Optineurin Negatively Regulates Osteoclast Differentiation by Modulating NF-κB and Interferon Signaling: Implications for Paget’s Disease

Graphical Abstract

Highlights

- Susceptibility to Paget’s disease is associated with reduced optineurin expression
- Optineurin knockdown enhances osteoclast differentiation
- Loss of optineurin function increases bone turnover in vivo
- Optineurin inhibits osteoclast formation by modulating NF-κB and IFN-β signaling

Authors

Rami Obaid, Sachin E. Wani, Asim Azfer, ..., Philip Cohen, Stuart H. Ralston, Omar M.E. Albagha

Correspondence

omar.albagha@ed.ac.uk

In Brief

Using mouse models, Obaid et al. identify a role of optineurin in bone metabolism as a negative regulator of osteoclast differentiation. Loss of optineurin function leads to increased bone turnover in mice, suggesting a mechanism by which genetic variants in optineurin predispose to Paget’s disease of bone.

Obaid et al., 2015, Cell Reports 13, 1–7
November 10, 2015 ©2015 The Authors
http://dx.doi.org/10.1016/j.celrep.2015.09.071
Optineurin Negatively Regulates Osteoclast Differentiation by Modulating NF-κB and Interferon Signaling: Implications for Paget’s Disease

Rami Obaid,1,4 Sachin E. Wani,1,4 Asim Azfer,1 Toby Hurd,2 Ruth Jones,3 Philip Cohen,3 Stuart H. Ralston,1 and Omar M.E. Albagha1,*
1Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
2Medical Research Council Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
3Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, University of Dundee, Dundee DD1 5HE, UK
4Co-first author
*Correspondence: omar.albagha@ed.ac.uk
http://dx.doi.org/10.1016/j.celrep.2015.09.071
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SUMMARY
Paget’s disease of bone (PDB) is a common disease characterized by osteoclast activation that leads to various skeletal complications. Susceptibility to PDB is mediated by a common variant at the optineurin (OPTN) locus, which is associated with reduced levels of mRNA. However, it is unclear how this leads to the development of PDB. Here, we show that OPTN acts as a negative regulator of osteoclast differentiation in vitro and that mice with a loss-of-function mutation in Optn have increased osteoclast activity and bone turnover. Osteoclasts derived from Optn mutant mice have an increase in NF-κB activation and a reduction in interferon beta expression in response to RANKL when compared to wild-type mice. These studies identify OPTN as a regulator of bone resorption and are consistent with a model whereby genetically determined reductions in OPTN expression predispose to PDB by enhancing osteoclast differentiation.

RESULTS AND DISCUSSION
Reduced Expression of OPTN Predisposes to PDB
In order to identify disease-causing mutations in the OPTN locus, we conducted mutation screening of the coding exons of OPTN in 200 PDB patients, but results showed no mutations in the protein-coding region (data not shown). However, the top GWAS hit (rs1561570) was found to be a strong expression quantitative trait locus for PDB at the OPTN locus on chromosome 10p13. The OPTN gene encodes optineurin, a ubiquitously expressed cytoplasmic protein involved in many cellular processes including regulation of NF-κB signaling (Zhu et al., 2007), autophagy, and innate immunity (Wild et al., 2011), but the role of optineurin in bone metabolism is unknown. Here, we investigated the role of OPTN in regulating bone turnover and evaluated the molecular mechanisms by which variants at the OPTN locus predispose to PDB.

