size of the largest pores ($R_{ins} \geq 41 \mu m$) prevents them from having sufficient curvature for the water film to break, thus leaving them water-wet. Moreover, few small pores are found to be oil-wet. Indeed, the smallest pores are mostly characterised by 3-cornered star shapes (Fig. 6(b)), and as previously stated (Section 2.1), pores with smaller number of corners (reduced roughness) are less likely to be oil-wet.

### Fig. 8: Pore occupancies for the Berea network shown on the pore size distribution following PD to different $S_{wi}$ values.

### Fig. 9: Different wettability distributions shown on the pore size distributions for the Berea network at $f_{ow} = 0.5$, established after PD for the base case; red: oil-wet, blue: water-wet. Darker blue (respectively red) indicates stronger water- (respectively oil) -wetness.
3.1.2 Waterflood

3.1.2.1 Effect of wettability distribution

The effect of varying the wettability distribution on the residual oil saturation, $S_{or}$, was found to be small (Fig. 10(a)). This behaviour could be explained by the homogeneity of the sandstone structure, where pores are connected to one another regardless of size. We will show below that the effect of the wettability distributions on $S_{or}$ is much more profound for the heterogeneous carbonate network (Section 3.2.3, Fig. 21(a)), whose topology is much more complex.

On the other hand, from the pore occupancies at $f_{ow} = 0.5$ (Fig. 11) it is clear that the residual oil distribution (unlike the residual oil saturation) is affected by the wettability distribution. In all cases, we find that the residual oil is mostly present in oil-wet pores, as expected. A few oil layers formed near the end of the waterflood process, mainly in the largest oil-wet pores, whose layers formation $P_{c_{entry}}$ are highest. The effect of the presence of oil layers on $S_{or}$ is shown for the AW distribution in Fig. 10(b). The “with layers” case corresponds to the base case where oil layers formation is enabled. On the contrary, the oil layers formation was disabled in the “no layers” case. As expected, oil layers allow oil to drain to lower $S_{or}$ when $f_{ow}$ is sufficiently large (for this network $f_{ow} \geq 0.5$) for a spanning (percolating) oil-wet pathway to be formed.

![Fig. 10: Waterflood residual oil saturations as a function of oil-wet fractions for the Berea network (a) for the different wettability distributions, and (b) for the AW distribution, with and without oil layers.](image-url)
Fig. 11: Pore occupancies at the end of the waterflood for the different wettability distributions shown on the pore size distribution for the Berea network at $f_{ow} = 0.5$.

3.1.2.2 Effect of initial water saturation

A sensitivity study to $S_{wi}$ was conducted for the AW distribution. Note that because $f_{ow}$ is defined as a fraction of all pores, the maximum value that it can take is $1 - S_{wi}$, since the remaining fraction $S_{wi}$ is water-filled and water-wet. This explains the different curve endpoints for the different $S_{wi}$ in Fig. 12.

Fig. 12(a) shows that at $f_{ow} = 0.5$, with $S_{wi}$ increasing from 0 to 0.1, i.e. strongly decreasing $P_{c, max}$ (see Fig. 7), $S_{or}$ slightly increases. This is mainly due to the fact that the oil layer formation is inhibited at relatively low $P_{c, max}$. The trend is amplified for higher $f_{ow} = 0.8$, for which the oil layers are more abundant, thus more effective in maintaining the oil connectivity. Further increasing $S_{wi}$ leads to monotonically decreasing $S_{or}$, as the oil saturation before waterflood, $1 - S_{wi}$, decreases. Nevertheless, the effect of $S_{wi}$ on the $S_{or}$ curves is considered to be small compared to the heterogeneous carbonate case (Section 3.2.3.3, Fig. 22).

Fig. 12: Waterflood residual oil saturations for the AW distribution in the Berea network as a function of (a) $S_{wi}$ (b) $f_{ow}$.
3.2. Multiscale Microporous Carbonate

In this section, the input for the two-phase flow model is a heterogeneous network (Fig. 13(c)) constructed from a multiscale dataset for a microporous carbonate, and whose characteristics are summarised in Table 3. The methodology and workflow of the two-scale network generation have been presented by Jiang et al. [39]. First, 3D pore networks were extracted from CT images at two distinct resolutions (fine and coarse scales), which have some overlap in pore sizes. A statistical network generation tool was then used to integrate the two networks into a single pore network. Note that the coarse scale network clearly lacks overall connectivity (Fig. 13(b)), and has only become connected through integration with the well-connected fine scale network (Fig. 13(a)).

