Hair Follicle Bulge Stem Cells Appear Dispensable For the Acute Phase of Wound Re-Epithelialisation

CLARE L. GARCIN¹*, DAVID M. ANSELL¹2*, DENIS J. HEADON³, RALF PAUS²4, MATTHEW J. HARDMAN¹

Key words. Skin • hair follicle • bulge • wound healing

ABSTRACT

The cutaneous healing response has evolved to occur rapidly, in order to minimise infection and to re-establish epithelial homeostasis. Rapid healing is achieved through complex coordination of multiple cell types, which importantly includes specific cell populations within the hair follicle (HF). Under physiological conditions, the epithelial compartments of HF and interfollicular epidermis remain discrete, with K15+ve bulge stem cells contributing progeny for HF reconstruction during the hair cycle and as a basis for hair shaft production during anagen. Only upon wounding do HF cells migrate from the follicle to contribute to the neo-epidermis. However, the identity of the first-responding cells, and in particular whether this process involves a direct contribution of K15+ve bulge cells to the early stage of epidermal wound repair remains unclear. Here we demonstrate that epidermal injury in murine skin does not induce bulge activation during early epidermal wound repair. Specifically, bulge cells of uninjured HFs neither proliferate, nor appear to migrate out of the bulge niche upon epidermal wounding. In support of these observations, Diphtheria toxin-mediated partial ablation of K15+ve bulge cells fails to delay wound healing. Our data suggest that bulge cells only respond to epidermal wounding during later stages of repair. We discuss that this response may have evolved as a protective safeguarding mechanism against bulge stem cell exhaustion and tumorigenesis. STEM CELLS 2015; 00:000–000

SIGNIFICANCE STATEMENT

In response to skin injury, peri-wound hair follicles become activated to make a significant contribution to the healing process. Until recently, the bulge region, which houses the best-characterised population of stem cells within the hair follicle, has been considered the major contributor to wound repair. Our research contradicts this widely accepted paradigm, and reveals bulge inactivity during the first stages of wound healing. This may represent an evolutionarily programmed mechanism to protect against injury-induced cancer formation.

INTRODUCTION

The hair follicle (HF) is a dynamically remodelled mini-organ comprising multiple adult stem cell (SC) populations that underlie its tremendous growth and regeneration potential [1]. In homeostasis, the HF and interfollicular epidermis (IFE) are maintained exclusively by two distinct populations: the cycling HF epithelium by bulge epithelial HF SCs, which divide infrequently, contributing to the outer root sheath (ORS), inner root
sheath, hair matrix, and secondary hair germ; the IFE by basal epidermal SCs, which divide more frequently to replenish terminally differentiating keratinocytes [2-6]. Whilst the keratin 15+ve bulge is considered the primary HF SC niche, housing ‘the most quiescent and long-lived’ population of cells [5], more recently identified stem cell populations also exist within the HF, such as the Lgr6 and MTS24 positive isthmus region [7, 8], and the Lrig1+ve junctional zone [9].

Under specific conditions of perturbed epidermal homeostasis, HF-derived keratinocytes actively contribute to the IFE. For example, following injury HF-derived keratinocytes proliferate and migrate into the neo-epidermis (IFE) [2, 3, 7, 9-11]. Interestingly, cells deriving from different HF regions may make varying contributions to epidermal wound healing. For example, Page et al. [9] have extensively characterised the contribution of numerous HF cell populations, including the bulge, and have shown that Lrig1+ve cells persist for up to a year in the healed IFE, whereas Ito et al. [3] showed depletion of hair follicle-derived cells of the K15+ve lineage within 20 days post wounding. Studies have also demonstrated that HF contribution may be important for healing rate immediately after wounding. Specifically, Langton et al., [12] showed a delay in the early stages of tail skin healing in the absence of HFs, while we have more recently demonstrated accelerated skin repair during the anagen phase of the hair cycle [13].

