Neural correlates of Trail Making Test performance in older adults: the Lothian Birth Cohort 1936

Sarah E. MacPherson1,2, Simon R. Cox1,2, Benjamin S. Arribasala1, Mark E. Bastin1,4,5, Joanna M. Wardlaw1,4,5, Ian J. Deary1,2

1Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
2Department of Psychology, University of Edinburgh, UK
3Department of Computer Sciences, Lagos State University, Lagos, Nigeria
4Brain Research Imaging Centre, Division of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
5Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, UK

Introduction

Part B of the Trail Making Test (TMT-B) is widely used as a quick and easy to administer measure of executive dysfunction (Spreen & Strauss, 1998).

Both neuropsychological (e.g., Stuss et al., 2001) and neuroimaging (e.g., Zakzanis et al., 2005) data have identified the role of the prefrontal cortex in TMT-B performance.

Performance on Part B of the Trail Making Test (TMT-B) declines with age and this is thought to be due to age-related deterioration of prefrontal structures (e.g., Rasmusson et al., 1998).

However:

Some patient studies have found both frontal and non-frontal patient groups performing poorly on the task (e.g., Chan et al., in press).

Neuroimaging data indicates that age-related decrements in TMT-B performance might be symptomatic of global age-related brain changes of either cortical regions (e.g., Pa et al., 2010) or the white matter (WM) tracts (e.g., O’Sullivan et al., 2001) that connect anterior and posterior brain regions.

Purpose

To investigate the relationships between TMT-B performance and quantifiable measures of cortical volume AND WM characteristics in a large sample of older participants.

Participants

368 members of Lothian Birth Cohort 1936 (Deary et al., 2007)

Aged 76 +/- 1 year at time of cognitive testing

Non-demented, non-depressed, community dwelling

T1W scan (resolution 1x1x3 mm), 1.5T clinical GE scanner (Wardlaw et al., 2011)

DTI scan (resolution 2x2x2 mm), 1.5T clinical GE scanner.

Cortical Volumes

FreeSurfer whole-brain volumetric segmentation and cortical reconstruction conducted using the default parameters and the Desikan-Killiany atlas (Desikan et al., 2006).

Discussion

In older adults, performance on TMT-B is related to the cortical volume of both frontal and parietal regions even when speed of processing is controlled for.

In the frontal subregions, TMT-B performance is related to the cortical volume of the dorsolateral prefrontal cortex, inferior frontal gyrus and orbitofrontal cortex.

WM integrity of the corpus callosum is significantly related to TMT-B completion time beyond speed of processing.

References


Deary et al. (2007) BMC Geriatrics, 7, 28.