INTRODUCTION
Paget’s disease of bone (PDB) is a common skeletal disorder characterized by osteoclast activation, which provokes increased but disorganized bone turnover, leading to pathological fractures, bone deformity, and bone pain. The disease has a strong genetic component, but the genes responsible have not been fully characterized. The most important predisposing gene is SQSTM1, which is mutated in ~10% of patients with the disease. The SQSTM1 causal mutations increase osteoclastogenesis by enhancing receptor activator of nuclear factor kappa B (NF-κB) (RANK) signaling in osteoclasts and their precursors (Cavey et al., 2006; Daroszewska et al., 2011; Hiruma et al., 2008). Linkage studies in families (Lucas et al., 2008) coupled with genome-wide association studies (GWAS) (Albagha et al., 2010, 2011) have identified a strong susceptibility locus for PDB at the OPTN locus on chromosome 10p13. The OPTN gene encodes optineurin, a ubiquitously expressed cytoplasmic protein involved in many cellular processes including regulation of NF-κB signaling (Zhu et al., 2007), autophagy, and innate immunity (Wild et al., 2011), but the role of optineurin in bone metabolism is unknown. Here, we investigated the role of OPTN in regulating bone turnover and evaluated the molecular mechanisms by which variants at the OPTN locus predispose to PDB.

Optn Knockdown Enhances Osteoclast Differentiation
Here, we studied the expression of optineurin during osteoclast differentiation and investigated the effects of Opn knockdown in primary bone-marrow-derived macrophage (BMDM) cultures. Expression of optineurin increased considerably during osteoclast differentiation, following stimulation of the cultures with macrophage colony-stimulating factor (M-CSF) and receptor
However, osteoblast-osteoclast co-culture assays showed that loss of Optn function induced bone turnover in vivo. To investigate the effects of Optn on intracellular signaling in osteoclast precursors, we performed a loss-of-function mouse model in which the C-terminal functional mutation that encodes a protein that is unable to bind to Lys63-linked ubiquitin chains (Gleason et al., 2011). Bone marrow macrophage cultures from Optn^{D477N/D477N} mice formed significantly more osteoclasts than those from wild-type (WT) littermates and the number of hypernucleated osteoclasts was significantly increased (Figure 3A), replicating exactly the observations in WT cultures subjected to shRNA knockdown (Figure 2C). To investigate if Optn affects osteoclast differentiation and/or function, we performed an in vitro bone nodule assay and osteoblast-osteoclast co-culture assays. There was no difference between Optn^{D477N/D477N} and WT mice in the ability of calvarial osteoblasts to form bone nodules in vitro (Figure 3B). However, osteoblast-osteoclast co-culture assays showed that osteoblasts from Optn^{D477N/D477N} mice had reduced ability to support osteoclast differentiation when compared to WT osteoblast cultures (Figure 3C). In contrast, and consistent with bone marrow culture data presented in Figure 3A, osteoclast precursor cells derived from Optn^{D477N/D477N} mice showed enhanced sensitivity to osteostimulation that appears to compensate for the reduction in the ability of mutant osteoblast to support osteoclast differentiation (Figure 3C).

Quantitative bone histomorphometry showed that Optn^{D477N/D477N} mice had significantly increased number of osteoclasts per bone surface (Oc.N/BS) and resorption surfaces (Oc.S/BS) as compared with WT (Figure 3D). Indices of bone formation (osteoid surface per bone volume [OS/BS], osteoid volume per bone volume [OV/BV], and mineral apposition rate [MAR]) were also significantly higher in Optn^{D477N/D477N} mice (Figures 3E and 3F), and there was a non-significant trend (p = 0.08) for an increase in bone formation rate (BFR/BS). These observations illustrate that optineurin negatively regulates osteoclast activity both in vitro and in vivo. The lack of an effect on osteoclast differentiation in vitro suggests that the increased bone formation we observed in Optn^{D477N/D477N} mice is no probably secondary to the increase in bone resorption, as occurs in humans with PDB (Ralston et al., 2008). Since PDB is also characterized by the development of focal osteolytic lesions that predominantly affect older people, we performed another skeletal phenotyping of Optn^{D477N/D477N} mice to investigate bone mass and bone structure and to look for evidence of focal osteolytic lesions in aged mice using micro-computed tomography (micro-CT) scanning of lower limbs. There was no difference between genotypes in BTV/T, trabecular number, or structure in young mice (Figures S2A and S2B). However, analysis of older mice aged between 8 and 18 months revealed evidence of a focal osteolytic lesion in the left femur in one Optn^{D477N/D477N} mutant mouse aged 15 months (Figure 3G; Table S1). We then investigated the presence of bone lesions in another loss-of-function mouse model in which the C-terminal polyubiquitin-binding domain of Optn has been deleted, resulting in a truncated protein with low expression (Optn^{Ex12/Ex12}). Analysis of the hindlimbs of Optn^{Ex12/Ex12} mice (n = 8) by micro-CT showed no Paget’s-disease-like lesions (Table S1). These observations illustrate that while the D477N loss-of-function mutation in Optn increases bone turnover, this does not result in net bone loss, presumably because the increase in bone resorption is coupled with that of bone formation. The development of a focal osteolytic lesion in one Optn^{Ex12/Ex12} mutant mouse (~10% of mice aged ≥15 months), but not in Optn^{Ex12/Ex12}, supports the hypothesis that loss of function in optineurin can lead to a PDB-like phenotype while illustrating that additional factors must also be present for focal osteolytic lesions to become fully penetrant.