However, the temporal kinetics of the HF-derived cell contribution to epidermal healing remains unclear. It is particularly important to understand the identity and location of the cell populations that are first activated and responsible for the early contribution of hair follicles to wound repair. Conversely, whether specific HF progenitor cell niches might be dispensable for epidermal repair remains unknown. The latter issue is particularly important in light of recent work demonstrating a) plasticity both within and between HF SC niches [14] and b) the role of K19+ve cells in HF regeneration and healing [15].

In this study we clarify the role of K15+ve bulge cells in the early stages of epidermal repair. Here we present the first detailed analysis of HF keratinocyte proliferation over an extensive early wound healing time course. While many studies have analysed the involvement of HFs in wound re-epithelialisation during the later stages, (7 days onwards), to our knowledge until now, the kinetics of the early HF response to wounding has not been studied. We show that while upper HF ORS keratinocytes rapidly proliferate following epidermal injury, with differential induction kinetics between anagen and telogen HFs, K15+ve bulge cells are not activated to proliferate by epidermal injury and appear to be largely dispensable for timely wound re-epithelialisation. We suggest that these unexpected findings reveal an evolutionarily conserved mechanism to protect against tumorigenesis.

Materials and Methods

Animal experimentation. All animal procedures were approved by the University of Manchester ethical review panel, and performed under UK home office licence (number 40/ 3020 and 70/8136). Mice were housed in groups prior to experimentation with access to food and water ad libitum.

Generation and treatment of transgenic mice. The previously described K15CrePR transgenic strain [16], was crossed with the previously described strain containing the Diphertheria toxin A fragment (DTA) with an upstream floxed stop codon [17] (C57BL/6 6 genetic background). Prior to transgene activation, mice were healthy, bred normally, and had no obvious phenotype. Transgene induction was performed at 7wks of age to ensure that all HFs were within the telogen phase of hair cycle [18]. Topical induction with 2 µg RU486 per 1 mg Neutrogena hand cream (50 µl cream applied per 1.5 cm mouse skin) (Sigma; Poole, UK) was performed daily for 5 days prior to wounding (Figure S1A) [16], and continued after wounding to maintain depletion of bulge cells. Mice were culled at 3 days post-injury.

Wounding procedure. Male C57BL/6 mice at either 32 days old (anagen) or 49 days old (telogen) were anaesthetised with isofluorane by inhalation. A single 6 mm full thickness excision was made on the left hand side of the dorsal flank, with the right hand side left unwounded as an internal contralateral control (Figure S1B). The control was used to identify any systemic wound induced changes to hair cycle (none were observed). Buprenorphine was administered for analgesia, and wounds were left to heal by secondary intention, with mice being housed individually post operatively.

K15cre+DTA mice and sex-matched littermate controls were anaesthetised, and 2 x 6 mm full thickness excisions were made on the dorsal flank. The biopsy tissue obtained at the time of wounding was collected and fixed for histology, to confirm efficacy of bulge ablation treatment at the time of injury (i.e. the amount of cell death within the bulge was analysed.) The two wounds per animal were assessed as independent replicates [18].

Tissue harvesting. Mice were culled by rising concentration of CO2 at 2, 4, 6, 12, 18, 24, or 72 hrs post wounding. All mice received 40 mg/kg of BrdU via i.p. injection 2 hrs prior to cull to assess proliferation within a defined period (Figure S1C), with the exception of the continual proliferation study which received BrdU at the time of wounding and subsequently every 12 hrs until cull at 72 hrs, (or every 12 hours from 108 hours until cull at 7 days) (Figure S1D). All wounds were bisected along the caudal to rostral plane to present hair follicles in a longitudinal orientation (Figure S1B). Bisected wounds were fixed and processed as previously described [13]. Contralateral control skin was also taken for the C57BL/6 experiment in order to confirm that the hair cycle was identical in unwounded regions of skin. For K15crePR DTA studies, controls tissue was taken

from the biopsy (time zero), plus also treated and untreated regions at the time of cull.

