The Development of an Indexing Method for the Comparison of Unbalanced Magnetic Pull in Electrical Machines

Citation for published version:

Digital Object Identifier (DOI):
10.1109/TIA.2015.2466554

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
IEEE Transactions on Industry Applications

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The Measurement and Indexing of Unbalanced Magnetic Pull in Electrical Machines

Introduction

Unbalanced magnetic pull (UMP - a radial decentering force on the rotor, caused by rotor non-centering and other asymmetries) is hard to measure. In addition, it has been studied in several machines but there is also a lack of some sort of indexing to enable relative comparison of the UMP characteristics between different motors and different sizes.

Unbalanced magnetic pull is important because it affects the wear on the bearings [1] as well as noise and vibration [2]. This is particularly the case in brushless servo motors where fractional slots are used [3]. However, the most common form of UMP is due to the rotor not being centered in the stator bore. There are two types of rotor center displacement, or as it is termed, eccentricity: static eccentricity where the rotor is not centered in the stator bore but still turning on its own axis; and dynamic eccentricity where the rotor is not turning on its own axis but is turning on the stator axis. Obviously both can exist simultaneously and many condition monitoring methods which use the monitoring of current sideband components in induction motors rely on this [4][5]. The sources of static eccentricity could be a worn or displaced rotor bearing while a bent shaft, mechanical unbalance in the rotor, or rotor resonance [6] can cause dynamic eccentricity. Most research studies assume that the rotor eccentricity is uniform although a bent shaft or misplaced bearing will mean the eccentricity varies down the axial length. There have been some models that take this into account [7].

The papers [1] to [7] describe UMP in induction motors except for [3], which considers UMP in a permanent magnet machine. UMP is an important issue in any electrical machine and examples of UMP in other machines are given in [8]-[12]. However, because the induction machine has a secondary circuit, where the rotor current requires calculating, UMP in induction motors is more complicated to calculate compared to other electrical machines. However, many machines will be competing for use in different applications. For instance, wind turbine generators can be wound or cage rotor induction generators, permanent magnet generators and wound field synchronous generators. Automotive drive motors are mostly using interior permanent magnet motors but induction motors are increasingly being used. Being able to quantify the characteristic UMP will be helpful in terms of being aware of the required mechanical stiffness, allowable tolerance of bearing wear, and manufacturing tolerances. It has to be remembered that UMP will vary with voltage and load. This is one of the focuses of this digest and the full paper will further elaborate on this. The machines covered are induction, permanent magnet and synchronous machines that all tend to have 3 phase distributed windings and cylindrical stators. Switched reluctance machines also exhibit UMP although rotating field theory is difficult to implement in this machine. The effects of UMP for this sort of machine were addressed in [13].

Core saturation and windings can affect the UMP. For the induction motor, at a set speed, the UMP should go up with the square of the voltage but as illustrated in [14] saturation attenuates the UMP. Parallel stator windings and the rotor cage can also reduce UMP (and create additional vibration)[15] whereas skew increases the UMP [16]. In the permanent magnet motor the rotor topology has a great effect [17] and also parallel windings can have an effect [18]. As already stated, measuring UMP is difficult. In machines with magnetic bearings [19] or bearingless machines [20] the force can be calculated using the currents in the levitation system. Load cells have been used [21] although they do move when loaded which needs to be taken into account. A more successful mechanical method is to use piezoelectric force cells. These were used in [15][22][23] in the form of a load table or plate. The stator was mounted on the table and the rotor separately mounted on pedestals. The rotor and stator can then be moved with respect to each other and the UMP assessed. The transducers have negligible movement. A development of this method is to put the transducers in the rotor pedestals. This method is reported in this digest.

This digest reports on experimental methods that have been developed to measure UMP and an indexing technique to allow direct comparison of UMP between different machines. It will develop the indexing method and use machines tested on the developed experimental rigs, and in other studies, to calculate and compare the soundness of the index. The index method is primarily aimed at cylindrical AC machines with rotation flux waves.