Optn Regulates Osteoclast Differentiation by Modulating NF-κB and Interferon Signaling

Controlled RANKL-induced NF-κB activation is essential for osteoclast differentiation and function and for the maintenance of normal bone turnover. Previous studies have suggested OPTN as a negative regulator of TNF-α-induced NF-κB activation in immune cells (Maruyama et al., 2010; Nagabhushana et al., 2011; Sudhakar et al., 2009; Zhu et al., 2007), but its role in RANKL-induced NF-κB activation is yet unknown. In order to investigate the effects of Optn on intracellular signaling in osteoclasts, we studied RANKL-induced NF-κB activation during osteoclast differentiation in cultures from Optn^{D477N/D477N} mice as well as in Optn knockdown cultures. We found no difference in RANKL-induced NFκB activation, as measured by phosphorylation of IκBα, in BMDMs from D477N mutant mice compared with WT (Figure 4A). However, following RANKL stimulation, there was a progressive increase in NFκB activation that was significantly lower in Optn^{D477N/D477N} mice than in WT mice (Figure 4B). This suggests that optineurin negatively regulates NFκB activation during osteoclast differentiation.
significantly greater in cultures from \textit{Optn}^{D477N/D477N} as compared with WT mice, with a maximal effect at 3 days (Figure 4B). Similar findings were observed in \textit{Optn} knockdown cultures in which reduced expression of \textit{Optn} by knockdown resulted in enhanced NF-\kappaB activity after RANKL stimulation (Figure 2D). These findings indicate that the inhibitory effects of \textit{Optn} become most apparent as osteoclast differentiation proceeds and is consistent with the observation that \textit{Optn} levels increase substantially during osteoclast differentiation (Figure 2A). A similar mechanism has previously been reported in \textit{Cyld} null mice, which show no abnormalities of RANKL-induced NF-\kappaB activation in BMDMs but show enhanced NF-\kappaB activation as osteoclast differentiation proceeds (Jin et al., 2008).

Previous studies have shown that the deubiquitinase enzyme CYLD plays an important negative regulatory role in NF-\kappaB signaling in osteoclasts by interacting with p62 and TRAF6 (Jin et al., 2008). It has also been reported that optineurin is required for CYLD-dependent inhibition of NF-\kappaB activation in immune cells (Nagabhushana et al., 2011). Since the D477N mutation is located in the region that binds to CYLD (Nagabhushana et al., 2011), we studied the effects of the mutant protein on CYLD binding by immunoprecipitation in osteoclasts. This confirmed that the D477N Optn variant had an impaired ability to bind CYLD compared with WT Optn (Figure 4C), indicating that the inhibitory effect of Optn on osteoclast is mediated, in part, by a CYLD-dependent pathway. It has previously been shown that the expression of mutant OptnD477N protein was higher than that of WT in multiple tissues including BMDMs (Gleason et al., 2011). In line with these findings, we also observed that the expression of the mutant OptnD477N protein during osteoclast differentiation was higher than that of the WT (Figures 4C and 4E). This difference was more noticeable from day 3 post-RANKL stimulation (Figure 4E), possibly due to increased NF-\kappaB activity, since a putative NF-\kappaB binding site has been reported in \textit{Optn} promoter (Sudhakar et al., 2009). However, the increased levels of expression of the mutant OptnD477N protein were clearly not sufficient to compensate for its reduced ability to suppress NF-\kappaB activity and osteoclast differentiation.