Immunohistochemistry. 5 μm tissue sections were used for immunohistochemistry. Protocols for BrdU, Keratin 6, and Cd34 have been previously described [13]. Keratin 15 immunohistochemistry was performed via the ABC method using the mouse on mouse kit (Vector; Peterborough, UK). Antigen retrieval was via the citrate (pH 6) method with primary antibody incubation performed at 4oC for 16hrs (1:50; AbCam, Cambridge, UK). Sections were counterstained with Gills haematoxilin (Vector). TUNEL assay was performed using the in situ cell death detection kit (Roche) as per manufacturer’s instructions, antigen retrieval with Proteinase K (Sigma) at 20 μg/ml for 20 mins at 37oC. Keratin 15 CD34 and α6 integrin were quantified as number of outer bulge cells present in control and K15crePR;DTA mice.

Quantitative immunohistomorphometry of proliferating HF cells. Wound edge tissue sections were analysed for BrdU incorporation within the basal layer of the interfollicular epidermis (excluding neo-epidermis), and cells within the outer root sheath (ORS) of HFs. HFs that had been partially amputated during wounding were excluded from analysis. In order to directly compare the same cellular material from anagen VI HFs we only counted ORS within the upper HF (proximal to the bulge). Figure S1E indicates zones of analysis, with BrdU counts presented as a % of total measurable basal cells in that region. Quantification of BrdU positive cells per HF region is presented as a raw number (Figure 1G).

Pulse-chase label retention assay. Label retention assay was performed by Taylor et al. (2000) [11]. C57BL/6 WT mice were subcutaneously injected with BrdU labelling reagent (50 μg/g body weight) twice daily between P3 and P5 (for 3 days). Mice were wounded at P23 and sacrificed 3 days later at P26 (Figure S1F).

Co-localisation immunofluorescence studies. Dual immunofluorescence of BrdU and Cd34 was conducted on paraffin-embedded tissue, with antigen retrieval via the citrate method. Sections were blocked with rabbit serum before incubating for 16 hrs with primary antibody at 4oC (BrdU 1:50, Abcam; Cd34 1:100, Santa Cruz). Sections were washed with PBS supplemented with 0.1% Tween-20, then incubated in secondary antibody (Donkey anti Rat-alexa 488 1:100, Invitrogen; Donkey anti goat-Rhodamine 1:100, Millipore). Sections were washed, counterstained with DAPI, and mounted.

Statistical analysis. Statistical analysis across multiple wounding timepoints was performed using a one-way ANOVA with posthoc testing. Analysis of bulge ablation experiment was via pairwise Student’s t test.

RESULTS

Injury rapidly induces peri-wound hair follicle proliferation that propagates radially from the wound edge. To address the tempo-spatial kinetics of the early HF response to epidermal injury, we profiled the behaviour of non-injured HFs adjacent to full thickness skin wounds (hereby termed peri-wound HFs), during the first 24 hours post-injury. Our methodology, using a single 6 mm circular excision, permitted the first detailed proliferation analysis of longitudinally sectioned wound edge HFs, with corresponding unwounded contra-lateral flank skin (See figure S1 for experimental design). These analyses revealed that injury induces upper ORS keratinocyte proliferation in peri-wound HFs from 6 hours post-wounding in both anagen and telogen HFs (Figure 1A). Moreover, induced proliferation emanated from the wound edge (Figure 1B), suggesting that inductive signals are wound-derived rather than intrinsic to the HF.

Anagen hair follicles proliferate more rapidly in response to injury. Given that the hair cycle phase strongly influences wound healing outcome [13], we hypothesised that the effects of wounding on HF proliferation would be hair cycle-dependent. Comparing hair-cycle-synchronised mouse skin fields [19, 20] revealed a more rapid onset of proliferation in the ORS of peri-wound anagen HFs (growth phase) than telogen HFs (resting phase; Figure 1C). Of note, no hair cycle-dependent difference in proliferation was observed in the wound edge IFE (Figure 1C), suggesting that hair cycle does not directly influence the IFE response to injury.