UMP Index

UMP is due to an imbalance in the air-gap magnetic flux. As described in many studies, if the rotor is not centred then permeance modulation of the MMF takes place so that for a p pole-pair machine, there will not only be a p pole-pair magnetic flux wave but also p±1 pole-pair magnetic flux waves. Indeed, at a high degree of rotor eccentricity then there will be even more flux waves (p ± 2, 3, etc) [24]. However, at low eccentricity it is the p±1 poles that are most prevalent and this is what we will focus on. Let us assume that we have a rotating MMF source. This could be a distributed winding or indeed a magnet source. If it is assumed to be sinusoidal then

$$j^{p}_{	ext{stator}}(y,t) = J^p \cos \left(\phi - pky + \phi_y \right) = \text{Re} \left\{ \overline{J^p} e^{i(\alpha - pky)} \right\}$$

(1)
where \(y \) is the circumferential distance around the airgap, \(\omega \) is the angular velocity of the supply, \(p \) is the pole-pair of the MMF wave, and \(k \) is the inverse of the average airgap radius \(r \). If the rotor is not centered and the eccentricity is uniform down the axial length, then an approximate airgap length when the rotor has either static or dynamic eccentricity is

\[
g_s(y) = g \left(1 - \delta_s \cos(ky) \right) \quad \text{and} \quad g_{s,d}(y,t) = g \left(1 - \delta_{s,d} \cos(\omega t - ky) \right) \tag{2}
\]

To get the permeance wave then the gap length expressions can be inverted

\[
\Lambda_s(y) = \frac{1}{g} \left(1 + \delta_s \cos(ky) \right) \quad \text{and} \quad \Lambda_{s,d}(y,t) = \frac{1}{g} \left(1 + \delta_{s,d} \cos(\omega t - ky) \right) \tag{3}
\]

The amount of eccentricity \(\delta_{s,d} \equiv x/g \) where \(x \) is the actual rotor displacement and \(g \) is the air-gap length when the rotor is centred. The rotor rotational velocity is \(\omega_t \). This gives the airgap flux waves as

\[
b(y,t) = \text{Re}\left\{ \bar{B}^p e^{i(\alpha r - \beta d y)} + \bar{B}_s^i e^{i(\alpha r - \beta d y)} + \bar{B}_s^i e^{i(\alpha r - \beta d y)} + \bar{B}_s^{i+1} e^{i(\alpha r - \beta d y)} \right\} \tag{4}
\]

where, for static eccentricity \(\omega_0 = \omega_a \) and for dynamic eccentricity \(\omega_0 = \omega - \omega_a \) and \(\omega_a = \omega + \omega_a \).

The field magnitude coefficients (which are phasors) are

\[
\bar{B}^p = \frac{j\mu_0 T}{kpg} \quad \text{and} \quad \bar{B}_s^{i+1} = \frac{j\mu_0 T}{kpg} \delta_{s,d} = \bar{B}^p \delta_{s,d} \tag{5}
\]

We can address the normal Maxwell stress \(\sigma \) at any point in the airgap. This is the primary sources of UMP:

\[
\sigma(y,t) = \frac{B_r^2 - B_t^2}{2\mu_0} = \frac{B_r^2}{2\mu_0} = \frac{\text{Re}\left\{ b(y,t) \right\}}{4\mu_0} \tag{6}
\]

where \(B_r \) is the flux density in the radial direction and \(B_t \) is the flux density in the tangential direction in the airgap at a circumferential distance \(y \). For a machine with axial length \(L \) and mean airgap radius \(r \), the force in the \(\alpha \) direction (\(\alpha \) and \(\beta \) being Cartesian coordinates for a cross-section and the eccentricity and force being in the \(\alpha \) direction):

\[
F_\alpha = L \int_0^{2\pi r} \frac{\sigma(y,t)}{2\mu_0} \cos(\delta y) \, dy = L \int_0^{2\pi r} \left(e^{i\delta y} + e^{-i\delta y} \right) \frac{\text{Re}\left\{ b(y,t) \right\}}{4\mu_0} \, dy \tag{7}
\]

Focussing on static eccentricity for simplicity, this will create a constant side force. Dynamic eccentricity will develop a rotating force vector. The airgap flux density waves can be written as

\[
b(y,t) = \text{Re}\left\{ \bar{B}^p \left(e^{i(\alpha r - \beta d y)} + \delta \left(e^{i(\alpha r - \beta d y)} + e^{i(\alpha r - \beta d y)} \right) \right) \right\} \tag{8}
\]

For the force in (7) the square of magnitude is required. However, only 2-pole waves are needed in (7) for non-zero solving:

\[
\left| \text{Re}\left\{ b(y,t) \right\} \right|^2 = \left(\text{Re}\left\{ \bar{B}^p \right\} e^{i\delta y} + \delta \left(\text{Re}\left\{ \bar{B}^p \right\} e^{i\delta y} \right) \right) \left(\text{Re}\left\{ \bar{B}^p \right\} e^{-i\delta y} \right) \tag{9}
\]