![Fig. 13: (a) Statistically generated fine network, (b) extracted coarse network and (c) resulting integrated two-scale network, derived from a microporous carbonate dataset.](image)

<table>
<thead>
<tr>
<th>Number of pore elements</th>
<th>104,138</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average coordination number</td>
<td>3.54</td>
</tr>
<tr>
<td>Porosity (%)</td>
<td>20.38</td>
</tr>
<tr>
<td>Absolute Permeability (mD)</td>
<td>93.56</td>
</tr>
</tbody>
</table>

Table 3: Main properties of the carbonate network.

Fig. 14 indicates a wide distribution of pore radii in the resulting two-scale network, ranging from 1 to 152 µm, and that micropores ($R_{\text{ins}} < 5 \mu m$) represent around 18 % of the network volume (corresponding to the first bin in the pore size distribution). Additionally, note that the micropores have a wide range of pore shapes.

![Fig. 14: Carbonate network pore size (inscribed radius) and shape distributions.](image)
3.2.1. Primary Drainage

As for the Berea network, the primary drainage (PD) process is continued until the irreducible water saturation, approximately $S_{wi} = 0$, is reached at a relatively high $P_c^{max} = 50 kPa$ (Fig. 15), due to the small size of the micropores. At $S_{wi} = 0.3$, remaining water resides mainly in the micropores, since their $P_c$ entry are highest (Fig. 16). Moreover, as for the Berea network (Fig. 8), a small fraction of larger not-yet-accessible pores still retain water.

![Fig. 15: Primary drainage $P_c$ curve for the carbonate network.](image)

3.2.2. Ageing

Following ageing, the resulting wettability distributions within the carbonate network are shown in Fig. 17. When comparing them with those for the Berea network in Fig. 9, it can be seen that the MWL, MWS and FW distributions are (by definition) qualitatively quite similar. The AW distributions are similar as well, but only for the largest pores, as that remain water-wet. However, the striking difference for AW occurs in the smallest pores. Indeed, for the carbonate network, unlike for the Berea, 80% of the micropores are oil-wet, since their small sizes provide sufficient curvature for the water films to break for most of their shapes.

![Fig. 16: Pore occupancies for the carbonate network shown on the pore size distribution following PD to different $S_{wi}$ values.](image)
Fig. 17: Different wettability distributions shown on the pore size distributions for the carbonate network at $f_{ow} = 0.5$, established after PD for the base case; red: oil-wet, blue: water-wet. Darker blue (resp. red) indicates stronger water- (resp. oil) -wetness.

3.2.3. Waterflood

3.2.3.1 Effect of wettability distribution

The wettability distribution significantly affects the petrophysical properties for the carbonate network (Fig. 18). Indeed, the residual oil varies greatly, as $S_{or}$ decreases from 0.75 for MWL to 0.28 for MWS. In addition, $P_c$ curves are found to be dissimilar as a result of the different pore-filling sequences. With regard to relative permeabilities, $K_r$, they are highly sensitive to the fluid saturations; hence we are not drawing any specific conclusions except that they are at some extent affected by the wettability distribution (Fig. 18(c)). Since the relative permeabilities of water, $K_{rw}$, are too low to be actually seen, we derived the fractional flow of water, $F_w$, from the $K_r$ curves, computed assuming identical phase viscosities as:

$$F_w = \frac{1}{1 + \frac{K_{ro}}{K_{rw}}}$$  

$F_w$ appears in the Buckley-Leveret equation when modelling water flooding at the continuum-scale and it shows here that water breakthrough ($K_{rw} > 0$) occurs at very different water saturations for the different wettability distributions (Fig. 18(d)).
Fig. 18: (a) $P_c$ curves, (b) enlarged $P_c$ curves (red box), (c) $K_r$ curves and (d) fractional flow of water, $F_w$, curves after waterflood for the different wettability distributions at $f_{ow} = 0.5$ for the carbonate network.

The pore occupancies at the end of the waterflood are presented in Fig. 19 for all four wettability distributions. Note that, in general, water would start filling water-wet pores (from small to large), then oil-wet pores (from large to small), unless this is prevented by lack of accessibility and trapping. Since the fine scale pores provide the overall connectivity for the disconnected coarse scale pores (Section 3.2), two interesting limiting cases stand out, MWL and MWS.

In the MWL distribution, a fraction of the fine scale pores are water-wet, thus first filled with water. However, these water-filled pores now block the escape of oil from the coarse scale pores, thus leaving much oil trapped in the largest pores, as well as in intermediate-sized pores and some micropores. The capillary pressure curve for this case (see Fig. 18(a) and (b)), confirms that almost exclusively small, i.e. water-wet, pores are invaded. Hence, trapping in the MWL case is high compared to the other distributions.

Conversely, in the MWS case, water first starts filling the larger water-wet pores. Note that all pores have corner wetting films (see Fig. 16); therefore all pores are accessible to the invading water, even though the coarse scale network is disconnected. Water invasion then continues in the smaller oil-wet pores as a drainage process. The corresponding jump in invaded pore size is translated into a large drop in $P_c$ over a small saturation range in the capillary pressure curve (Fig. 18(b)). By leaving the micropores to be filled at the end of the process, MWS has the lowest trapping of all wettability distributions.