Peri-wound hair follicles do not display bulge proliferation. Curiously, extensive analysis of HF proliferation during the first 72 hours post-injury revealed an absence of bulge localised proliferation, despite BrdU+ve cells in virtually all other HF compartments (Figure 1D,G). Importantly, cellular co-localisation of BrdU and the bulge marker CD34 was never observed (Figure 1E). To confirm that we had not simply missed a narrow window of bulge proliferation, an additional cohort of mice received BrdU injections every 12 hours from wounding until collection 72 hours later. In these mice, virtually all IFE and distal ORS cells were BrdU+ve, whilst all bulge cells remained BrdU-ve (Figure 1F, G). This finding was unexpected, given the extensive literature which ascribes the bulge a role in epidermal regeneration [2, 3, 9, 15, 21-33], but supports the most recent study by Driskell et al. (2015), who demonstrated that K19+ve cells are dispensable for IFE re-epithelialisation ten days post injury [15]. Strikingly, repeated BrdU pulse during the final three days of a seven day healing time-course produced a similar result: proliferation in numerous IFE and HF keratinocytes, but no proliferation within the bulge (in both anagen and telogen) (Figure S2).

Bulge cells in peri-wound hair follicles do not appear to migrate from the niche to contribute to healing. Although bulge cells in peri-wound HFs did not proliferate, it was still possible that bulge stem cells were migrating out of the bulge compartment in response to injury, as HF melanocyte stem cells do in response to wounding [25][27]. To address this, we performed a label retention assay and tracked the destination of bulge-resident
DNA label retaining cells (LRCs) following wounding. This pulse-chase experiment revealed that, immediately prior to wounding LRCs appeared exclusively confined to the bulge, with no BrdU+ve cells in other skin compartments (i.e. the ORS or interfollicular epidermis; Figure 1H). Over the first three days post-injury LRCs remained within the bulge region of peri-wound hair follicles and were never observed to migrate to the ORS or the neo-epidermis (Figure 1I).

Bulge stem cell apoptosis can be selectively induced using a K15CrePR;DTA transgenic line. To functionally probe the importance of the HF bulge for early epithelial repair, we next established an inducible K15-CrePR;DTA transgenic mouse line which enabled partial temporal depletion of K15+ve bulge stem cells (Figure 2A). As expected, CrePR activation by topical RU486 administration resulted in major changes to bulge architecture, a marked reduction in K15+ve bulge cells (>70%) and a clear increase in TUNEL+ve cells in the bulge (Figures 2B-F). While we were unable to deplete every K15+ve bulge cell (even after daily induction for several weeks; data not shown), cell death was preferentially induced in the Cd34 stem cell compartment, while the non-stem cell K6 compartment remained relatively intact [24] (see Fig. S3). This phenotype broadly mirrors previous attempt at bulge ablation using a genetic approach [34], suggesting ongoing repopulation via another stem cell pool. Whilst we observe a very low number of TUNEL positive cells within the suprabasal interfollicular epidermis, there is no statistical difference in their number between K15CrePR; DTA and wildtype (data not shown).

Partial bulge stem cell depletion does not delay wound repair. We next asked whether partial bulge depletion influences wound repair. Intriguingly, ablating the majority of peri-wound K15+ve HF bulge cells (RU486-treatment of K15CrePR;DTA transgenic mice) prior to wounding (Figure 3A) had no effect on subsequent wound re-epithelialisation (Figure 3B). Indeed, we observed no changes in wound healing phenotype using a range of standard wound repair metrics, including granulation tissue area and migration of the regenerated epidermal tongue (Figure S4A-C). Moreover, the extent of wound margin keratin 6 expression, a marker of wound-responding IFE previously demonstrated to be extended in the absence of HFs, was unaltered in RU486-treated K15-CrePR;DTA mice (Figure 3C,D). Taken together, these data indicate that the bulge of un-wounded perilesional HFs is not immediately activated by injury, nor is it required for the initiation of HF-derived re-epithelialisation.