The 2-pole force waves are generated by flux waves with pole numbers differing by two. This generates UMP [7]. Hence

\[
F_\alpha = L \int_0^{2\pi r} \left| \text{Re}\left\{ b(y,t) \right\} \right|^2 \frac{\delta y}{4\mu_0} dy = \frac{L}{8\mu_0} \delta \text{Re}\left\{ \bar{B}^p \right\} \int_0^{2\pi r} \left(e^{i\delta y} + e^{-i\delta y} \right) \frac{\text{Re}\left\{ b(y,t) \right\}}{4\mu_0} \, dy = \frac{\pi L r}{2\mu_0} \delta \left| \bar{B}^p \right|^2 \tag{10}
\]

The UMP flux coefficient can then be assessed where \(C_{\text{Flux}}^{\text{UMP}} = \frac{2\mu_0 \text{measured}}{\pi L r} \delta \left| \bar{B}^p \right|^2 \)

\[
\text{It is more useful to have a coefficient that is a function on an easy measureable component such as the terminal voltage or back-emf. The voltage induced into one phase is}
\]

\[
\hat{u}_p &= \hat{u}_s \left(\frac{\pi L r}{2\mu_0} \delta \left| \bar{B}^p \right|^2 \right) = \hat{u}_s \left(\frac{\pi L r}{2\mu_0} \delta \left(\frac{\omega}{\omega_0} \right) \left(\frac{\omega}{\omega_0} \right) \left(\frac{\omega}{\omega_0} \right) \left(\frac{\omega}{\omega_0} \right) \right) \tag{12}
\]

which means the force can be denoted in terms of the voltage:

\[
\hat{F}_p = \frac{\pi L r}{2\mu_0} \delta \left| \bar{B}^p \right|^2 = \frac{\pi L r}{2\mu_0} \delta \left(\frac{\omega}{\omega_0} \right) \left(\frac{\omega}{\omega_0} \right) \left(\frac{\omega}{\omega_0} \right) \left(\frac{\omega}{\omega_0} \right) \right) \tag{13}
\]

This has many simplifications and does not take into account winding harmonics and saturation. It assumes sinusoidal phase voltage. However we can now write an expression for the UMP voltage coefficient so that

\[
C_{\text{Voltage}}^{\text{UMP}} = \frac{4\mu_0 r L \omega N_{\text{phase}}^2}{\pi p^2 \delta \left| \bar{B}^p \right|^2 \left(\frac{\omega}{\omega_0} \right) \left(\frac{\omega}{\omega_0} \right) \left(\frac{\omega}{\omega_0} \right) \left(\frac{\omega}{\omega_0} \right) \right) \tag{14}
\]
The voltage coefficient increases with increasing UMP and decreasing voltage. To get an index where a high value represents low relative UMP, we can use

\[
UMP \text{ factor} = \frac{1}{\sqrt{\text{Voltage} / \text{UMP}}} \quad (15)
\]

The eccentricity is a function of the relative eccentricity. Therefore for a given UMP factor then a larger airgap is more advantageous because the rotor has to be displaced further in actual terms to produce the same amount of UMP. We can normalize the airgap in an arbitrary manner where an airgap of 0.5 mm = 1 so that

\[
\text{UMP-gap factor} = 2g(\text{mm}) / \sqrt{\text{Voltage} / \text{UMP}} \quad (16)
\]

The UMP and UMP-gap factors can be below or above 1 depending on whether there is damping of the additional flux waves generated by the eccentricity, say by a rotor cage, or whether the machine airgap is flux-wave rich. The results section presents a survey of different machines in order to validate these factors.

Measurement

Few studies have measured UMP. In bearingless machines, it can be related to the control currents [26] and complex strain gauge methods were discussed in [18]. A good method is to use piezoelectric transducers. They can be used in a mounting plate with the stator mounted on the plate and the rotor separately mounted on pedestals. This was done in [15]. A more versatile method is to incorporate transducers into the rotor support pedestals and this has now been done as illustrated in Fig. 1. Two rigs are illustrated: these have been developed independently but use similar arrangements. To focus on the rig in Figs. 1(a) and (b), the rotor mountings were shimmed to try to get the rotor and stator at the same height and the stator adjusted in the x direction as indicated. The center rotor position was set using feeler gauges in the airgap at the ends of the rotor. This illustrated that setting the rotor location is not straightforward. Fig. 1(c) shows another rig which is single sided (just two on one rotor mounting). For the first rig, the stator was moved using simple clock gauges. The voltage was varied at different eccentricity values to get a set of characteristics. Since it is a wound rotor machine the rotor could be open circuit and short circuit.