Studies have shown that while RANKL stimulates osteoclast activity, it also initiates a negative auto-regulatory effect on osteoclasts through induction of interferon beta (IFN-\beta) expression (Takayanagi et al., 2002; Hayashi et al., 2002), which has an inhibitory effect on osteoclast by interfering with RANKL-induced expression of c-Fos (Takayanagi et al., 2002). Since previous studies have shown that optineurin is involved in IFN-\beta signaling in immune cells (Gleason et al., 2011; Munitic et al., 2013), we investigated if Optn plays a role in this negative regulatory loop in osteoclast by studying the expression of IFN-\beta and c-Fos in both WT and \textit{Optn}D477ND477N mutant cells. We found...
that RANKL induced the expression of IFNβ in both WT and OptnD477N/D477N mutant cells, but the expression levels were significantly lower in mutant cells compared to those observed in WT (Figure 4D). Additionally, c-Fos expression during later stages of osteoclast differentiation (3 days post-RANKL stimulation onward) from OptnD477N/D477N mice was higher than that observed in WT (Figure 4E). These data suggest that in addition to its inhibitory effect on NF-κB signaling, Optn may also exert an inhibitory role on osteoclast differentiation by modulating the IFN-β signaling pathway.

Coupling between bone formation by osteoblasts and bone resorption by osteoclasts is a complex mechanism, but it is well known that osteoblasts produce many pro-osteoclastogenic cytokines to regulate osteoclast function such as TNFSF11 (RANKL) and IL-6. Expression of these two cytokines in osteoblast cultures derived from OptnD477N/D477N mice was significantly lower than that observed in WT cultures, which is consistent with the reduced ability of mutant osteoblast to support osteoclast differentiation (Figures 4F and 4G).

Conclusions

In conclusion, we have demonstrated that reduced expression or loss of Optn function in mice leads to enhanced osteoclast differentiation, identifying Optn as a negative regulator of osteoclast differentiation. The underlying mechanisms are complex but involve RANKL-induced NF-κB activation, an interaction with CYLD, and regulation of IFN-β signaling with regulatory effects that are cell-type specific, dependent on its expression level and on its ability to bind polyubiquitin. Our data
suggest that the common genetic variant rs1561570 at the OPTN locus increases susceptibility to PDB by reducing levels of OPTN expression, probably leading to enhanced osteoclast differentiation.

EXPERIMENTAL PROCEDURES

Reagents
Details of the materials and reagents can be found in Supplemental Experimental Procedures.

Mice
The generation of OptnD477N/D477N knockin mice was described previously (Gleason et al., 2011). To generate OptnD477N/D477N mice, the OptnD477N/D477N mice were first crossed to Fipe−/− mice to remove the Fipe transgene, and these mice were then crossed to Bal-1 Cre mice to delete exon 12. All experiments were performed according to institutional, national, and European animal regulations.

Micro-Computed Tomography Analysis
Micro-CT analysis was performed using an in vivo Skyscan 1076 or an ex vivo Skyscan 1172 system. Live animals were scanned on the in vivo scanner.
looking for the development of PDB-like lesions as previously described (Daroszewska et al., 2011), and those showing evidence of lesions were further analyzed on the ex vivo scanner and then subjected to histological analysis as described below. Image reconstruction was performed using the Skyscan NRecon package and trabecular bone parameters measured using Skyscan CTAn software.

