Evaluation of resting-state functional connectivity in MEG signals of Alzheimer’s disease and mild cognitive impairment subjects with minimum spanning trees

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Evaluation of resting-state functional connectivity in MEG signals of Alzheimer’s disease and mild cognitive impairment subjects with minimum spanning trees

Dragos Stanciu¹, Alberto Fernández² and Javier Escudero³
¹ Centre for Doctoral Training in Neuroinformatics and Computational Neuroscience, School of Informatics, University of Edinburgh, dragos.stanciu@ed.ac.uk
² Departamento de Psiquiatría y Psicología Médica, Universidad Complutense de Madrid, Madrid, Spain.
³ Institute for Digital Communications, School of Engineering, University of Edinburgh, javier.escudero@ed.ac.uk

Studying mild cognitive impairment (MCI) may help to understand early Alzheimer’s disease (AD). Current diagnostic guidelines of AD acknowledge that some biomarkers can offer information about AD pathology but those biomarkers provide limited temporal information about brain activity [1]. Instead, the magnetoencephalogram (MEG) is a non-invasive recording of brain activity with high temporal resolution [2].

As AD is hypothesised to be a disconnection syndrome, estimating functional connectivity between MEG signals provides an excellent opportunity to analyze whole brain activity in this disease. Graph theory is a framework that only recently has been applied to the study of connectivity in the human brain [3].

We have analysed resting-state MEGs recorded from 26 controls (CON), 18 MCI subjects and 36 patients with AD at 169.54 Hz. Artefact-free MEG epochs of 10 seconds were selected for analysis and inspected in blocks of 2s with 50% overlap. We computed the imaginary part of coherence (ImCOH) and the debiased weighted Phase Lag Index (wPLI) between pairs of MEG channels with FieldTrip [4]. These measures were selected because of their robustness to common sources. For each subject, the adjacency matrices computed with each of these connectivity metrics for the classical spectral bands (δ, θ, α, β and γ) were transformed into binary graphs by computing their minimum spanning tree (MST) [5]. The MSTs were characterised with their diameter, leaf number, and characteristic path length (L).

There were significant differences between the CON and MCI groups for L in the δ and θ bands, diameter in the θ band and for number of leaves in the δ and θ bands. Between CON and AD subjects, differences in L and diameter were identified in the β band. Dissimilarities were also seen between MCI and AD groups for MST diameter in β, leaf number in δ and θ, and L in α and β. The values of the graph metrics for MCI subjects tended to fall outside the range of CON-AD for L in δ, θ, α and β, for diameter in θ and for leaf number in δ and θ.

These results relate to computational studies that have found that transient increases in activity and connectivity of brain activity in MCI may not be compensatory but pathological [6].
References