![Fig. 1. UMP Measurement rigs using Piezo-electric force transducers.](image)

The torque and force can be measured using these rigs if they are not connected to a load. If the rotor is locked then torque can be separated out from the UMP by measurement of forces when the rotor locking bar is against the rotor support (no torque detected) then supported against the motor bed (torque and UMP both detected). For the UMP, and using the coordinate system in Fig. 2:

\[
\begin{align*}
F_{z_{\text{Total}}} &= F_{z_1} + F_{z_2} + F_{z_3} + F_{z_4} \\
F_{x_{\text{Total}}} &= F_{x_1} + F_{x_2} = \frac{x}{\sqrt{3}} (F_{z_1} - F_{z_2} - F_{z_3} + F_{z_4})
\end{align*}
\quad (17)
\]

If the rotor mounting geometry is given in Fig. 2, where the angle \(\theta \) is defined by \(\tan(\theta) = \frac{x}{y} \), the torque, when the locking bar is against the rig bedplate, is

\[
\text{Torque} = \left[(F_{z_1} - F_{z_2}) \cos(\theta) + F_{x_1} \sin(\theta) + (F_{z_4} - F_{z_3}) \cos(\theta) + F_{x_2} \sin(\theta) \right] \quad (18)
\]

This is in addition to the UMP. The full paper will give a full set of results although in this digest only some selected results are given for validation of the UMP and UMP-gap factors.

Results

The full paper will give a wide survey of UMP in different machines and put forward experimental results from different machines tested on the rigs described above. Table I shows a survey of different machines in tabular form. The different
geometries are put forward and, using the measured or calculated UMP, the UMP and UMP-gap factors are calculated. As already stated, high factor means low relative UMP.

The survey includes a 10 pole induction machine from previous studies which had either a blank laminated cylindrical rotor with a large airgap (1.5 mm), or a cage rotor with a 0.5 mm airgap. For the blank rotor, when the 3-phase windings are in series, show a UMP factor close to unity. The UMP-gap factor is higher because the airgap is relatively large. When the winding contains parallel paths, which are known to damp UMP, the factors increase. For the cage rotor, at no load, dynamic eccentricity has a UMP factor close to unity again but the static eccentricity gives a high UMP factor. It was explained in [7] that the cage rotor will damp the UMP but not in the no-load dynamic eccentricity case. At locked rotor the factors are very low because the damping of the UMP by the rotor decreases as the effects of the differential and slotting increase [7]. A 4 pole wound rotor machine was tested in the rig in Fig 1 (a) and (b) and it can be seen that the UMP factor under no load is 0.72 but decreases under locked rotor conditions with the rotor shorted for the same reasons as described above. The 4 pole machine tested in [5] and [7] again confirms the lack of UMP damping with dynamic eccentricity at no load with a UMP factor of 0.8. A 6 pole machine was tested in the rig in Fig. 1(c) using a DC test so that there was no rotor current and as expected the UMP factor was almost unity.

Further machines assessed were brushless permanent machine machines. Additional types of this machine will be tested and reported. The simulation of a rare-earth magnet machine in [25] gave good UMP factors and these results were echoed by the 12 pole surface magnet machine in [17]. These were under no load conditions however the UMP factor reduced when the 12 pole machine was loaded. This will be due to additional MMF harmonics since it is a fractional slot machine and additional vibrations were produced. The consequent magnet rotor designs (where the poles alternate between surface magnets and steel poles so there is one magnet per pole-pair) in [17] and [25] have reduced UMP factors compared to the surface magnet machines, i.e., they generate more UMP. This has been reported in [15] as a major characteristic of the consequent rotor machine, hence its use as a bearingless machine. The full paper will include an internal permanent magnet machine and a synchronous machine, as well as larger machines, for completeness.

The UMP-gap factors are higher when the airgap is larger and this reflects the fact that a bearing can wear more in a machine that has a larger airgap because of wider tolerance limits. As discussed in [17], manufacturing tolerance allows up to about 5 % eccentricity.

![Table I. Survey of UMP in different Machines](https://example.com/table.png)

Conclusions

This digest develops a UMP factor and UMP-gap factor which attempt to quantify the UMP to allow direct comparison of machines of different types and sizes. The UMPs from direct measurement that are reported here, and results from past literature, show that the factor appears to give a reasonable indicator. New UMP rigs are discussed that will allow direct measurement of the UMP which are flexible to the point of allowing both steady radial pulls and vibrations to be measured on individual bearings. This will allow rotor eccentricity which varies down the axial length to be studied and also skew effects. These will be reported in the full paper.
References