DISCUSSION

Collectively, our data suggest that wounding does not induce substantial bulge activation in unwounded peri-wound HFs during the first three days of healing. Specifically, bulge cells of uninjured hair follicles do not proliferate or migrate from the bulge stem cell niche and partial ablation of K15™ bulge cells has no measurable impact on the rate of wound healing. While this does not formally exclude that early bulge activation may still occur during other types of epidermal wounding (e.g. burn wounds), when combined with current literature our data strongly suggest that bulge stem cells only respond to epidermal wounding during later stages of healing. Indeed, the seminal work of Ito et al. (2005) [3] which showed a K15™ lineage cell contribution to murine neo-epidermis at 5-8 days post wounding, has been followed by a plethora of studies revealing the influence of HFs on wound repair (Table 1) [2, 3, 7, 9-11, 15, 35]. Our data now suggest differential spatio-temporal capacity of distinct epithelial HF compartments to respond to wounding. Notably, the bulge appears protected from activation during the early phases of healing, the phase at which hair follicles provide a functional contribution to repair (Figure 4) [12, 13].

We recognize that our observations may be seen to conflict with earlier reports by Tumbar et al. (2004) and Mardareyev et al. (2011) [35, 36] reporting some bulge proliferation during the first 72 hours of healing. Likewise, Adam et al. (2015) [37] reported rapid down-regulation of stem cell transcription factors (TFs) in the K15™ bulge stem cell population prior to injury-induced migration. However, we suggest that these findings could be the result of analysing directly injured HFs, where bulge proliferation/migration may be specifically induced to regenerate the HF itself [38], rather than the epidermis (Figure 4B). Alternatively, these studies do not formally exclude the possibility that HFs were in the very early stages of anagen at the time of wounding, when the bulge niche is naturally proliferative. Importantly, in the current study, we have selectively measured only uninjured peri-wound HFs, and have employed unwounded contralateral skin to control for subtle changes in hair cycle, thus excluding all of these confounding parameters.

In support of our data, Page et al. (2013) [9] did not observe any migration of Lgr5+ve labelled cells from the bulge stem cell niche 2 days after wounding. In fact, Page et al. (2013) report that the initial response to injury is by Lrig1 positive cells in the junctional zone, where we also observe high levels of cell proliferation (Figure 1). Our observation that healing appears to occur independently of the bulge in the first 3 days is further supported by lineage tracing studies where neither Gli1+ve or K19+ve bulge subsets contributed to IFE re-epithelialisation [2, 15]. Indeed, epithelial progenitor cells within the isthmus, where we observe the highest level of wound-induced ORS keratinocyte proliferation, have previously been suggested to be more important for the HF wound response than the bulge [7].

Several papers have reported bulge cell proliferation during later healing [3, 9, 36, 38], most likely the result of a late stage peri-wound telogen to anagen transition (Figure 4C) [26]. While our study does not address a role for the bulge in later phases of wound repair, we suggest that the bulge’s main role during this phase is...
to act in a secondary manner to replenish epithelial HF populations (such as those from the isthmus region of the ORS) that provide the primary source of HF-derived epithelial cells to the neo-epidermis. Thus, bulge quiescence during the early phase of wound healing may be important to preserve the HF’s epithelial SC reservoir and to thus conserve the HF’s regenerative potential, which would otherwise become depleted immediately following injury [39]. Thus, retained bulge cell quiescence during early re-epithelialisation may be evolutionarily advantageous.

The maintenance of epithelial SC quiescence shortly after wounding may also serve as a safeguarding mechanism against tumorigenesis [40]. Indeed, the signalling milieu that is induced by both injury and HF cycling is known to predispose mammalian skin to tumour formation [41, 42], with tumour frequency greater during early anagen, i.e., when bulge epithelial SCs briefly proliferate [43, 44]. Similarly, the formation of squamous cell carcinomas is enhanced following burn injury [45], and injury-induced basal cell carcinoma formation can be initiated by expressing an oncogenic allele of Smo specifically within K15\(^{\text{cre}}\) bulge cells [46].