Histomorphometrical Analysis

Animals received two intraperitoneal injections of calcine 3 days apart before being culled. The hindlimbs were fixed for 24 hr in 4% formalin-buffered saline and stored in 70% ethanol prior to embedding in methyl methacrylate. The bones were processed for static and dynamic histomorphometry according to standard techniques. Sections were stained for tartrate-resistant acid phosphatase (TRAP) with aniline blue counterstain to visualize osteoclasts and osteoid analysis was done after Von Kossa staining with Van Gieson counterstaining according to standard protocols as previously described (Erben and Glösmann, 2012). Histomorphometry was performed using custom-built software and followed standardized nomenclature and recommendations (Dempster et al., 2013).

Osteoclast Culture

Bone marrow cells were isolated from the long bones of 4-month-old mice and cultured for 48 hr in the presence of M-CSF (100 ng/ml) to generate BMDMs. Adherent cells were reseeded and stimulated with M-CSF (25 ng/ml) and RANKL for 5 days until osteoclasts were formed. Cells were fixed with 4% (v/v) formaldehyde in PBS and stained for TRAP. TRAP-positive multinucleated osteoclasts (more than three nuclei) were counted, and numbers were compared to the WT control. For the NF-κB activation assay, BMDMs were generated as described above and incubated under standard conditions for 24 hr. Cells were serum starved for 1 hr followed by stimulation with 100 ng/ml RANKL. Cell lysates were collected at different time points and assayed by immunoblotting. For the NF-κB luciferase reporter assay, BMDMs were transduced with lentiviral NF-κB luciferase reporter for 2 days followed by selection for 48 hr using puromycin (5 µg/ml). The cells were then plated in 96-well plates and luciferase activity was measured with a SteadyGlo-luciferase reporter assay system at the indicated time points following M-CSF (25 ng/ml) and RANKL stimulation (100 ng/ml) using a Bio-Tek Synergy HT plate reader. The medium used was complete minimum essential medium alpha modification (αMEM), and all cultures were incubated under standard conditions of 5% CO2 and 37°C in a humidified atmosphere.

Osteoblast Culture and Bone Nodule Assay

Osteoblasts were isolated from the calvarial bones of 2-day-old mice by sequential collagenase/EDTA digestion and cultured in complete αMEM medium. On reaching confluence, cells were detached with trypsin, re-plated in 12-well plates at a density of 1 × 105 cells/well, and cultured in osteogenic medium (complete αMEM supplemented with 50 µg/ml vitamin C and 3 mM l-glutamine). The medium was replaced every 3 days and cultures were continued for up to 21 days. Mineralized nodules were detected using alizarin red staining, and bone nodule formation was quantified by determining the cultures in 10% (v/v) cetylpyridinium chloride and dissolving the stain in 10 mM sodium phosphate (pH 7.0). The absorbance of the extracted stain was then measured at 562 nm and compared to an alizarin red standard curve. Alizarin red values were corrected for viable cell number as determined by the alamar blue assay.

Statistical Analyses

Values in the graphs indicate group means ± SEM, as indicated in the legends. Comparisons between groups were performed by two-tailed t test. p < 0.05 was considered to indicate statistical significance. Experiments were performed as independent replicates as indicated in figure legends.

SUPPLEMENTAL INFORMATION

Supplemental information includes Supplemental Experimental Procedures, two figures, and one table and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2015.09.071.

AUTHOR CONTRIBUTIONS

R.O. and S.E.W. performed the majority of the experiments with participation from A.A. and R.J. T.H. contributed to Optn overexpression experiments. P.C. provided the OptnD477N and OptnΔαEx12 mice and contributed to study design. S.H.R contributed to study design and paper writing. O.M.E.A. designed and supervised the whole project and wrote the paper.

ACKNOWLEDGMENTS

We thank Rob van’t Hof for help in bone histomorphometry and micro-CT, Antonia Sophocleous and Euphemie Landao-Basonga for assistance in histology, and Catherine Gleason for initial work related to this project. This study was supported mainly by a consolidator grant from the European Research Council to O.M.E.A. (311723-GENEPAD) and by grants from Arthritis Research UK to S.H.R. and O.M.E.A. (19799 and 19520).

Received: November 12, 2014
Revised: September 8, 2015
Accepted: September 24, 2015
Published: October 29, 2015

REFERENCES

