Toward a mineral physics reference model for the Moon's core

Citation for published version:

Digital Object Identifier (DOI):
10.1073/pnas.1417490112

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the National Academy of Sciences

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The physical properties of iron (Fe) at high pressure and high temperature are crucial for understanding the chemical composition, evolution, and dynamics of planetary interiors. Indeed, the inner structures of the telluric planets all share a similar layered nature: a central metallic core composed mostly of iron, surrounded by a silicate mantle, and a thin, chemically differentiated crust. To date, most studies of iron have focused on the hexagonal closed packed (hcp, or a) phase, as α-Fe is likely stable across the pressure and temperature conditions of Earth’s core. However, at the more moderate pressures characteristic of the cores of smaller planetary bodies, such as the Moon, Mercury, or Mars, iron takes on a face-centered cubic (fcc, or γ) structure. Here we present compressional and shear wave sound velocity and density measurements of γ-Fe at high pressures and high temperatures, which are needed to develop accurate seismic models of planetary interiors. Our results indicate that the seismic velocities proposed for the Moon’s inner core by a recent reanalysis of Apollo seismic data are well below those of γ-Fe. Our dataset thus provides strong constraints to seismic models of the lunar core and cores of small telluric planets. This allows us to propose a direct compositional and velocity model for the Moon’s core.

Iron | high pressure | high temperature | Moon | telluric planetary cores

Even though the telluric planets and satellites have metallic cores composed mainly of iron, differences in bulk masses imply different pressure (P) and temperature (T) conditions at the center of these bodies. This, in turn, reflects on the solid versus liquid nature of the core and on the stable crystalline structure of the solid phase. The hexagonal closed-packed (hcp, or ε) phase is likely the stable Fe phase across the pressure and temperature conditions of Earth’s core (1). At the moderate P–T characteristic of the cores of relatively small planets, such as Mercury (P between ~8 GPa and ~40 GPa, T between ~1,700 K and ~2,200 K) (2) or Mars (P between ~24 GPa and ~42 GPa, T between ~2,000 K and ~2,600 K) (3, 4), or satellites, including the Moon (P=5–6 GPa, T between 1,300 K and 1,900 K) (5), the expected iron stable structure is face-centered cubic (fcc, or γ) (6). For this phase, there are not extensive experimental measurements of the aggregate sound velocities as a function of pressure and temperature. Studies are limited to a single determination of the Debye velocity at 6 GPa and 920 K (7) and to an inelastic neutron scattering (INS) experiment at ambient pressure and 1,428 K (8), although a complete and consistent set of measurements of compressional and shear wave sound velocities (respectively, V_P and V_S) and density (ρ) at high pressure and high temperature are essential parameters needed to develop reliable seismic models of planetary cores.

The Moon is the only other telluric body besides Earth for which multiple direct seismic observations are available. These were provided by the Apollo Lunar Surface Experiments Package (9) that, despite the very limited number of seismometers and the partial seismographical extent, provided precious information on the structure of the Moon’s interior (10, 11). Nevertheless, seismic investigations of the deepest lunar interior (>900 km depth) remain very challenging. The structure of the lunar core is controversial, with only a single seismic study of core-reflected and converted S and P waves that directly detect the existence of a solid inner and a fluid outer core (10). The existence of a liquid outer core seems to be favored as well when considering polar moment of inertia, the overall elastic response to tidal potential (Love numbers), and mantle seismic constraints (10–12). In the analysis of the seismic data proposed in ref. 10, the inner core was modeled as pure iron, while the outer liquid core was modeled to contain less than 13 wt % of sulfur alloyed to iron (less than 6 wt % in the entire core). Various indirect observations also point to the existence of a metallic core (5, 12), although studies differ in many aspects, such as the radius of the core, the solid vs. liquid nature, or its composition. A precise determination of the structure and chemical composition of the Moon’s core is essential for the understanding of present-day dynamics, as well as to constrain models of lunar origin and evolution, including the possible existence of a now-extinct lunar dynamo (5, 13).