Indeed, a number of studies have now linked bulge stem cells to carcinogenesis, namely to the development of basal carcinoma [47–49]. Of note, Petersson et al. (2015) [47] observed particularly aggressive tumour formation following aberrant K15-mediated Lef1 expression [47]. If, as suggested, K15\(^{\text{cre}}\) cells are particularly sensitive to changes in Lef1 [47] or other factors produced by a "pro-tumorigenic" wound environment, then bulge quiescence during the early, particularly vulnerable proliferative phase of wound healing may also have evolved as a critical tumour-prevention strategy.

Acknowledgments

This work was funded by the BBSRC. We would like to acknowledge Dr. Nichola Cooper and Dr. Helen Thomason for optimisation of the RU486 induction protocol.

Conflicts of Interest

The Authors state no conflict of interest.

Author Contributions

C.L.G.: Concept and design, collection and assembly of data, data analysis and interpretation, manuscript revisions, manuscript writing.; D.M.A.: Concept and design, collection and assembly of data, data analysis and interpretation, manuscript editing.; D.J.H.: Provision of study material, concept and design.; R.P.: Concept and design, manuscript editing.; M.J.H.: Finance, concept and design, manuscript writing, final editing and approval of manuscript.

References

23. Lough D, Dai H, Yang M et al. Stimulation of the follicular bulge LGR5+ and LGR6+ stem cells with the gut-derived human alpha defensin S results in decreased bacterial presence, enhanced wound healing, and hair growth from tissues devoid of...
interactions
progeny
follicle
cells

Cell kinase
6
www.StemCells.com

skin.
Kruppel
132:
irradiation
stem
healing
markers
epidermis.

Targeted
sensory
structures
in
between
Zheng
the
innervation
X,
mice

One
Zhao
169

Med.
Jiang
Xiong
Li

Bhattacharya
Li
2012;
Martinez
2014;

Zheng
143

One
Zhao
169

follicle
Rabbani
et
al.

One
Zhao
169

in

E.

©AlphaMed
Press 2015

www.StemCells.com
Figure 1. Hair follicle proliferation is rapidly induced in response to injury, but the bulge neither proliferates nor migrates during the first 3 days of healing. Male C57/Bl6 mice were wounded in either anagen or telogen to profile the early injury induced proliferative response. A Proliferation within the hair follicle (HF) is observed as early as 12 hours post wounding, as shown by BrdU incorporation assay (black arrows). Green arrows denote wound edge. B Hair follicle proliferation propagates outwards from the wound edge (BrdU positive cells labelled by red arrows), green arrows denote wound edge. C Anagen HFs show a more rapid proliferative response to wounding compared to telogen HFs, significant at 18 hours post wounding, while no difference is observed in the inter follicular epidermis (IFE). D BrdU+ve cells were observed in all HF regions, except for the bulge, in both anagen and telogen, confirmed by an absence of BrdU/CD34 dual immunofluorescence co-localisation (E). F Continuous BrdU administration throughout the 3 days of healing also confirms an absence of bulge proliferation. G Quantification of proliferating cells within different hair follicle regions (24hours post injury). H, BrdU immunohistochemistry showing bulge label retention in unwounded skin. Dashed line indicates basement membrane, e = interfollicular epidermis, ors = outer root sheath, sg = sebaceous gland, Bu= bulge. Inset shows an enlarged image of the bulge region, arrow heads show label retaining cells. I, BrdU immunofluorescence of 3 day wound tissue. S= scab, ne= neoepidermis, e= interfollicular epidermis, Bu=bulge. Enlarged images show label retaining cells in the bulge, and an absence of label retaining cells in the epidermis. Mean ± SEM, n=3-5. * P<0.05, Bar=50 µm (B), 25 µm (D), 25 µm (E) 200 µm (F) 30µm (H, I).
Figure 2. Establishing a K15CrePR;DTA line to conditionally ablate bulge stem cells. A line carrying the RU486 inducible Cre recombinase (CrePR) fused to the Keratin 15 promoter was crossed to a line carrying the Diphtheria toxin A fragment (DTA), preceded by a floxed stop codon, under the control of a ubiquitous promoter, to create double transgenic K15Cre⁰;DTA offspring. B, C, D Topical treatment of dorsal skin of K15Cre⁰;DTA mice with RU486 causes significant apoptosis within the bulge region, while other hair follicle regions remain unaffected. Some apoptosis is observed within the terminally differentiating cells of the epidermis, in both K15Cre⁰;DTA and wildtype animals. D, G Keratin 15 staining reveals a marked reduction in bulge cellularity after RU486 treatment, and a reduction of K15 expression within the stem cell compartment, and E, H a near absence of Cd34 expression. F Reduction in expression of α6 integrin. I, number of TUNEL positive cells within the bulge. Graph shows mean ± SEM, * P<0.05, ***P<0.001 bar = 20 µm (C, E, F), 40 µm and 10 µm (D).
Figure 3. Depletion of bulge stem cells has no effect on early wound healing. K15cre^PR;DTA and control littermates were wounded after transgene induction. A Representative histology indicates equivalent wound size despite clear disruption to the bulge in K15cre^PR;DTA mice (inset). B The rate of re-epithelialisation was unaltered in K15cre^PR;DTA mice. C, D The extent of wound edge keratin 6 expression was unaltered in K15cre^PR;DTA mice. Mean ± SEM. Bar = 300 µm (A), 20 µm (A inset), 100 µm (C).
Figure 4. Potential timeline of bulge involvement in wound healing. A, Cutaneous wound healing can cause direct damage to peri-wound follicles as well as the interfollicular epidermis. During the earliest phase of wound healing (0-12 hours post injury), the hair follicle response has not yet been initiated, and there are no proliferating cells present within the peri-wound IFE or HF. B, From approximately 12-72 hours post injury, the IFE and HF response is substantial. Peri-wound HFs display proliferation in the isthmus, infundibulum, and sebaceous glands, but not in the bulge. Bulge cells may be seen to proliferate in HFs that are directly severed as a result of injury. C, During later phases of healing, peri-wound hair follicles have been noted to enter anagen. We propose that hair growth induction during later repair may represent a mechanism whereby bulge cells may proliferate to re-populate other regions of the HF.
Table 1 Summary of previous studies that have shown bulge contribution to healing