The pore occupancy for the AW distribution (Fig. 19) is quite similar to that for MWS, in contrast to the occupancies for the Berea network, while the occupancy for FW exhibits behaviour intermediate to MWS and MWL.
Fig. 19: Pore occupancies at the end of the waterflood for the different wettability distributions shown on the pore size distribution for the carbonate network at $f_{ow} = 0.5$.

3.2.3.2 Effect of oil-wet fraction

We now consider the AW distribution, and study the impact of changing the fraction of oil-wet pores, $f_{ow}$, on the petrophysical properties. As expected, $P_c$ curves are lower for larger fractions of oil-wet pores (Fig. 20). Considering the residual oil saturation, the trend is visibly monotonic, as $S_{or}$ decreases with $f_{ow}$. We note as well that the switch from fully water-wet ($f_{ow} = 0$) to less water-wet ($f_{ow} = 0.2$) leads to a large reduction in $S_{or}$, as a fraction of the micropores become oil-wet. However, further changing to fully oil-wet has a relatively small effect. The impact of the presence of oil layers on $S_{or}$ shown in Fig. 21(b) is similar to that seen in the Berea network (Fig. 10(b)).

Fig. 20: $P_c$ curves after waterfall for different oil-wet fractions for the carbonate network.

The results of this sensitivity study are summarised in Fig. 21(a), where both the wettability distribution and $f_{ow}$ are varied. Unlike for the Berea sandstone (see Fig. 10(a)), the $S_{or}$ values are very different for the various wettability distributions in this microporous carbonate. The MWS and MWL distributions clearly form the limiting boundaries for the residual oil saturations. Indeed, the best recovery is exhibited by MWS, while MWL shows the worst recovery. On the other hand, recoveries for the developed AW distribution and the FW distribution lie between the two extreme cases, but they still differ significantly from each other.
Fig. 21: Waterflood residual oil saturation as a function of oil-wet fractions for the carbonate network (a) for the different wettability distributions, and (b) for the AW distribution, with and without oil layers.

3.2.3.3. Effect of initial water saturation

$S_{or}$ curves are plotted in Fig. 22 for different $S_{wi}$ values for the AW distribution. The trends are similar to those observed in the Berea network (Fig. 12) but the variations and the differences between the curves for varying $f_{ow}$ are much larger. Actually, while increasing $S_{wi}$, added to the fact that fewer oil layers form, more water is retained in the micropores at the start of the waterflood, which in turn blocks the escape of oil in the bigger pores due to the particular connectivity of the carbonate network.

To examine the structure of the residual oil, we show in Fig. 23 the pore occupancies at the end of the water flood for different $S_{wi}$ values at $f_{ow} = 0.5$. Since the initial water resides mostly in the micropores (see Fig. 16), the nature of the residual oil changes with higher $S_{wi}$, as oil is increasingly trapped in intermediate-sized pores and less so in micropores. Besides, as previously stated in Section 3.1.2.2, oil layers are less likely to develop at lower $P_{c}^{max}$, i.e. at higher $S_{wi}$.

Fig. 22: Waterflood residual oil saturation for the AW distribution in the carbonate network as a function of (a) $S_{wi}$ (b) $f_{ow}$.
Fig. 23: Pore occupancies at the end of the waterflood for different $S_{wi}$ values shown on the pore size distribution for the carbonate network at $f_{ow} = 0.5$.

Note that by keeping $f_{ow}$ constant (equal to 0.5) and increasing $S_{wi}$ (decreasing $P_{c^{\text{max}}}$) (Fig. 22), the corresponding $\Pi_{\text{crit}}$ value is decreasing. This may not be realistic since $\Pi_{\text{crit}}$ is assumed to be an intrinsic property of the rock mineral and water film sub-system. Indeed, the “right” way would be to keep $\Pi_{\text{crit}}$ constant, increase $S_{wi}$, and consequently obtain a lower $f_{ow}$ (see Fig. 24, moving along vertical lines). For instance, if $\Pi_{\text{crit}} = 48.5kPa$ was chosen such that $f_{ow} = 0.5$ for $S_{wi} = 0$ ($P_{c^{\text{max}}} = 48kPa$), changing $S_{wi}$ to 0.1 would reduce $P_{c^{\text{max}}}$ to 27$kPa$. The latter value would be below the critical capillary pressure $P_{c^{*}}$ of all pores, keeping all water films intact, thus $f_{ow} = 0$.