The link between seismic observations and geophysical models can be provided by experiments that probe sound wave propagation in candidate materials at relevant thermodynamic conditions. Here we carried out density (ρ) and sound velocity (V_P and V_S) measurements on body-centered cubic (bcc) and fcc iron at simultaneous high pressure and high temperature, using
Fig. 1. Representative aggregate phonon dispersion obtained at 19 GPa and 1,100 K (\(\rho = 8,620 \text{ kg/m}^3\)). The line is the best sine fit to the experimental data with \(V_p\) (the aggregate compressional sound velocity) and \(Q_{\text{max}}\) (the pseudo Brillouin boundary) left as free parameters. (Inset) Example of collected IXS spectra (\(Q = 6.02 \text{ nm}^{-1}\)). The experimental data are shown together with the best-fit result (thick solid line) and the corresponding individual components (thin dotted lines). The arrow indicates the longitudinal acoustic phonon of iron. The rising slope at higher energies is the tail of the transverse acoustic phonon of diamond anvils.

inelastic X-ray scattering (IXS) combined with X-ray diffraction (XRD) measurements.

IXS allows a clear identification of longitudinal aggregate excitations in polycrystalline samples, the direct derivation of \(V_p\), and the estimation of \(V_s\) (SI Text, Inelastic X-Ray Scattering and Diffraction Measurements) (Fig. 1). This technique has been proven very suitable for measurements on metallic samples compressed in diamond anvil cell (14–16), and has been recently extended for measurements under simultaneous high P–T conditions (17–20). Furthermore, combined XRD measurements yield an unambiguous phase determination and the direct derivation of the sample density (SI Text, Inelastic X-Ray Scattering and Diffraction Measurements).

Fig. 2. Density evolution of the aggregate compressional \((V_p)\) and shear \((V_s)\) sound velocities. Solid circles, bcc Fe; open circles, bcc Fe from ref. 14; open diamond, ultrasonic determination on bcc Fe at ambient conditions (36). Solid squares, fcc Fe; open hexagon, INS on fcc Fe at ambient pressure and 1,428 K (8); open squares, fcc Fe\(_{60}\)Ni\(_{40}\) alloy (17). Solid triangles, hcp Fe\(_{60}\)Ni\(_{40}\)Si\(_{10}\) alloy (16); upside-down triangles, bcc Fe\(_{60}\)Ni\(_{40}\)Si\(_{10}\) alloy (27). The experimental uncertainties on the densities are smaller than the symbol size. Error bars on the velocities account for the uncertainties related to the measured phonon energies, momentum transfer, and statistical errors of the fits (SI Text, Inelastic X-Ray Scattering and Diffraction Measurements). The lines are linear fits to the experimental data on pure Fe including the INS determination at ambient pressure \((V_p = a + b\rho, a = -3.320 \pm 1.200; b = 1.17 \pm 0.15\) and \(a = -4.250 \pm 0.700; b = 1.25 \pm 0.09\) for bcc Fe and fcc Fe, respectively). \(V_s\) for fcc Fe at 1,100 K \((V_s = a + b\rho, a = -3.440 \pm 1.460; b = 0.83 \pm 0.18\) is estimated combining measured \(V_s\) with bulk moduli obtained by P–V–T equation of state (6). Dashed lines represent upper and lower bounds once considering possible effects coming from nonrandom averaging (up to \(\pm 5%\) for \(V_p\) and up to \(\pm 15%\) for \(V_s\) estimated as the difference between Voigt and Reuss averages), and combined uncertainties on the P–V–T equation of state (SI Text, Inelastic X-Ray Scattering and Diffraction Measurements). Density ranges for Moon and Mars solid core (modeled as pure \(\gamma\)-Fe after ref. 6) are crosshatched. The arrows point to \(V_{p,\gamma}\) and \(V_{s,\gamma}\) values proposed in ref. 10 for the Moon’s solid core.