<table>
<thead>
<tr>
<th>Bulge marker</th>
<th>Early bulge response</th>
<th>Type of study</th>
<th>Brief summary</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>K15</td>
<td>Yes</td>
<td>Lineage tracing</td>
<td>Lineage tracing of K15+ve cells to the epidermis at 7-10 days post full-thickness injury. Cells appear from 2 days.</td>
<td>[3] Ito et al., 2005</td>
</tr>
<tr>
<td>H2B-GFP (LRC)</td>
<td>Yes</td>
<td>Lineage tracing</td>
<td>Bulge proliferation occurs at 24 hours post injury (abrasion wound model).</td>
<td>[35] Tumber et al., 2004</td>
</tr>
<tr>
<td>H2B-GFP (LRC)</td>
<td>Yes</td>
<td>In situ analysis</td>
<td>GFP labelled bulge cells become activated 24 hours post injury (shallow wound model).</td>
<td>[37] Adam et al., 2015</td>
</tr>
<tr>
<td>Gli1</td>
<td>Unclear</td>
<td>Lineage tracing</td>
<td>No contribution from the lower bulge/hair germ. Lineage tracing to the epidermis from an upper HF region, which might be bulge or isthmus cells.</td>
<td>[2] Brownell et al., 2011</td>
</tr>
<tr>
<td>Lgr5</td>
<td>No (but respond later)</td>
<td>Lineage tracing</td>
<td>No lineage tracing from the bulge occurs during early repair (3 days), but does occur in later healing (10 days).</td>
<td>[9] Page et al., 2013</td>
</tr>
<tr>
<td>Lhx2</td>
<td>No (only from 3-5 days)</td>
<td>In situ analysis</td>
<td>Proliferation seen within the bulge at 3-5 days post injury.</td>
<td>[36] Mardareyev et al., 2011</td>
</tr>
</tbody>
</table>