Fig. 24: Contour chart describing the relationship between $\Pi_{\text{crit}}$, $S_{wi}$ and $f_{ow}$. 
4. Discussion

First, note that since we are lacking real $S_{wi}$ (or $P_c^{\text{max}}$) data, zero initial water saturation, $S_{wi} = 0$, was chosen as a base case to highlight the impact that the wettability of micropores has on recovery. In fact, oil presence in micropores has been reported in many real carbonate rocks, especially towards the top of the oil column. This could happen if the reservoir has a sufficiently large oil column such that a high capillary pressure is reached in the upper oil column, or if some pores have somehow undergone a change in size (e.g. by means of dissolution/cementation) or in wettability (e.g. due to polar species in the oil) over geological time.

Wettability has long played the role of a sort of “tuning parameter” in simulations, although in actual calculations it is the consequent petrophysical function ($P_c$ and $K_{ro}$) that is actually used or varied; no “number for wettability” appears in any oil displacement calculation. However, there is strong evidence from pore network modelling (supported again by the results presented here) that the actual assumptions on the wetting distribution do strongly influence these petrophysical functions as well as the $S_{or}$ value. Thus, if we had some prior knowledge of these wetting patterns, then we might be able to forward model the petrophysical functions. Working petrophysicists and core analysts in the oil industry do have views on the physical forms of these wetting patterns. Therefore, we suggest building up “Type diagrams” of wetting patterns in carbonate rocks by consideration of the possible mechanisms involved, such as those incorporated in the developed AW model. The patterns generated can then be presented to petrophysics experts who will recognise the most likely physically realistic patterns. This approach is used in other industries and is known as expert elicitation [40]. At best such a scenario might generate in a systematic manner prior probabilities of certain wetting patterns for realistic carbonates. We believe that this is the only way that a combination of flow physics, forward modelling and industry expertise/knowledge can be combined to make some advances in modelling complex mixed-wet systems at the pore level.

5. Conclusions

We developed a physically-based wettability alteration scenario, dependent on both pore size and shape, which incorporates a plausible view of the wetting change mechanism. The scenario qualitatively reproduced a pattern of wettability observed in microporous carbonates through high-resolution imaging, where anhedral (curved, rough and poorly formed) faces become preferentially oil-wet. We implemented the scenario in a two-phase quasi-static pore network model which involves a variety of pore shapes. We considered as input two pore networks with very different levels of complexity in their pore structure, (a) a fairly homogeneous connected Berea sandstone network with a relatively narrow range of pore sizes, and (b) a heterogeneous two-scale carbonate network whose coarse scale pores were not connected, but where the fine scale pores provided overall connectivity to the network. We considered the widest possible range of wettability distributions including the newly developed Altered-Wet (AW) distribution, along with the commonly used MWL, MWS and FW distributions. This resulted in a correspondingly wide range of outcomes in terms of pore occupancies, $P_c$ and $K_{ro}$ curves and $S_{or}$ values.

After ageing was carried out, the AW distribution resulted in the largest pores being water-wet, as their large size prevented them from having sufficient curvature for the water film to collapse.
Conversely, owing to their tiny size, most of the carbonate network’s micropores were found to be oil-wet, provided that they were invaded by oil during primary drainage. Yet, the AW distribution was still distinct from the MWS, as well as from any of the other common wettability distributions. Following waterflooding, we showed from the pore occupancies that the specific wettability distribution affects the structure of the residual oil. In addition, wettability proved to have some effect on the residual oil saturation ($S_{or}$) for the Berea network, but it had a much larger impact for the multiscale carbonate network. Indeed, since the connectivity of this network is mainly driven by pore size, the MWS and MWL distributions formed limiting cases for the $S_{or}$ values, with the recoveries for the AW and FW distributions lying between these two extremes. The MWL case exhibited by far the lowest oil recovery since the first-filled water-wet micropores blocked the escape of oil from the larger pores. Conversely, the MWS distribution showed the best recovery as the oil-wet micropores are left to be filled with water at the end of the waterflood. In addition, the relative permeability curves for the carbonate network were very sensitive to the chosen wettability distribution. This was emphasised by the corresponding fractional flow curves, which showed very different water breakthrough saturations. Furthermore, we demonstrated that oil layers did indeed allow oil to drain to lower $S_{or}$, but only at a sufficiently high $f_{ow}$. Moreover, by increasing $S_{wi}$, we first observed higher $S_{or}$, due to fewer oil layers being formed, and then lower $S_{or}$ because of a decreasing oil saturation before waterflood. We proved that these trends are amplified at higher $f_{ow}$ values where more oil layers form, as well as in the carbonate network where the effect of the network’s particular connectivity contributes notably. Indeed, the increased volumes of connate water left behind in the micropores consequently trap the oil in the larger pores.

Acknowledgements

The authors would like to thank the members of the ITF consortium, DONG energy, Wintershall, BG Group and Chevron, for funding this work.

References