Table 1. Summary of the collected data: pressure (P), temperature (T), density (\(\rho\)), observed phase, and compressional \((V_p)\) and shear \((V_s)\) sound velocity

<table>
<thead>
<tr>
<th>P, GPa</th>
<th>T, K</th>
<th>(\rho), kg/m(^3)</th>
<th>Phase</th>
<th>(V_p), m/s</th>
<th>(V_s), m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>300</td>
<td>7.875</td>
<td>bcc</td>
<td>5920 ± 40</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>800</td>
<td>7.790</td>
<td>bcc</td>
<td>5900 ± 40</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>300</td>
<td>7.975</td>
<td>bcc</td>
<td>6030 ± 70</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>1,020</td>
<td>7.700</td>
<td>bcc</td>
<td>5660 ± 70</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>800</td>
<td>8.000</td>
<td>bcc</td>
<td>6120 ± 70</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1,150</td>
<td>7.560</td>
<td>fcc</td>
<td>5220 ± 70</td>
<td>2,970 ± 150</td>
</tr>
<tr>
<td>7</td>
<td>1,000</td>
<td>8.105</td>
<td>fcc</td>
<td>6080 ± 70</td>
<td>3,440 ± 180</td>
</tr>
<tr>
<td>10</td>
<td>1,100</td>
<td>8.205</td>
<td>fcc</td>
<td>5920 ± 60</td>
<td>3,420 ± 180</td>
</tr>
<tr>
<td>19</td>
<td>1,100</td>
<td>8.620</td>
<td>fcc</td>
<td>6590 ± 70</td>
<td>3,630 ± 200</td>
</tr>
</tbody>
</table>

P = 0 GPa and T = 300 K correspond to ambient P–T conditions. Temperature, density, and compressional sound velocity have been directly measured (SI Text, Inelastic X-Ray Scattering and Diffraction Measurements). Pressure has been measured only at 300 K (SI Text, Inelastic X-Ray Scattering and Diffraction Measurements); otherwise, it was derived from the equation of state (ref. 35 for the bcc phase and ref. 6 for the fcc phase). Shear velocities have been estimated combining measured \(V_p\) and \(\rho\) with bulk modulus from literature (6).
arguing for temperature effects report not more than ~5% softening in \(V_p \) in the hcp phase (19) and ~3% softening in \(V_p \) in the bcc phase (22), for a difference of 400 K.

The effects of frequency-dependent viscoelastic relaxation are more difficult to address, as anelasticity is a very complex issue that requires detailed knowledge of the material data at exact conditions (\(P-T \) conditions, grain size, impurities, defects, etc.), and are very often neglected. General consensus is that viscoelastic relaxation is more relevant for \(V_S \) than for \(V_p \). Even for \(V_S \) assuming a seismic quality factor Q of ~100 (23) and a frequency dependence \(\alpha \) of ~0.1–0.3 for the Moon’s core (24), the expected sound velocity reduction is only 1–3%.

We also examine the possibility of iron alloyed with nickel and/or other lighter elements. The effects on sound velocities when alloying other elements to solid iron have been widely investigated, both experimentally (16, 17, 19, 25–27) and theoretically (28, 29). As a first approximation, we assume the same qualitative behavior for all iron structures and look at likely candidates with respect to their cosmochemical abundances and chemical affinity. Nickel incorporation of up to 22 atomic % (at.%), slightly increases density at the same pressure (30) but does not change the compressional sound velocity (17) (Fig. 2). Inclusion of light elements such as silicon, sulfur, or carbon can significantly reduce the density, but the compressional sound velocity at constant density is shown to increase (16, 19, 25–28) (Fig. 2). FeTiO₂ ilmenite has been argued as a possible phase in the lunar core, in particular in models assuming a large core size (12), but this oxide is stiffer than metallic iron (31), which would yield even larger sound velocities at the appropriate density for this compound.

Thus, the sound velocity proposed for the Moon’s inner core (10) is incompatible with that of pure solid iron or any plausible solid iron alloys. Nonetheless, seismic data analysis and refinements of the lunar moment of inertia require the Moon to have an inner solid core and an outer liquid core. Here we use our results to construct mineral physical constraints on this lunar core model, reinterpreting the seismic observations (10) on the basis of our experimental measurements of \(V_p, V_s, \) and \(\rho \).

When considering iron and iron alloys phase diagrams, the temperatures characteristic of the Moon’s interior point to the Fe–FeS system as the most probable explanation for a liquid iron alloy stable at the thermodynamic conditions of the Moon’s core (13). To have a solid inner core, pure Fe has to be the solid phase coexisting with Fe–FeS melt at the liquidus. The Fe–FeS phase diagram at 5 GPa indicates that pure Fe can be at equilibrium with liquid Fe–S only if the S content is lower than ~37 at.% (Fig. S1). The temperature imposes further constraints: if partial melting is present at the bottom of the mantle (10, 32), temperatures at the core–mantle boundary (ICB) must exceed 1,650 K. The temperature at the inner core/outer core boundary (ICB) may be only a few tens of degrees higher than that at CMB, if we assume a nonconvective adiabatic layer, an assumption compatible with the absence of an active lunar dynamo (33). For temperatures at the ICB of at least 1,700 K, the amount of sulfur in the liquid phase could be brought down to 20 at.%, and even less for higher temperatures (Fig. S1). In this scenario, our best estimates (SI Text, Density and Sound Velocity for Fe–S Liquid Alloy) of the density (Fig. S2) and the corresponding velocity for the outer core (with a sulfur content ranging from 10 at.% to 20 at.%, \(P \) of ~5 GPa, and \(T \) of ~1,800 K) are ~6,500–7,000 kg/m³ and 3,500–4,100 m/s. Irrespective of the outer core composition, an inner core made of pure \(\gamma \)-Fe, with density of 7,600–7,800 kg/m³ (6), will have compressional velocities between 4,750 and 5,700 m/s, and shear velocities between 2,150 and 3,450 m/s (Fig. 2), even when accounting for up to ~5% reduction in \(V_p \) and ~10% reduction in \(V_S \) at constant density due to possible anharmonic effects when scaling up temperatures to 1,900 K (SI Text, Temperature Effects on the Sound Velocities). Our proposed velocity and density model for the Moon’s core is shown in Fig. 3 and summarized in Table S1.

Taking into account these mineral physics constraints and the seismic travel times reported in ref. 10, we can estimate inner core and outer core sizes (SI Text, Core Layering Modeling Methods). We obtain an inner core having a radius of ~245–250 km and an outer core ~85–80 km thick (Fig. 3). The total amount of sulfur in the core shell would then be between ~3 and ~6 wt %, as a result of the mass balance between the sulfur-bearing liquid outer core (10–20 at.%, corresponding to 6–11 wt %) and the pure iron solid inner core. This independent estimate is in excellent agreement with very recent modeling of lunar core formation and metal/silicate partitioning of siderophile elements (34), resulting in a Moon core containing up to 6 wt % S, and compatible with requirements from a long-lived lunar dynamo modeling, calling for 6–8 wt % S in the Moon’s core (13). We further validate the direct model proposed here by comparison with Moon’s observables such as mass and moment of inertia, finding values that fall within 0.1% of known values (SI Text, Moment of Inertia Modeling Methods).

Finally, our results can easily be extrapolated to the conditions of telluric planetary cores up to Mars size (Fig. 2). \(V_p \) of \(\gamma \)-Fe at 42 GPa and 2,500 K (\(P \) of ~9,100 kg/m³), \(P-T \) expected at the center of Mars, should be ~7,100 m/s, and \(V_p \) of \(\gamma \)-Fe at 40 GPa and 2,200 K (\(P \) of ~8,900 kg/m³), \(P-T \) expected at the center of Mercury, should be ~6,800 m/s. More delicate is the extrapolation of \(V_S \), which can be estimated for both cases in the 3,600–4,400 m/s range. Seismic records for Mars are not available yet, but the main objective of the InSight NASA Discovery mission (launch in March 2016) is to place a seismic station for the study of Martian interior structure (solarsystem.nasa.gov/insight/home.cfm). Our results and similar datasets will be fundamental to the interpretation of such seismic observations, as well as for direct modeling of solid cores of small telluric planets.

Acknowledgments. We acknowledge M. Mezouar for spectroradiometric measurements and J. Siebert for discussions. This work was supported by French National Research Agency Grant 2010-JCC-604-01 (to D.A.) and Grant ANR-12-B504-0015-04 (to G.M.) and by NASA Grant NNX14AG26G (to Y.F.) and Grant NNX09AO89G (to N.C.S.). D.A. also acknowledges financial support from the PNP program of CNRS-INSU.